УДК 517.957

Посвящается светлой памяти Алексея Борисовича Шабата – одного из главных создателей современной теории классических интегрируемых систем

КОНЕЧНОЗОННЫЕ РЕШЕНИЯ НЕЛОКАЛЬНЫХ УРАВНЕНИЙ АКНС ИЕРАРХИИ

А.О. СМИРНОВ, В.Б. МАТВЕЕВ

Аннотация. Нелинейные нелокальные модели существуют во многих областях физики. Наиболее известными из них являются модели, обладающие \mathcal{PT} -симметрией. Кроме \mathcal{PT} -симметричных моделей активно исследуются нелокальные модели с обратным временем и/или координатой. Другие виды нелокальностей встречаются намного реже. Как правило, в работах, посвященых нелинейным нелокальным уравнениям, рассматриваются солитонные или квази-рациональные решения одного из этих уравнений. В представленной нами работе рассмотрены нелокальные симметрии, которым удовлетворяют все уравнения из иерархии Абловица-Каупа-Ньюэлла-Сигура. На основании свойств решений, удовлетворяющих нелокальным редукциям уравнений из иерархии АКНС, предложена модификация тэта-функциональной формулы для функции Бейкера-Ахиезера. Найдены условия на параметры спектральных кривых, ассоциированных с многофазными решениями, не имеющих экспоненциального роста на бесконечности. Показано, что при выполнении данных условий происходит разделение переменных. Большинство утверждений нашей работы является верным и для солитонных и квази-рациональных решений, поскольку они являются предельными случаями многофазных.

Ключевые слова: уравнение НШ, иерархия АКНС, нелокальное уравнение, РТ симметрия, конечнозонное решение, спектральная кривая, тэта функция.

Mathematics Subject Classification: 37K10, 35Q55, 35Q60

Введение

Нелинейные нелокальные модели возникают во многих областях физики. Наиболее известными из них являются модели, обладающие \mathcal{PT} -симметрией. Для общего представления о роли \mathcal{PT} -симметрии в широком круге физических задач, связанных со спектральной теорией неэрмитовых операторов с вещественными спектрами, ее проявлениями в теории нелинейных волн в различных физических средах и, в частности, в теории нелокальных интегрируемых систем, можно рекомендовать обзор [1] и недавнюю книгу [2].

После появления работ Абловица и Мусслимани [3]— [8] резко увеличилось внимание к решениям нелокальных интегрируемых нелинейных уравнения (см., например, [9]— [30]). Как правило, в этих работах для построения решений авторы использовали преобразование Дарбу или метод Хироты. Естественно, встал вопрос о возможности построения решений нелокальных интегрируемых уравнений методом конечнозонного интегрирования. Первые наши результаты по теории конечнозонных решений нелокальных интегрируемых

A.O. SMIRNOV, V.B. MATVEEV, FINITE-GAP SOLUTIONS OF NONLOCAL EQUATIONS IN ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY.

[©] Смирнов А.О., Матвеев В.Б. 2021.

Исследования были выполнены при финансовой поддержке РФФИ (грант №19-01-00734) и Министерства науки и высшего образования Российской Федерации (соглашение № FSRF-2020-0004).

Поступила 15 марта 2021 г.

уравнений из АКНС иерархии были опубликованы в работах [31]—[33]. В настоящей работе мы подводим итоги наших исследований по данной теме.

Представленная работа состоит из пяти разделов. В первым разделе, следуя [34], [35], мы выводим уравнения из АКНС иерархии и анализируем их симметрии. Второй раздел посвящен предлагаемой нами модификации функции Бейкера-Ахиезера. За основу взята функция Бейкера-Ахиезера для классических вариантов нелинейного уравнения Шредингера [36]– [38]. В заключение второго раздела приводятся формулы для конечнозонных решений, соответствующих предложенной нами функции Бейкера-Ахиезера. В разделе 3 исследованы свойства конечнозонных решений, построенных по трем классам спектральных кривых с антиголоморфной инволюцией. В общем случае конечнозонные решения, построенные по спектральным кривым с антиголоморной инволюцией, имеют экспоненциальный рост/убывание при стремлении значений независимых аргументов к положительной/отрицательной бесконечности. В связи с этим на спектральные кривые наложено дополнительное условие в виде наличия голоморфной инволюции. В разделах 4 и 5 показано, как наличие данной голоморфной инволюции влияет на параметры построенных в разделе 2 конечнозонных решений нелокальных уравнений АКНС иерархии. В частности, в разделе 5 показано, что наличие голоморфной инволюции приводит к разделению переменных: каждая тэта-функция конечнозонного решения является суммой, составленной из произведений двух тэта-функций меньшей размерности. В аргументе одной из меньших тэта-функций будут присутствовать времена с нечетным индексом t_1, t_3, \ldots , в аргументе второй – переменная x и времена с четным индексом t_2, t_4, \ldots Также в разделе 5 приведены примеры выражающихся через одномерные тэта-функции двухзонных решений нелокальных уравнений АКНС иерархии.

1. Уравнения из АКНС иерархии

Хорошо известно, что уравнения из АКНС иерархии [39] получаются как результат совместного рассмотрения уравнений

$$\begin{cases} \Psi_x = \mathfrak{U}\Psi, \\ \Psi_{t_k} = \mathfrak{V}_k\Psi, \end{cases} \tag{1.1}$$

где (см., например, [34], [35])

$$\mathfrak{U} := \lambda J + \mathfrak{U}^0, \quad \mathfrak{V}_1 := 2\lambda \mathfrak{U} + \mathfrak{V}_1^0, \quad \mathfrak{V}_{k+1} := 2\lambda \mathfrak{V}_k + \mathfrak{V}_{k+1}^0, \quad k \geqslant 1, \tag{1.2}$$

$$J := \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, \quad \mathfrak{U}^0 := \begin{pmatrix} 0 & ip \\ -iq & 0 \end{pmatrix}, \tag{1.3}$$

$$\mathfrak{V}_{k}^{0} = \begin{pmatrix} -i^{k} F_{k}(p, q) & i^{k-1} H_{k}(p, q) \\ i^{k-1} G_{k}(p, q) & i^{k} F_{k}(p, q) \end{pmatrix}. \tag{1.4}$$

Из уравнения

$$(\Psi_x)_{t_k} = (\Psi_{t_k})_x$$

вытекают следующие рекуррентные соотношения на функции $F_k(p,q), H_k(p,q)$ и $G_k(p,q)$:

$$H_1(p,q) = -p_x, G_1(p,q) = -q_x, (F_k(p,q))_x = -pG_k(p,q) - qH_k(p,q), H_{k+1}(p,q) = 2pF_k(p,q) + (H_k(p,q))_x, G_{k+1}(p,q) = -2qF_k(p,q) - (G_k(p,q))_x.$$

В частности,

$$F_1(p,q) = pq$$
, $H_2(p,q) = 2p^2q - p_{xx}$,
 $G_2(p,q) = -2q^2p + q_{xx}$, $F_2(p,q) = p_xq - pq_x$,

$$H_{3}(p,q) = 6pqp_{x} - p_{xxx}, \quad G_{3}(p,q) = 6pqq_{x} - q_{xxx},$$

$$F_{3}(p,q) = pq_{xx} + qp_{xx} - p_{x}q_{x} - 3p^{2}q^{2},$$

$$H_{4}(p,q) = -6p^{3}q^{2} + 6qp_{x}^{2} + 4pp_{x}q_{x} + 8pqp_{xx} + 2p^{2}q_{xx} - p_{xxxx},$$

$$G_{4}(p,q) = 6p^{2}q^{3} - 6pq_{x}^{2} - 4qp_{x}q_{x} - 8pqq_{xx} - 2q^{2}p_{xx} + q_{xxxx},$$

$$F_{4}(p,q) = -6pq^{2}p_{x} + 6p^{2}qq_{x} - q_{x}p_{xx} + p_{x}q_{xx} + qp_{xxx} - pq_{xxx},$$

$$H_{5}(p,q) = -30p^{2}q^{2}p_{x} + 10p_{x}^{2}q_{x} + 20qp_{x}p_{xx} + 10pq_{x}p_{xx} + 10pp_{x}q_{xx} + 10pp_{x}q_{xx} + 10pq_{x}q_{xx} - p_{xxxxx},$$

$$G_{5}(p,q) = -30p^{2}q^{2}q_{x} + 10p_{x}q_{x}^{2} + 10qq_{x}p_{xx} + 10qp_{x}q_{xx} + 20pq_{x}q_{xx} + 10pqq_{xxx} - q_{xxxxx},$$

$$F_{5}(p,q) = 10p^{3}q^{3} - 5q^{2}p_{x}^{2} - 5p^{2}q_{x}^{2} - 10pq^{2}p_{xx} - 10p^{2}qq_{xx} + p_{xx}q_{xx} - q_{x}p_{xxx} - p_{x}q_{xxx} + qp_{xxxx} + pq_{xxxx} + pq_{xxxx}.$$

Нетрудно показать, что функции $F_k(p,q)$, $H_k(p,q)$ и $G_k(p,q)$ обладают следующими свойствами [34], [35]

$$F_k(q,p) = (-1)^{k-1} F_k(p,q), \quad F_k(-p,-q) = F_k(p,q),$$

$$G_{k+1}(p,q) = (-1)^k H_{k+1}(q,p), \quad H_{k+1}(-p,-q) = -H_{k+1}(p,q)$$
(1.5)

И

$$F_{k}(p|_{x=-x}, q|_{x=-x}) = (-1)^{k-1} F_{k}(p, q)|_{x=-x},$$

$$G_{k}(p|_{x=-x}, q|_{x=-x}) = (-1)^{k} G_{k}(p, q)|_{x=-x},$$

$$H_{k}(p|_{x=-x}, q|_{x=-x}) = (-1)^{k} H_{k}(p, q)|_{x=-x}.$$
(1.6)

Следствием условий совместности также являются интегрируемые нелинейные эволюционные уравнения АКНС иерархии, которые имеют вид

$$p_{t_k} = -i^k H_{k+1}(p, q), \quad q_{t_k} = -i^k G_{k+1}(p, q)$$

или

$$p_{t_k} + i^k H_{k+1}(p, q) = 0, \quad q_{t_k} + (-i)^k H_{k+1}(q, p) = 0.$$
 (1.7)

В наших обозначениях классические интегрируемые нелинейные уравнения имеют следующий вид:

1. фокусирующее нелинейное уравнение Шредингера

$$ip_{t_1} - H_2(p, -p^*) = 0;$$

2. дефокусирующее нелинейное уравнение Шредингера

$$ip_{t_1} - H_2(p, p^*) = 0;$$

3. действительное модифицированное уравнение Кортевега-де Фриза

$$p_{t_2} - H_3(p, \pm p) = 0;$$

4. уравнение Лакшманана-Порсециана-Даниеля ([40–42], $t=-t_3$)

$$ip_t - H_4(p, -p^*) = 0.$$

2. ФУНКЦИЯ БЕЙКЕРА-АХИЕЗЕРА ДЛЯ НЕЛОКАЛЬНЫХ УРАВНЕНИЙ

Сделаем в уравнениях (1.2) замену спектрального параметра $\lambda \to i\lambda$:

$$\mathfrak{U} := i\lambda J + \mathfrak{U}^0, \quad \mathfrak{V}_1 := 2i\lambda \mathfrak{U} + \mathfrak{V}_1^0, \quad \mathfrak{V}_{k+1} := 2i\lambda \mathfrak{V}_k + \mathfrak{V}_{k+1}^0, \quad k \geqslant 1.$$
 (2.1)

Нетрудно понять, что условия совместности пар Лакса (1.1) при этом не изменятся, хотя поменяются условия вещественности, а также редукции, содержащие операцию комплексного сопряжения.

Следуя [36], [37] (см. также [34], [35], [43]— [45]) зададим гиперэллиптическую кривую $\Gamma = \{(\chi, \lambda)\}$ рода g

$$\Gamma: \quad \chi^2 = \prod_{j=1}^{2g+2} (\lambda - \lambda_j) \equiv \lambda^{2g+2} + \sum_{j=1}^{2g+2} \chi_j \lambda^{2g+2-j}, \quad \chi_j \in \mathbb{R}.$$
 (2.2)

Выберем на Γ канонический базис циклов $\gamma^t = (a_1, \dots, a_g, b_1, \dots, b_g)$ с матрицей индексов пересечения

$$C_0 = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

Выберем на Г также нормированный базис голоморфных дифференциалов

$$d\mathcal{U}_j = \sum_{k=1}^g c_{jk} \lambda^{g-k} \frac{d\lambda}{\chi},\tag{2.3}$$

$$\oint_{a_k} d\mathcal{U}_j = \delta_{kj}, \quad k, j = 1, \dots, g$$
(2.4)

с матрицей периодов

$$B_{kj} = \oint_{b_t} d\mathcal{U}_j, \quad k, j = 1, \dots, g, \qquad B^t = B, \quad \text{Im}(B) > 0.$$
 (2.5)

Построим по матрице периодов g-мерную тэта-функцию с характеристиками $\eta, \zeta \in \mathbb{R}^g$ [46]—[51]:

$$\Theta[\boldsymbol{\eta}^t; \boldsymbol{\zeta}^t](\mathbf{p}|B) = \sum_{\mathbf{m} \in \mathbb{Z}^g} \exp\{\pi i (\mathbf{m} + \boldsymbol{\eta})^t B(\mathbf{m} + \boldsymbol{\eta}) + 2\pi i (\mathbf{m} + \boldsymbol{\eta})^t (\mathbf{p} + \boldsymbol{\zeta})\},$$

$$\Theta[\mathbf{0}^t; \mathbf{0}^t](\mathbf{p}|B) \equiv \Theta(\mathbf{p}|B) \equiv \Theta(\mathbf{p}),$$
(2.6)

где $\mathbf{p} \in \mathbb{C}^g$, суммирование проходит по целочисленной g-мерной решетке.

Определим также на Γ нормированные абелевы интегралы второго — $\Omega_j(\mathcal{P})$ и третьего — $\omega_0(\mathcal{P})$, рода с асимптотикой в бесконечно удаленных точках $\mathcal{P}_{\infty}^{\pm}$:

$$\oint_{a_k} d\Omega_j = \oint_{a_k} d\omega_0 = 0, \qquad k = 1, \dots, g,$$

$$\Omega_j(\mathcal{P}) = \pm \left((2i)^{j-1} \lambda^j - K_j + O\left(\lambda^{-1}\right) \right), \qquad \mathcal{P} \to \mathcal{P}_{\infty}^{\pm}, \qquad (2.7)$$

$$\omega_0(\mathcal{P}) = \mp \left(\ln \lambda - \ln K_0 + O\left(\lambda^{-1}\right) \right), \qquad \mathcal{P} \to \mathcal{P}_{\infty}^{\pm}, \qquad (2.8)$$

$$\chi = \pm \left(\lambda^{g+1} + O\left(\lambda^g\right) \right), \qquad \mathcal{P} \to \mathcal{P}_{\infty}^{\pm}.$$

Обозначим через $2\pi i \mathbf{V}^j$ векторы b-периодов абелевых интегралов второго рода $\Omega_j(\mathcal{P})$. Следуя [36], [37] и [38], зададим однозначную от точки $\mathcal{P} \in \Gamma$ векторную функцию Бейкера-Ахиезера

$$\Psi(\mathcal{P}, \mathbf{x}) = \begin{pmatrix} \psi(\mathcal{P}, \mathbf{x}) \\ \phi(\mathcal{P}, \mathbf{x}) \end{pmatrix}, \tag{2.9}$$

где $\mathbf{x} = (x, t_1, t_2, \dots)^t$,

$$\psi(\mathcal{P}, \mathbf{x}) = r_1(\mathbf{x}) \frac{\Theta(\mathcal{U}(\mathcal{P}) - \mathbf{Z}_0 + \mathbf{U}(\mathbf{x}))}{\Theta(\mathcal{U}(\mathcal{P}) - \mathbf{Z}_0)} \exp \left\{ \Omega(\mathcal{P}, \mathbf{x}) \right\},$$

$$\phi(\mathcal{P}, \mathbf{x}) = r_2(\mathbf{x}) \frac{\Theta(\mathcal{U}(\mathcal{P}) - \mathbf{Z}_0 + \mathbf{U}(\mathbf{x}) + \mathbf{\Delta})}{\Theta(\mathcal{U}(\mathcal{P}) - \mathbf{Z}_0)} \exp \left\{ \omega_0(\mathcal{P}) + \Omega(\mathcal{P}, \mathbf{x}) \right\}.$$

Здесь r_j – нормирующие множители, Δ — вектор абелевых голоморфных интегралов, вычисленных вдоль пути, соединяющего точки \mathcal{P}_{∞}^- и \mathcal{P}_{∞}^+ , и не пересекающего ни один из базисных циклов,

$$\Delta = \mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathcal{U}(\mathcal{P}_{\infty}^{-}), \quad \mathbf{U}(\mathbf{x}) = \mathbf{V}^{1}x + \sum_{j \geq 1} \mathbf{V}^{j+1}t_{j},$$
$$\Omega(\mathcal{P}, \mathbf{x}) = x\Omega_{1}(\mathcal{P}) + \sum_{j \geq 1} t_{j}\Omega_{j+1}(\mathcal{P}),$$

 $\mathbf{Z}_0 \in \mathbb{C}^g$ – вектор, задающий начальную фазу.

Нормирующие множители

$$r_{1}(\mathbf{x}) = \rho_{1} \frac{\Theta(\mathcal{U}(\mathcal{P}^{+}) - \mathbf{Z}_{0})}{\Theta(\mathcal{U}(\mathcal{P}^{+}) - \mathbf{Z}_{0} + \mathbf{U}(\mathbf{x}))} \exp\left\{K_{1}x + \sum_{j \geq 1} K_{j+1}t_{j}\right\},$$

$$r_{2}(\mathbf{x}) = K_{0}\rho_{2} \frac{\Theta(\mathcal{U}(\mathcal{P}^{-}) - \mathbf{Z}_{0})}{\Theta(\mathcal{U}(\mathcal{P}^{-}) - \mathbf{Z}_{0} + \mathbf{U}(\mathbf{x}) + \boldsymbol{\Delta})} \exp\left\{-K_{1}x - \sum_{j \geq 1} K_{j+1}t_{j}\right\},$$

находим из асимптотики вектор-функции (2.9) в окрестности бесконечно удаленных точек $\mathcal{P}_{\infty}^{\pm}$:

$$\psi(\mathcal{P}, \mathbf{x}) = \left(\rho_1 + \sum_{j \ge 1} \alpha_j^+(\mathbf{x}) \lambda^{-j}\right) \exp\left\{x\lambda + \sum_{j \ge 1} t_j (2i)^j \lambda^{j+1}\right\}, \quad \mathcal{P} \to \mathcal{P}_{\infty}^+,$$

$$\phi(\mathcal{P}, \mathbf{x}) = \lambda^{-1} \left(s_2(\mathbf{x}) + \sum_{j \ge 1} \beta_j^+(\mathbf{x}) \lambda^{-j}\right) \exp\left\{x\lambda + \sum_{j \ge 1} t_j (2i)^j \lambda^{j+1}\right\}, \quad \mathcal{P} \to \mathcal{P}_{\infty}^+,$$

$$\psi(\mathcal{P}, \mathbf{x}) = \left(s_1(\mathbf{x}) + \sum_{j \ge 1} \alpha_j^-(\mathbf{x}) \lambda^{-j}\right) \exp\left\{-x\lambda - \sum_{j \ge 1} t_j (2i)^j \lambda^{j+1}\right\}, \quad \mathcal{P} \to \mathcal{P}_{\infty}^-,$$

$$\phi(\mathcal{P}, \mathbf{x}) = \lambda \left(\rho_2 + \sum_{j \ge 1} \beta_j^-(\mathbf{x}) \lambda^{-j}\right) \exp\left\{-x\lambda - \sum_{j \ge 1} t_j (2i)^j \lambda^{j+1}\right\}, \quad \mathcal{P} \to \mathcal{P}_{\infty}^-.$$

Теорема 2.1. Алгебро-геометрические решения уравнений АКНС иерархии, построенные по функции Бейкера-Ахиезера (2.9), имеют вид

$$p(\mathbf{x}) = \frac{2iA\rho_1}{\rho_2} \frac{\Theta(\mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 + \mathbf{U}(\mathbf{x}) - \boldsymbol{\Delta})}{\Theta(\mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 + \mathbf{U}(\mathbf{x}))} \exp\{2\Phi(\mathbf{x})\},$$

$$q(\mathbf{x}) = \frac{2i\rho_2 K_0^2}{A\rho_1} \frac{\Theta(\mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 + \mathbf{U}(\mathbf{x}) + \boldsymbol{\Delta})}{\Theta(\mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 + \mathbf{U}(\mathbf{x}))} \exp\{-2\Phi(\mathbf{x})\},$$
(2.10)

где

$$A = \frac{\Theta(\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})}{\Theta(\mathcal{U}(\mathcal{P}_{\infty}^{-}) - \mathbf{Z}_{0})}, \quad \Phi(\mathbf{x}) = K_{1}x + \sum_{j \geq 1} K_{j+1}t_{j}.$$

3. Алгебро-геометрические решения, построенные по спектральной кривой с антиинволюцией

Пусть канонический базис циклов преобразуется при антиголоморфной инволюции

$$\tau_a: (\chi, \lambda) \to (\chi^*, \lambda^*) \tag{3.1}$$

по следующим формулам ($\sigma_a = \pm 1$)

$$\tau_a \mathbf{a} = \sigma_a \mathbf{a}, \quad \tau_a \mathbf{b} = -\sigma_a (\mathbf{b} + K\mathbf{a}).$$
 (3.2)

Введем обозначения

$$\mathcal{A}_{jm} = \oint_{a_j} \lambda^{g-m} \frac{d\lambda}{\chi}, \quad \mathcal{B}_{jm} = \oint_{b_j} \lambda^{g-m} \frac{d\lambda}{\chi}.$$

Тогда матрица коэффициентов нормированных голоморфных дифференциалов (2.3) и матрица периодов (2.5) равны

$$C = (A^t)^{-1}, \quad B = \mathcal{B}C^t = \mathcal{B}A^{-1}.$$

Из уравнения

$$\int_{\tau\ell} d\omega = \int_{\ell} \tau d\omega,$$

где ℓ есть произвольный путь на Γ , а $d\omega$ – произвольный абелев дифференциал, следует, что

$$(\mathcal{A}_{jm})^* = \oint_{a_j} \left(\lambda^{g-m} \frac{d\lambda}{\chi}\right)^* = \oint_{a_j} \tau_a \left(\lambda^{g-m} \frac{d\lambda}{\chi}\right)$$
$$= \oint_{\tau_a a_j} \lambda^{g-m} \frac{d\lambda}{\chi} = \sigma_a \oint_{a_j} \lambda^{g-m} \frac{d\lambda}{\chi} = \sigma_a \mathcal{A}_{jm}.$$

Следовательно, $\mathcal{A}^* = \sigma_a \mathcal{A}$ и $\mathcal{C}^* = \sigma_a \mathcal{C}$. Поступая аналогично с интегралами по b-циклам, получаем

$$\mathcal{B}^* = -\sigma_a(\mathcal{B} + K\mathcal{A})$$
 или $B^* = -B - K$

И

$$Re(B) = -\frac{1}{2}K. \tag{3.3}$$

Обобщая эти формулы на произвольный путь ℓ , имеем

$$\left(\int_{\ell} d\mathcal{U}\right)^* = \sigma_a \int_{\tau_a \ell} d\mathcal{U}. \tag{3.4}$$

Из билинейных соотношений Римана (см., например, [38], [46], [49]) следует, что

$$V_j^k = \operatorname{Res}_{\mathcal{P}_{\infty}^+}(\mathcal{U}_j(\mathcal{P})d\Omega_k) - \operatorname{Res}_{\mathcal{P}_{\infty}^-}(\mathcal{U}_j(\mathcal{P})d\Omega_k) = \frac{-2^k i^{k-1}}{(k-1)!} \left. \frac{\partial^k \mathcal{U}_j}{\partial \xi_+^k} \right|_{\xi_+ = 0}.$$

Соответственно,

$$\left(\mathbf{V}^{k}\right)^{*} = (-1)^{k-1}\sigma_{a}\mathbf{V}^{k}.\tag{3.5}$$

Из равенств $(\Omega_j(\mathcal{P}))^*=(-1)^{j-1}\Omega_j(\tau_a\mathcal{P})$ и $\tau_a\mathcal{P}_\infty^\pm=\mathcal{P}_\infty^\pm$ следует, что

$$K_j^* = (-1)^{j-1} K_j$$
 и $\Phi^*(\mathbf{x}) = -\Phi(\widehat{J}\mathbf{x}),$

где $\widehat{J}_{km} = (-1)^k \delta_{km}$.

Рассмотрим 4 типа спектральных кривых с инволюцией (3.1), (3.2).

- 1. Все точки ветвления не лежат на действительной оси, $\operatorname{Im}(\lambda_{2g+2}) \neq 0$, $\sigma_a = -1$, $\operatorname{Re}(B) \neq 0$ при g > 1, (например, рис. 1).
- 2. Только часть точек ветвления не лежит на действительной оси, $\sigma_a = -1$, $\text{Re}(B) \neq 0$ при g > 1, (например, рис. 2).

- 3. Все точки ветвления лежат на действительной оси: $\operatorname{Im}(\lambda_j) = 0$, $\sigma_a = -1$, $\operatorname{Re}(B) = 0$ (рис. 3).
- 4. Все точки ветвления лежат на действительной оси: $\operatorname{Im}(\lambda_j) = 0$, $\sigma_a = 1$, $\operatorname{Re}(B) = 0$ (рис. 4).

Во всех четырех случаях будем считать, что

$$\Omega_j(\mathcal{P}) = \int_{\mathcal{P}_{2g+2}}^{\mathcal{P}} d\Omega_j, \qquad \omega_0(\mathcal{P}) = \int_{\mathcal{P}_{2g+2}}^{\mathcal{P}} d\omega_0, \qquad \mathcal{U}(\mathcal{P}) = \int_{\mathcal{P}_{2g+2}}^{\mathcal{P}} d\mathcal{U}.$$

Следовательно, во всех четырех случаях выполняются условия

$$\Omega_j(\tau_0 \mathcal{P}) = -\Omega_j(\mathcal{P}), \quad \omega_0(\tau_0 \mathcal{P}) = -\omega_0(\mathcal{P}), \quad \mathcal{U}(\tau_0 \mathcal{P}) = -\mathcal{U}(\mathcal{P}),$$

$$\mathcal{U}(\mathcal{P}_{\infty}^+) = -\mathcal{U}(\mathcal{P}_{\infty}^-) \quad \text{и} \quad \mathcal{U}(\mathcal{P}_{\infty}^+) = \frac{1}{2}\Delta,$$

где τ_0 есть гиперэллиптическая инволюция, $\tau_0: (\chi, \lambda) \to (-\chi, \lambda)$.

В случае 1 выполняется условие $\tau_a \mathcal{P}_{2g+2} = \mathcal{P}_{2g+1}$. Поэтому из уравнения (3.4) и соотношения $\tau_a \mathcal{P}_{\infty}^{\pm} = \mathcal{P}_{\infty}^{\pm}$ вытекают следующие равенства

$$(\mathcal{U}(\mathcal{P}_{\infty}^{+}))^{*} = \left(\int_{\mathcal{P}_{2g+2}}^{\mathcal{P}_{\infty}^{+}} d\mathcal{U}\right)^{*} = \sigma_{a} \int_{\mathcal{P}_{2g+1}}^{\mathcal{P}_{\infty}^{+}} d\mathcal{U} = \sigma_{a} \int_{\mathcal{P}_{2g+1}}^{\mathcal{P}_{2g+2}} d\mathcal{U} + \sigma_{a} \mathcal{U}(\mathcal{P}_{\infty}^{+}),$$

$$(\mathcal{U}(\mathcal{P}_{\infty}^{-}))^{*} = \left(\int_{\mathcal{P}_{2g+2}}^{\mathcal{P}_{\infty}^{-}} d\mathcal{U}\right)^{*} = \sigma_{a} \int_{\mathcal{P}_{2g+1}}^{\mathcal{P}_{\infty}^{-}} d\mathcal{U} = \sigma_{a} \int_{\mathcal{P}_{2g+1}}^{\mathcal{P}_{2g+2}} d\mathcal{U} + \sigma_{a} \mathcal{U}(\mathcal{P}_{\infty}^{-}).$$

$$(3.6)$$

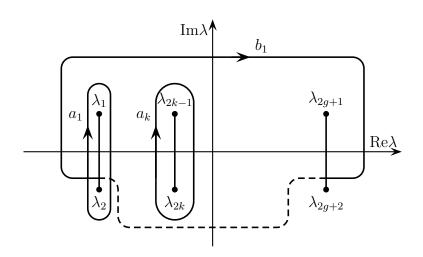


Рис. 1. Случай 1

Заметим, что пути интегрирования в уравнениях (3.6) принадлежат разным листам двулистной поверхности Γ . Поэтому в случае 1

$$\Delta^* = -\sigma_a \sum_{k=1}^g \int_{a_k} d\mathcal{U} + \sigma_a \Delta = \mathbf{e} - \Delta$$
 или $\operatorname{Re}(\Delta) = \frac{1}{2} \mathbf{e},$

где $e_j = 1, j = 1, \ldots, g$.

Также в данном случае выполняется равенство

$$(\omega_0(\mathcal{P}))^* = \left(\int_{\mathcal{P}_{2g+2}}^{\mathcal{P}} d\omega_0\right)^* = \int_{\mathcal{P}_{2g+2}}^{\mathcal{P}} \tau_a(d\omega_0) = \int_{\mathcal{P}_{2g+1}}^{\tau_a \mathcal{P}} d\omega_0 = \int_{\mathcal{P}_{2g+1}}^{\mathcal{P}_{2g+2}} d\omega_0 + \omega_0(\tau_a \mathcal{P}),$$

где путь интегрирования, соединяющий точки \mathcal{P}_{2g+1} и \mathcal{P}_{2g+2} , не пересекает базисные циклы. Вычисляя интеграл $\int_{\mathcal{P}_{2g+1}}^{\mathcal{P}_{2g+2}} d\omega_0$, получаем

$$\int_{\mathcal{P}_{2g+1}}^{\mathcal{P}_{2g+2}} d\omega_0 = \frac{1}{2} \left(\sum_{k=1}^g \int_{a_k} d\omega_0 + 2\pi i \operatorname{Res}_{\mathcal{P}_{\infty}^+}(d\omega_0) \right) = -\pi i.$$

Следовательно,

$$\operatorname{Im}(\ln K_0) = \frac{1}{2i} \lim_{\mathcal{P} \to \mathcal{P}_{\infty}^+} (\omega_0(\mathcal{P}) - (\omega_0(\mathcal{P}))^*)$$
$$= \frac{\pi}{2} + \frac{1}{2i} \lim_{\mathcal{P} \to \mathcal{P}_{\infty}^+} \int_{\tau_{\infty} \mathcal{P}}^{\mathcal{P}} d\omega_0 = \frac{\pi}{2} + \pi n, \quad n \in \{0; 1; -1\}$$

или $K_0^2 = -|K_0|^2$.

Выбирая начальную фазу \mathbf{Z}_0 так, что выполняется условие

$$(\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})^{*} = \mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0} + B\mathbf{M} + \mathbf{N}, \quad \mathbf{M}, \mathbf{N} \in \mathbb{Z}^{g}, \quad \mathbf{N} = -(\operatorname{Re}B)\mathbf{M},$$
(3.7)

имеем

$$p^{*}(\mathbf{x}) = \frac{-2iA^{*}\rho_{1}^{*}}{\rho_{2}^{*}} \frac{\Theta((\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})^{*} + U(\widehat{J}\mathbf{x}) + \Delta - \mathbf{e})}{\Theta((\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})^{*} + U(\widehat{J}\mathbf{x}))} e^{-2\Phi(\widehat{J}\mathbf{x})}$$
$$= -e^{\pi i \mathbf{M}^{t} \mathbf{e}} \left| \frac{A\rho_{1}}{K_{0}\rho_{2}} \right|^{2} e^{2\pi \mathbf{M}^{t} \operatorname{Im} \Delta} q(\widehat{J}\mathbf{x}).$$

Таким образом, при $|\rho_2| = |A\rho_1K_0^{-1}\exp\{\pi\mathbf{M}^t\mathrm{Im}\Delta\}|$ функции (2.10), построенные по гиперэллиптической кривой, обладающей инволюцией (3.1), (3.2) и удовлетворяющей условиям $\mathrm{Im}(\lambda_j) \neq 0$, $\sigma_a = -1$, являются алгебро-геометрическими решениями нелокальных уравнений АКНС иерархии с редукцией $q(\mathbf{x}) = \sigma p^*(\widehat{J}\mathbf{x})$, где

$$\sigma = -\exp\{\pi i \mathbf{M}^t \mathbf{e}\}. \tag{3.8}$$

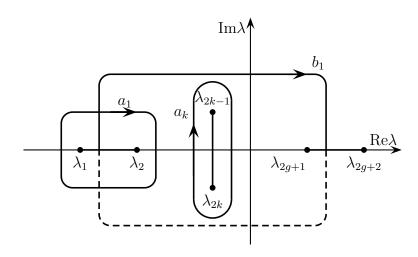


Рис. 2. Случай 2

В **случае 2** существуют отличные от нуля диагональные элементы матрицы K. Из формулы

$$\Theta^*(p|B) = \Theta(p^* + \mathbf{d}|B),$$

где $(\mathbf{d})_j = K_{jj}/2$, вытекает что спектральная кривая данного типа не может быть использована для построения нелокальных редукций многофазных решений из иерархии АКНС.

В **случае 3** выполняется условие $au_a \mathcal{P}_{2g+2} = \mathcal{P}_{2g+2}$, и поэтому

$$(\mathcal{U}(\mathcal{P}_{\infty}^+))^* = -\mathcal{U}(\mathcal{P}_{\infty}^+), \quad (\mathcal{U}(\mathcal{P}_{\infty}^-))^* = -\mathcal{U}(\mathcal{P}_{\infty}^-) \quad \text{if} \quad \Delta^* = -\Delta,$$

И

$$(\omega_0(\mathcal{P}))^* = \left(\int_{\mathcal{P}_{2g+2}}^{\mathcal{P}} d\omega_0\right)^* = \int_{\mathcal{P}_{2g+2}}^{\mathcal{P}} \tau_a(d\omega_0) = \int_{\mathcal{P}_{2g+2}}^{\tau_a \mathcal{P}} d\omega_0 = \omega_0(\tau_a \mathcal{P}).$$

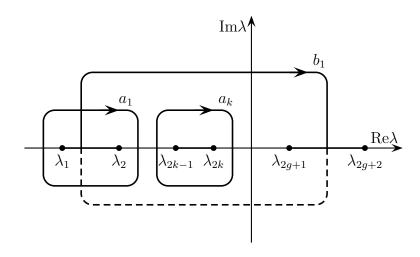


Рис. 3. Случай 3

Соответственно,

$$\operatorname{Im}(\ln K_0) = \frac{1}{2i} \lim_{\mathcal{P} \to \mathcal{P}_{\infty}^+} (\omega_0(\mathcal{P}) - (\omega_0(\mathcal{P}))^*) = \frac{1}{2i} \lim_{\mathcal{P} \to \mathcal{P}_{\infty}^+} \int_{\tau_0 \mathcal{P}}^{\mathcal{P}} d\omega_0 = \pi n, \quad n \in \{0; 1; -1\}$$

или $K_0^2 = |K_0|^2$.

Выбирая начальную фазу \mathbf{Z}_0 так, что выполняется условие

$$(\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})^{*} = \mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0} + B\mathbf{M}, \quad \mathbf{M} \in \mathbb{Z}^{g},$$
(3.9)

имеем

$$p^{*}(\mathbf{x}) = \frac{-2iA^{*}\rho_{1}^{*}}{\rho_{2}^{*}} \frac{\Theta((\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})^{*} + U(\widehat{J}\mathbf{x}) + \Delta)}{\Theta((\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})^{*} + U(\widehat{J}\mathbf{x}))} e^{-2\Phi(\widehat{J}\mathbf{x})}$$
$$= \left| \frac{A\rho_{1}}{K_{0}\rho_{2}} \right|^{2} e^{2\pi\mathbf{M}^{t}\operatorname{Im}\Delta} q(\widehat{J}\mathbf{x}).$$

Таким образом, при $|\rho_2| = |A\rho_1K_0^{-1}\exp\{\pi\mathbf{M}^t\mathrm{Im}\Delta\}|$ функции (2.10), построенные по гиперэллиптической кривой, обладающей инволюцией (3.1), (3.2) и удовлетворяющей условиям, $\mathrm{Re}(B) = 0$, $\mathrm{Im}(\lambda_j) = 0$, являются алгебро-геометрическими решениями нелокальных уравнений АКНС иерархии с редукцией $q(\mathbf{x}) = p^*(\widehat{J}\mathbf{x})$.

Для **случая** 4 снова выполняется условие $\tau_a \mathcal{P}_{2g+2} = \mathcal{P}_{2g+2}$, но поскольку $\sigma_a = 1$, то

$$(\mathcal{U}(\mathcal{P}_{\infty}^+))^* = \mathcal{U}(\mathcal{P}_{\infty}^+), \quad (\mathcal{U}(\mathcal{P}_{\infty}^-))^* = \mathcal{U}(\mathcal{P}_{\infty}^-) \quad \text{if} \quad \Delta^* = \Delta.$$

Аналогично случаю 3 выполняются равенства

$$(\omega_0(\mathcal{P}))^* = \left(\int_{\mathcal{P}_{2a+2}}^{\mathcal{P}} d\omega_0\right)^* = \int_{\mathcal{P}_{2a+2}}^{\mathcal{P}} \tau_a(d\omega_0) = \int_{\mathcal{P}_{2a+2}}^{\tau_a \mathcal{P}} d\omega_0 = \omega_0(\tau_a \mathcal{P})$$

И

$$\operatorname{Im}(\ln K_0) = \frac{1}{2i} \lim_{\mathcal{P} \to \mathcal{P}_{\infty}^+} (\omega_0(\mathcal{P}) - (\omega_0(\mathcal{P}))^*) = \frac{1}{2i} \lim_{\mathcal{P} \to \mathcal{P}_{\infty}^+} \int_{\tau_0 \mathcal{P}}^{\mathcal{P}} d\omega_0 = \pi n, \quad n \in \{0; 1; -1\}$$

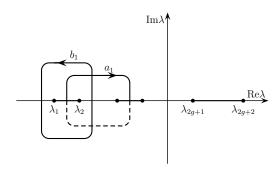


Рис. 4. Случай 4

или $K_0^2 = |K_0|^2$.

Выбирая начальную фазу \mathbf{Z}_0 так, что выполняется условие

$$(\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0})^{*} = -(\mathcal{U}(\mathcal{P}_{\infty}^{+}) - \mathbf{Z}_{0}) + \mathbf{N}, \quad \mathbf{N} \in \mathbb{Z}^{g}, \tag{3.10}$$

имеем

$$p^*(\mathbf{x}) = \frac{-2iA^*\rho_1^*}{\rho_2^*} \frac{\Theta(\mathbf{N} - (\mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 + U(\widehat{J}\mathbf{x}) + \Delta))}{\Theta(\mathbf{N} - (\mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 + U(\widehat{J}\mathbf{x})))} e^{-2\Phi(\widehat{J}\mathbf{x})} = \left| \frac{A\rho_1}{K_0\rho_2} \right|^2 q(\widehat{J}\mathbf{x}).$$

Таким образом, при $|\rho_2| = |A\rho_1K_0^{-1}|$ функции (2.10), построенные по гиперэллиптической кривой, обладающей инволюцией (3.1), (3.2) и удовлетворяющей условиям $\operatorname{Im}(\lambda_{2g+2}) = 0$, являются алгебро-геометрическими решениями нелокальных уравнений АКНС иерархии с редукцией $q(\mathbf{x}) = p^*(\widehat{J}\mathbf{x})$.

4. РЕШЕНИЯ, ПОСТРОЕННЫЕ ПО СПЕКТРАЛЬНОЙ КРИВОЙ С ГОЛОМОРФНОЙ ИНВОЛЮЦИЕЙ

К сожалению, алгебро-геометрические решения (2.10), построенные по гиперэллиптической кривой (2.2), обладающей инволюцией (3.1), (3.2) при $K_{2j-1} \neq 0$ имеют экспоненциальный рост по соответствующим переменным. Этого можно избежать, если использовать гиперэллиптические кривые с голоморфной инволюцией

$$\tau_h: (\chi, \lambda) \to (\chi, -\lambda).$$
 (4.1)

Легко видеть, что во всех четырех рассмотренных случаях базисы циклов преобразуются по правилу

$$\tau_h \mathbf{a} = S \mathbf{a}, \quad \tau_h \mathbf{b} = Q \mathbf{a} + R \mathbf{b}, \quad \tau_h \mathcal{P}_{\infty}^{\pm} = \mathcal{P}_{\infty}^{\pm},$$

где (см., например, [38], [52])

$$SR^t = I$$
 и $QR^t = RQ^t$.

Вычисляя периоды голоморфных дифференциалов $d\widehat{\mathcal{U}}_j(\mathcal{P}) = d\mathcal{U}_j(\tau_h \mathcal{P})$, имеем

$$\int_{a_k} d\widehat{\mathcal{U}}_j(\mathcal{P}) = \int_{\tau_h a_k} d\mathcal{U}_j = \sum_{m=1}^g S_{km} \int_{a_m} d\mathcal{U}_j = S_{kj},$$

$$\int_{a_k} d\widehat{\mathcal{U}}_j(\mathcal{P}) = \sum_{m=1}^g c_{jm} \int_{a_k} \tau_h \left(\lambda^{g-m} \frac{d\lambda}{\chi} \right) = \sum_{m=1}^g c_{jm} (-1)^{g+1-m} \mathcal{A}_{km} = (\mathcal{A}J\mathcal{C}^t)_{kj},$$

где

$$J_{mn} = (-1)^{g+1-m} \delta_{mn}. (4.2)$$

Соответственно, $d\widehat{\mathcal{U}} = S^t d\mathcal{U}$, а матрицы S и J подобны,

$$S = (\mathcal{C}^t)^{-1} J \mathcal{C}^t$$
 и $S^t = \mathcal{C} J \mathcal{C}^{-1}$.

Поскольку $R = (S^t)^{-1}$ и $S^2 = I$, то $R = S^t$.

Интегрируя голоморфные дифференциалы по *b*-циклам, имеем

$$\int_{b_k} d\widehat{\mathcal{U}}_j(\mathcal{P}) = \int_{\tau_h b_k} d\mathcal{U}_j = \sum_{m=1}^g \left(Q_{km} \int_{a_m} d\mathcal{U}_j + R_{km} \int_{b_m} d\mathcal{U}_j \right) = (Q + RB)_{kj},$$

$$\int_{b_k} d\widehat{\mathcal{U}}_j(\mathcal{P}) = \sum_{m=1}^g (S^t)_{jm} \int_{b_k} d\mathcal{U}_m = (BS)_{kj},$$

или

$$BS = Q + RB. (4.3)$$

Транспонируя равенство (4.3), имеем

$$S^t B = Q^t + BR^t$$
 или $RB = Q^t + BS$.

Следовательно, $Q^t = -Q$. Вычисляя действительную часть равенства (4.3), получаем

$$Q = (ReB)S - S^t(ReB)$$

И

$$S^t Q = S^t(ReB)S - (ReB) = Q^t S.$$

Заметим, что из асимптотики функции $\chi(\lambda)$ в окрестности бесконечно удаленных точек следует, что:

- если g нечетное, то $\tau_h \mathcal{P}_{\infty}^{\pm} = \mathcal{P}_{\infty}^{\pm}$, если g четное, то $\tau_h \mathcal{P}_{\infty}^{\pm} = \mathcal{P}_{\infty}^{\mp}$.

Следовательно,

$$S^{t}\Delta = 2 \int_{\mathcal{P}_{2g+2}}^{\mathcal{P}_{\infty}^{+}} S^{t} d\mathcal{U} = 2 \int_{\mathcal{P}_{2g+2}}^{\mathcal{P}_{\infty}^{+}} \tau_{h} d\mathcal{U} = 2 \int_{\mathcal{P}_{1}}^{\tau_{h} \mathcal{P}_{\infty}^{+}} d\mathcal{U}$$
$$= 2 \int_{\mathcal{P}_{1}}^{\mathcal{P}_{2g+2}} d\mathcal{U} + 2\mathcal{U}(\tau_{h} \mathcal{P}_{\infty}^{+}) = (-1)^{g+1} \Delta - 2\mathcal{U}(\mathcal{P}_{1}). \tag{4.4}$$

Введем обозначения: $\widehat{\Omega}_{i}(\mathcal{P}) = \Omega_{i}(\tau_{h}\mathcal{P})$. Эти интегралы обладают следующим свойствами:

$$\int_{a_k} d\widehat{\Omega}_j = \int_{\tau_h a_k} d\Omega_j = \sum_{m=1}^g S_{km} \int_{a_m} d\Omega_j = 0,$$

$$\widehat{\Omega}_j(\mathcal{P}) = \pm \left((2i)^{j-1} (-\lambda)^j - K_j + O\left(\lambda^{-1}\right) \right), \quad \mathcal{P} \to \mathcal{P}_{\infty}^{\pm}.$$

Поскольку абелев интеграл $\mu_j(\mathcal{P})=\widehat{\Omega}_j(\mathcal{P})-(-1)^j\Omega_j(\mathcal{P})$ не имеет особенностей и имеет нулевые a-периоды, то он является постоянной величиной. Из асимптотики $\mu_i(\mathcal{P})$ в бесконечно удаленных точках

$$\mu_j(\mathcal{P}) = \mp \left((-1)^j - 1 \right) K_j + O\left(\lambda^{-1}\right), \quad \mathcal{P} \to \mathcal{P}_{\infty}^{\pm}$$

следует, что $\mu_j(\mathcal{P}) \equiv 0$, $\widehat{\Omega}_j(\mathcal{P}) \equiv (-1)^j \Omega_j(\mathcal{P})$, $K_{2j-1} = 0$.

Таким образом, многофазные решения (2.10), построенные по гиперэллиптической кривой (2.2) с инволюциями (3.1), (4.1) не имеют экспоненциального роста.

Вычисляя *b*-периоды абелевых интегралов второго рода, получаем

$$(\widehat{\mathbf{V}}^{j})_{k} = \frac{1}{2\pi i} \int_{b_{k}} d\widehat{\Omega}_{j} = \frac{1}{2\pi i} \int_{\tau_{h}b_{k}} d\Omega_{j}$$
$$= \frac{1}{2\pi i} \sum_{m=1}^{g} \left(Q_{km} \int_{a_{m}} d\Omega_{j} + R_{km} \int_{b_{m}} d\Omega_{j} \right) = (R\mathbf{V}^{j})_{k},$$

$$(\widehat{\mathbf{V}}^j)_k = \frac{1}{2\pi i} \int_{b_k} d\widehat{\Omega}_j = \frac{(-1)^j}{2\pi i} \int_{b_k} d\Omega_j = (-1)^j (\mathbf{V}^j)_k.$$

Следовательно, векторы ${\bf V}^j$ являются собственными векторами матрицы R: $R{\bf V}^j=(-1)^j{\bf V}^j$ или

$$S^t \mathbf{V}^j = (-1)^j \mathbf{V}^j. \tag{4.5}$$

Однофазные решения нелокальных уравнений из АКНС иерархии были рассмотрены нами в работах [31]– [33]. Поэтому далее мы будем считать, что g > 1.

В **случае 1** выполняется равенство $\text{Re}(B_{jk}) = (\delta_{jk} - 1)/2$, а элементы матриц преобразования циклов при инволюции τ_h равны:

$$S_{1k} = (-1)^g, \quad S_{jk} = (-1)^{g+1} \delta_{j,g+2-k}, \quad j = 2, \dots, g, \quad k = 1, \dots, g,$$

$$Q_{jk} = (-1)^g (\delta_{j1} - \delta_{1k}), \quad j, k = 1, \dots, g,$$

$$(S^t Q)_{jk} = 1 - \delta_{j1} \delta_{1k}.$$

$$(4.6)$$

В частности, при g=2

$$S = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \text{Re}B = -\frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

а при q = 3

$$S = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \text{Re}B = -\frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Из уравнений (4.4), (4.6) и условия вещественности вектора Δ следует, что

$$S^t \Delta = (-1)^{g+1} \left(\Delta + (B-I)\mathbf{e}_1 \right),\,$$

где $\mathbf{e}_1^t = (1, 0, \dots, 0).$

Можно показать, что при четном g условие (3.7) выполняется только для $\mathbf{M} \in 2\mathbb{Z}^g$. Следовательно, при четном g решение (2.10), построенное по кривой (2.2), (3.1), (4.1), удовлетворяет редукции

$$q(\mathbf{x}) = -p^*(\widehat{J}\mathbf{x}).$$

Вместе с тем, при нечетном q существуют начальные фазы \mathbf{Z}_0 для обоих видов редукций:

$$q(\mathbf{x}) = \pm p^*(\widehat{J}\mathbf{x}).$$

В **случае 3** элементы матрицы S определяются формулой (4.6), а также выполняются равенства:

$$Re(B_{jk}) = 0$$
, $Q_{jk} = 0$, $S^t \Delta = (-1)^{g+1} (\Delta + B\mathbf{e}_1)$.

Нетрудно показать, что в случае 3 при любом $\mathbf{M} \in \mathbb{Z}^g$ и при начальной фазе \mathbf{Z}_0 , удовлетворяющей условию (3.9), решение (2.10), построенное по кривой (2.2), (3.1), (4.1), удовлетворяет редукции

$$q(\mathbf{x}) = p^*(\widehat{J}\mathbf{x}).$$

В случае 4

$$\operatorname{Re}(B_{jk}) = 0, \quad Q_{jk} = 0, \quad S_{jk} = (-1)^g \delta_{j,g+1-k}, \quad j, k = 1, \dots, g,$$

$$S^t \Delta = (-1)^{g+1} (\Delta - \mathbf{e}), \qquad (4.7)$$

и при любом $\mathbf{N} \in \mathbb{Z}^g$ и при начальной фазе \mathbf{Z}_0 , удовлетворяющей условию (3.10), решение (2.10), построенное по кривой (2.2), (3.1), (4.1), удовлетворяет редукции

$$q(\mathbf{x}) = p^*(\widehat{J}\mathbf{x}).$$

5. РЕДУКЦИЯ АЛГЕБРО-ГЕОМЕТРИЧЕСКОГО РЕШЕНИЯ К ТЭТА-ФУНКЦИЯМ МЕНЬШЕЙ РАЗМЕРНОСТИ

5.1. Общие положения. Из уравнения (4.3) следует, что матрица периодов B удовлетовряет уравнению

$$B = S^t B S - S^t Q. (5.1)$$

Следуя [52], рассмотрим матрицу $T, T_{ik} \in \mathbb{Z}$, удовлетворяющую условию

$$S = TJT^{-1}, (5.2)$$

где матрица J определяется формулой (4.2).

В первом и третьем случаях, когда матрица S определяется условиями (4.6), из уравнения (5.2) вытекают следующие ограничения на элементы матрицы T:

$$\sum_{m=2}^{g} T_{mk} = ((-1)^{k-1} - 1) T_{1k},$$

$$T_{g+2-j,k} = (-1)^k T_{jk}, \quad j = 2, \dots, g, \quad k = 1, \dots, g.$$

Зафиксируем элементы первой строки матрицы T:

$$T_{1k} = 1, \quad k = 1, \dots, g.$$

Остальные элементы матрицы T определим следующим образом. Если $g=2m,\,m\in\mathbb{N},$ то

$$T_{j,2k} = -\delta_{j,m+k} - \delta_{j,m+2-k},$$

 $T_{j,2k-1} = \delta_{j,m+k} - \delta_{j,m+2-k}, \quad j = 2, \dots, g, \quad k = 1, \dots, m.$

Если $g = 2m + 1, m \in \mathbb{N}$, то $T_{j1} = 0$,

$$T_{j,2k} = -\delta_{j,m+1+k} - \delta_{j,m+2-k},$$

$$T_{j,2k+1} = \delta_{j,m+1+k} - \delta_{j,m+2-k}, \quad j = 2, \dots, g, \quad k = 1, \dots, m.$$

Из свойств определителя следует, что $\det T = (-2)^m$.

В четвертом случае ограничения на элементы матрицы T имеют вид

$$T_{g+1-j,k} = (-1)^{k-1} T_{jk}.$$

Определим элементы матрицы T следующим образом. Если $g=2m,\,m\in\mathbb{N},$ то

$$T_{jk} = 1$$
 при $1 \leqslant j \leqslant m$, $1 \leqslant k \leqslant 2(m+1-j)$, $T_{jk} = 0$ при $1 < j \leqslant m$, $2(m+1-j) < k \leqslant 2m$, $m \neq 1$, $T_{jk} = (-1)^{k-1}$ при $m < j \leqslant 2m$, $1 \leqslant k \leqslant 2(j-m)$, $T_{jk} = 0$ при $m < j < 2m$, $2(j-m) < k \leqslant 2m$, $m \neq 1$.

Если $g=2m+1, m\in\mathbb{N}$, то

$$\begin{split} T_{jk} &= 1 \quad \text{при} \quad 1 \leqslant j \leqslant m, \quad 1 \leqslant k \leqslant 2(m-j) + 3, \\ T_{jk} &= 0 \quad \text{при} \quad 1 < j \leqslant m, \quad 2(m-j) + 3 < k \leqslant 2m + 1, \quad m \neq 1, \\ T_{jk} &= (-1)^{k-1} \quad \text{при} \quad m < j \leqslant 2m + 1, \quad 1 \leqslant k \leqslant 2(j-m) - 1, \\ T_{jk} &= 0 \quad \text{при} \quad m < j < 2m + 1, \quad 2(j-m) \leqslant k \leqslant 2m + 1. \end{split}$$

В этом случае также выполняется равенство $\det T = (-2)^m$.

Введем обозначения

$$\widetilde{B} = T^t(i \operatorname{Im} B)T, \quad \widetilde{A} = T^t(\operatorname{Re} B)T, \quad \widetilde{\mathbf{V}}^j = T^t \mathbf{V}^j.$$

Из уравнений (4.5), (5.1) и (5.2) вытекают следующие соотношения

$$\widetilde{B} = J\widetilde{B}J, \quad J\widetilde{\mathbf{V}}^j = (-1)^j \widetilde{\mathbf{V}}^j, \quad (\widetilde{A})_{ik} \in \mathbb{Z}.$$
 (5.3)

Заменяя порядок суммирования в формуле многомерной тэта-функции с матрицой B, получаем (см. [52])

$$\Theta(\mathbf{p}|B) = \sum_{\mathbf{k} \in \mathbb{Z}^g(T)} e^{-\pi i \boldsymbol{\eta}^t(\mathbf{k})(\widetilde{A} - D)\boldsymbol{\eta}(\mathbf{k})} \Theta[\boldsymbol{\eta}^t(\mathbf{k}); \boldsymbol{\zeta}^t(\mathbf{k})] (T^t \mathbf{p}|\widetilde{B} + D),$$

где суммирование $\mathbf{k} \in \mathbb{Z}^g(T)$ означает конечную сумму по \mathbf{k} : $\mathbf{k} \in \mathbb{Z}^g$, $0 \leqslant T^{-1}\mathbf{k} < 1$, D – диагональная матрица, $D_{jj} = \widetilde{A}_{jj}$, $\boldsymbol{\eta}(\mathbf{k}) = T^{-1}\mathbf{k}$, $\boldsymbol{\zeta}(\mathbf{k}) = (\widetilde{A} - D)\boldsymbol{\eta}(k)$. Число слагаемых в сумме равно $|\det T|$. При этом, поскольку выполняются соотношения (5.3), матрица \widetilde{B} имеет блочную структуру и тэта-функция

$$\Theta[\boldsymbol{\eta}^t(\mathbf{k}); \boldsymbol{\zeta}^t(\mathbf{k})](T^t\mathbf{p}|\widetilde{B}+D)$$

может быть представлена в виде произведений двух тэта-функций меньшей размерности. Таккже из соотношений (5.3) следует, что в аргументе одной из тэта-функций будут присутствовать времена с нечетным индексом t_1, t_3, \ldots , во втором – переменная x и времена с четным индексом t_2, t_4, \ldots

В заключение раздела приведем примеры представления двухфазных решений нелокальных уравнений из АКНС иерахии через одномерные тэта-функции.

5.2. Двухфазное решение. Случай 1. Вычисления, проведенные для спектральной кривой

$$\chi^2 = (\lambda^2 + c^2) \left(\lambda^4 - 2(a^2 - b^2)\lambda^2 + (a^2 + b^2)^2 \right), \quad a, b, c \in \mathbb{R}, \tag{5.4}$$

дают следующие формулы

$$B = \begin{pmatrix} 2i\beta_1 & i\beta_1 - 1/2 \\ i\beta_1 - 1/2 & i\beta_2 \end{pmatrix}, \quad \Delta = \begin{pmatrix} 1/2 - i\beta_1 \\ 1/2 + i\delta_2 \end{pmatrix},$$
$$\mathbf{V}^{2j-1} = \begin{pmatrix} 0 \\ iv_{2j-1} \end{pmatrix}, \quad \mathbf{V}^{2j} = \begin{pmatrix} 2v_{2j} \\ v_{2j} \end{pmatrix},$$

где $\beta_i, \delta_i, v_i \in \mathbb{R}$. Следовательно,

$$\widetilde{B} = \begin{pmatrix} 2i\beta_1 & 0 \\ 0 & 4i\beta_2 - 2i\beta_1 \end{pmatrix}, \quad \widetilde{A} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix},$$

$$\widetilde{\mathbf{V}}^{2j-1} = \begin{pmatrix} 0 \\ -2iv_{2j-1} \end{pmatrix}, \quad \widetilde{\mathbf{V}}^{2j} = \begin{pmatrix} 2v_{2j} \\ 0 \end{pmatrix}.$$

Нетрудно проверить, что соответствующая двумерная тэта-функция

$$f_s(\mathbf{x}) = \Theta\left(\mathbf{Z} + \mathbf{V}^1 x + \sum_{j \ge 1} \mathbf{V}^{j+1} t_j + s\Delta \middle| B\right)$$

$$= \theta[0; 0](p_1|2i\beta_1)\theta[0; 0](p_2|4i\beta_2 - 2i\beta_1) + \theta[1/2; 1/2](p_1|2i\beta_1)\theta[1/2; 1/2](p_2|4i\beta_2 - 2i\beta_1),$$
где $s \in \{-1; 0; 1\}, \ \mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 \equiv \mathbf{Z} = (z_1, z_2)^t \in \mathbb{R}^2,$

$$p_1 = z_1 + 2\sum_{j \ge 1} v_{2j} t_{2j-1} + s \left(\frac{1}{2} - i\beta_1\right),$$

$$p_2 = z_1 - 2z_2 - 2iv_1 x - 2i\sum_{j \ge 1} v_{2j+1} t_{2j} - s \left(\frac{1}{2} + i\beta_1 + 2i\delta_2\right),$$

допускает следующие редукции

$$f_0^*(\mathbf{x}) = f_0(\widehat{J}\mathbf{x}), \quad f_1^*(\mathbf{x}) = f_{-1}(\widehat{J}\mathbf{x}), \quad f_{-1}^*(\mathbf{x}) = f_1(\widehat{J}\mathbf{x}).$$
 (5.5)

Следовательно, решение (2.10) уравнений иерархии АКНС, построенное по кривой (5.4), при любых $z_1, z_2 \in \mathbb{R}$ удовлетворяет редукции

$$q^*(\mathbf{x}) = -p(\widehat{J}\mathbf{x}).$$

5.3. Двухфазное решение. Случай 3. Вычисления, проведенные для спектральной кривой

$$\chi^2 = (\lambda^2 - a^2)(\lambda^2 - b^2)(\lambda^2 - c^2), \quad a, b, c \in \mathbb{R},$$
 (5.6)

дают следующие формулы

$$B = \begin{pmatrix} 2i\beta_1 & i\beta_1 \\ i\beta_1 & i\beta_2 \end{pmatrix}, \quad \Delta = \begin{pmatrix} -i\beta_1 \\ i\delta_2 \end{pmatrix}, \quad \mathbf{V}^{2j-1} = \begin{pmatrix} 0 \\ iv_{2j-1} \end{pmatrix}, \quad \mathbf{V}^{2j} = \begin{pmatrix} 2v_{2j} \\ v_{2j} \end{pmatrix},$$

где $\beta_j, \delta_j, v_j \in \mathbb{R}$. Следовательно,

$$\widetilde{B} = \begin{pmatrix} 2i\beta_1 & 0 \\ 0 & 4i\beta_2 - 2i\beta_1 \end{pmatrix}, \quad \widetilde{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\widetilde{\mathbf{V}}^{2j-1} = \begin{pmatrix} 0 \\ -2iv_{2j-1} \end{pmatrix}, \quad \widetilde{\mathbf{V}}^{2j} = \begin{pmatrix} 2v_{2j} \\ 0 \end{pmatrix}.$$

Нетрудно проверить, что соответствующая двумерная тэта-функция

$$f_s(\mathbf{x}) = \Theta\left(\mathbf{Z} + \mathbf{V}^1 x + \sum_{j \ge 1} \mathbf{V}^{j+1} t_j + s\Delta \middle| B\right)$$

$$= \theta[0; 0](p_1|2i\beta_1)\theta[0; 0](p_2|4i\beta_2 - 2i\beta_1) + \theta[1/2; 0](p_1|2i\beta_1)\theta[1/2; 0](p_2|4i\beta_2 - 2i\beta_1),$$
где $s \in \{-1; 0; 1\}, \ \mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 \equiv \mathbf{Z} = (z_1, z_2)^t \in \mathbb{R}^2,$

$$p_1 = z_1 + 2\sum_{j \ge 1} v_{2j} t_{2j-1} - is\beta_1,$$

$$p_2 = z_1 - 2z_2 - 2iv_1x - 2i\sum_{j\geq 1} v_{2j+1}t_{2j} - is(\beta_1 + 2\delta_2),$$

допускает редукции (5.5). Следовательно, решение (2.10) уравнений иерархии АКНС, построенное по кривой (5.6), при любых $z_1, z_2 \in \mathbb{R}$ удовлетворяет редукции

$$q^*(\mathbf{x}) = p(\widehat{J}\mathbf{x}).$$

5.4. Двухфазное решение. Случай 4. Вычисления, проведенные для спектральной кривой (5.6) дают следующие формулы

$$B = \begin{pmatrix} i\beta_2 & i\beta_1 \\ i\beta_1 & i\beta_2 \end{pmatrix}, \quad \Delta = \begin{pmatrix} 1 - \delta_2 \\ \delta_2 \end{pmatrix}, \quad \mathbf{V}^{2j-1} = \begin{pmatrix} -v_{2j-1} \\ v_{2j-1} \end{pmatrix}, \quad \mathbf{V}^{2j} = \begin{pmatrix} iv_{2j} \\ iv_{2j} \end{pmatrix},$$

где $\beta_j, \delta_j, v_j \in \mathbb{R}$. Следовательно,

$$\widetilde{B} = \begin{pmatrix} 2i(\beta_2 + \beta_1) & 0 \\ 0 & 2i(\beta_2 - \beta_1) \end{pmatrix}, \quad \widetilde{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\widetilde{\mathbf{V}}^{2j-1} = \begin{pmatrix} 0 \\ -2v_{2j-1} \end{pmatrix}, \quad \widetilde{\mathbf{V}}^{2j} = \begin{pmatrix} 2iv_{2j} \\ 0 \end{pmatrix}.$$

Нетрудно проверить, что соответствующая двумерная тэта-функция

$$f_s(\mathbf{x}) = \Theta\left(\mathbf{Z} + \mathbf{V}^1 x + \sum_{j \ge 1} \mathbf{V}^{j+1} t_j + s\Delta \middle| B\right)$$

=\theta[0; 0](p_1|2i(\beta_2 + \beta_1))\theta[0; 0](p_2|2i(\beta_2 - \beta_1))
+ \theta[1/2; 0](p_1|2i(\beta_2 + \beta_1))\theta[1/2; 0](p_2|2i(\beta_2 - \beta_1)),

где
$$s \in \{-1; 0; 1\}$$
, $\mathcal{U}(\mathcal{P}_{\infty}^+) - \mathbf{Z}_0 \equiv i\mathbf{Z}$, где $\mathbf{Z} = (z_1, z_2)^t \in \mathbb{R}^2$,
$$p_1 = iz_1 + iz_2 + 2i\sum_{j \geq 1} v_{2j}t_{2j-1} + s,$$

$$p_2 = iz_1 - iz_2 - 2v_1x - 2\sum_{j \geq 1} v_{2j+1}t_{2j} + s\left(1 - 2\delta_2\right),$$

допускает редукции (5.5). Следовательно, решение (2.10) уравнений иерархии АКНС, построенное по кривой (5.6) при втором выборе базиса циклов, для любых $z_1, z_2 \in \mathbb{R}$ также удовлетворяет редукции

$$q^*(\mathbf{x}) = p(\widehat{J}\mathbf{x}).$$

ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Для построения решений только одного из нелокальных уравнений из АКНС иерархии можно взять любое решение локальных уравнений АКНС иерархии, удовлетворяющее условиям

$$p(-x,0,0,\dots) = p(x,0,0,\dots),$$

$$q^*(\mathbf{x}) = \sigma p(\mathbf{x}), \quad x, t_k \in \mathbb{R}, \quad \sigma = \pm 1.$$

Тогда, в частности, функции

$$p(x, t, iT_2, T_3, iT_4, \dots), \quad q(x, t, iT_2, T_3, iT_4, \dots), \quad T_k \in \mathbb{R}$$

будут решениями \mathcal{PT} -симметричного нелинейного уравнения Шредингера

$$q^*(\mathbf{x}) = \sigma p(\widehat{J}\mathbf{x}).$$

Заметим, что именно таким условиям удовлетворяют волны-убийцы, построенные в работах [27], [29]. Вместе с тем, функции

$$p(x, T_1, iT_2, t, iT_4, \dots), \quad q(x, T_1, iT_2, t, iT_4, \dots), \quad T_k \in \mathbb{R}$$

будут являться решениями \mathcal{PT} -симметричного уравнения Лакшманана-Порсециана-Даниеля.

СПИСОК ЛИТЕРАТУРЫ

- 1. V. Konotop, J. Yang, D. Zezulin. *Nonlinear waves in PT-symmetric systems* // Rev. Modern Phys. 88, 035002, (2016).
- 2. D. Christodoulides, J. Yang, editors. *Parity-time symmetry and its applications*. V. 280 of Springer Tracts in Modern Physics. Springer. 2018.
- 3. M.J. Ablowitz, Z.H. Musslimani. *Integrable nonlocal nonlinear Schrödinger equation* // Phys. Rev. Let. **110**, 064105 (2013).
- 4. M.J. Ablowitz, Z.H. Musslimani. Integrable discrete PT symmetric model // Phys. Rev. E. 90:3, 032912 (2014).
- 5. M.J. Ablowitz, Z.H. Musslimani. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation// Nonlinearity. 29:3, 915–946 (2016).
- 6. M.J. Ablowitz, Z.H. Musslimani. *Integrable nonlocal nonlinear equations* // Stud. Appl. Math. **139**:1, 7–59 (2017).
- 7. T.P. Horikis, M.J. Ablowitz. Rogue waves in nonlocal media // Phys. Rev. E. 95:4, 042211 (2017).
- 8. M.J. Ablowitz, B.F. Feng, X.D. Luo, Z.H. Musslimani. Reverse space-time nonlocal Sine-Gordon/Sinh-Gordon equations with nonzero boundary conditions // Stud. Appl. Math. (2018).
- 9. V.S. Gerdjikov, G.G. Grahovski, R.I. Ivanov. *The N-wave equations with PT symmetry* // Theor. Math. Phys. **188**:3, 1305–1321 (2016).
- 10. D.Y. Liu, W.R. Sun. Rational solutions for the nonlocal sixth-order nonlinear Schrödinger equation // Appl. Math. Lett. 84, 63–69 (2018).

- 11. H.Q. Zhang, M. Gao. Rational soliton solutions in the parity-time-symmetric nonlocal coupled nonlinear Schrödinger equations // Comm. Nonlin. Sci. and Num. Sim. 63, 253-260 (2018).
- 12. Z.X. Zhou. Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrodinger equation // Commun Nonlinear Sci. Numer. Simulat. 62, 480–488 (2018).
- 13. Y. Cao, B. Malomed, J. He. Two (2+1)-dimensional integrable nonlocal nonlinear Schrodinger equations: Breather, rational and semi-rational solutions // Chaos, Solitons and Fractals. 114, 99–107 (2018).
- 14. B. Yang, Y. Chen. Reductions of Darboux transformations for the PT-symmetric nonlocal Davey-Stewartson equations // Appl. Math. Lett. 82, 43-49 (2018).
- 15. Z.J. Yang, S.M. Zhang, X.L. Li, Z.G. Pang. Variable sinh-Gaussian solitons in nonlocal nonlinear Schrodinger equation // Appl. Math. Lett. 82, 64–70 (2018).
- K. Manikandan, Priya N. Vishnu, M. Senthilvelan, R. Sankaranarayanan. Deformation of dark solitons in a PT-invariant variable coefficients nonlocal nonlinear Schrodinger equation // Chaos. 28:8, 083103 (2018).
- 17. J. Rao, Y. Zhang, A. Fokas, J. He. Rogue waves of the nonlocal Davey-Stewartson I equation // Nonlinearity. 31:9, 4090-4107 (2018).
- 18. X.Y. Tang, Z.F. Liang, X.Z. Hao. Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system // Commun Nonlinear Sci. Numer. Simulat. 60, 62–71 (2018).
- 19. K. Chen, X. Deng, S. Lou, D.J. Zhang. Solutions of nonlocal equations reduced from the AKNS hierarchy // Stud. Appl. Math. 141:1, 113–141 (2018).
- 20. W. Liu, X. Li. General soliton solutions to a (2+1)-dimensional nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions // Nonlinear Dynamics. 93:2, 721-731 (2018).
- 21. P. Vinayagam, R. Radha, U. Al Khawaja, L. Ling. New classes of solutions in the coupled PT symmetric nonlocal nonlinear Schrodinger equations with four wave mixing // Commun Nonlinear Sci. Numer. Simulat. 59, 387–395 (2018).
- 22. Y. Cao, J. Rao, D. Mihalache, J. He. Semi-rational solutions for the (2+1)-dimensional nonlocal Fokas system // Appl. Math. Lett. 80, 27–34 (2018).
- 23. C. Qian, J. Rao, D. Mihalache, J. He. Rational and semi-rational solutions of the y-nonlocal Davey-Stewartson I equation // Computers and Mathematics with Applications. **75**:9, 3317–3330 (2018).
- 24. M. Gurses, A. Pekcan. Nonlocal modified KdV equations and their soliton solutions by Hirota method // Commun Nonlinear Sci. Numer. Simulat. 67, 427-448 (2019).
- 25. Q. Zhang, Y. Zhang, R. Ye. Exact solutions of nonlocal Fokas-Lenells equation // Appl. Math. Lett. 98, 336-343 (2019).
- 26. V.S. Gerdjikov. On the integrability of Ablowitz-Ladik models with local and nonlocal reductions // Journal of Physics: Conference Series. 1205:1, 012015 (2019).
- 27. B. Yang, J. Yang. Rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation // Lett. Math. Phys. 109, 945–973 (2019).
- 28. J. Yang. General n-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations // Phys. Lett. A. **383**, 328–337 (2019).
- 29. B. Yang, J. Yang. On general rogue waves in the parity-time-symmetric nonlinear Schrodinger equation // Preprint, arXiv:1903.06203, 19 pp. (2019).
- 30. Y. Yang, T. Suzuki, X. Cheng. Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation // Appl. Math. Lett. 99, 105998 (2020).
- 31. A.O. Smirnov, E.E. Aman. The simplest oscillating solutions of nonlocal nonlinear models // Journal of Physics: Conference Series. 1399:2, 022020 (2019).
- 32. A.O. Smirnov, E.E. Aman. One-phase elliptic solutions of the nonlocal nonlinear equations from AKNS hierarchy and their spectral curves // Journal of Physics: Conference Series. 1515:3, 032080 (2020).
- 33. V.B. Matveev, A.O. Smirnov. Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: general analysis and simplest examples // Theor. Math. Phys. **204**:3, 1154–1165 (2020).

- 34. V.B. Matveev, A.O. Smirnov. AKNS hierarchy, MRW solutions, P_n breathers, and beyond // J. Math. Phys. **59**:9, 091419 (2018).
- 35. V.B. Matveev, A.O. Smirnov. Two-phase periodic solutions to the AKNS hierarchy equations // J. Math. Sci. 242:5, 722-741 (2019).
- 36. A.R. Its, V.P. Kotlyarov. On a class of solutions of the nonlinear Schrödinger equation // Dokl. Akad. Nauk Ukrain. SSR, Ser. A (Russian). 11, 965–968 (1976).
- 37. V.P. Kotlyarov. *Periodic problem for the nonlinear Schrödinger equation* // Preprint, arXiv:1401.4445, 14pp. (2014).
- 38. E.D. Belokolos, A.I. Bobenko, V.Z. Enol'skii, A.R. Its, V.B. Matveev. *Algebro-geometrical approach to nonlinear evolution equations*. Springer Ser. Nonlinear Dynamics. Springer. 1994.
- 39. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur. The inverse scattering transform-Fourier analysis for nonlinear problems // Studies in Appl. Math. 53:4, 249-315 (1974).
- 40. M. Lakshmanan, K. Porsezian, M. Daniel. Effect of discreteness on the continuum limit of the Heisenberg spin chain // Phys. Lett. A. 133:9, 483-488 (1988).
- 41. K. Porsezian, M. Daniel, M. Lakshmanan. On the integrability aspects of the one-dimensional classical continuum isotropic Heisenberg spin chain // J. Math. Phys. 33, 1807–1816 (1992).
- 42. M. Daniel, K. Porsezian, M. Lakshmanan. On the integrable models of the higher order water wave equation // Phys. Lett. A. 174:3, 237–240 (1993).
- 43. A.O Smirnov. Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves // Theor. Math. Phys. 173:1, 1403–1416 (2012).
- 44. A.O Smirnov. Periodic two-phase "rogue waves" // Math. Notes. 94:6, 897-907 (2013).
- 45. A.O Smirnov., S.G. Matveenko, S.K. Semenov, E.G. Semenova. Three-phase freak waves // SIGMA. 11, 032 (2015).
- 46. B.A. Dubrovin. Theta functions and non-linear equations. Russ. Math. Surv. 36:2, 11–92 (1981).
- 47. J.D. Fay. Theta-functions on Riemann surfaces. V. 352 of Lect. Notes in Math. Springer. 1973.
- 48. A. Krazer. Lehrbuch der Thetafunktionen. Teubner, Leipzig. 1903.
- 49. H.F. Baker. Abel's theorem and the allied theory including the theory of theta functions. Cambridge. 1897.
- 50. D. Mumford. *Tata lectures on theta. I.* V. 28 of Progress in Math. Birkhäuser Boston Inc. Boston, MA. 1983.
- 51. D. Mumford. *Tata lectures on theta. II.* V. 43 of Progress in Math. Birkhäuser Boston Inc. Boston, MA. 1984.
- 52. A.O. Smirnov. A matrix analogue of the Appell theorem and reduction of multidimensional Riemann theta-functions // Math. USSR Sb. **61**:2, 379–388 (1988).

Александр Олегович Смирнов,

Санкт-Петербургский государственный университет

аэрокосмического приборостроения,

ул. Большая Морская, 67А,

190000, г. Санкт-Петербург, Россия

E-mail: alsmir@guap.ru

Владимир Борисович Матвеев,

Санкт-Петербургское отделение

Математического института им. В.А. Стеклова РАН,

Наб. р. Фонтанки, 27,

191023, г. Санкт-Петербург, Россия

E-mail: vladimir.matveev9@gmail.com