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EXISTENCE OF SOLUTIONS FOR NONLINEAR SINGULAR

𝑞-STURM-LIOUVILLE PROBLEMS

B.P. ALLAHVERDIEV, H. TUNA

Abstract. In this paper, we study a nonlinear 𝑞- Sturm-Liouville problem on the semi-

infinite interval, in which the limit-circle case holds at infinity for the 𝑞-Sturm-Liouville

expression. This problem is considered in the Hilbert space 𝐿2
𝑞 (0,∞). We study this problem

by using a special way of imposing boundary conditions at infinity. In the work, we recall

some necessary fundamental concepts of quantum calculus such as 𝑞-derivative, the Jackson
𝑞-integration, the 𝑞-Wronskian, the maximal operator, etc. We construct the Green function

associated with the problem and reduce it to a fixed point problem. Applying the classical

Banach fixed point theorem, we prove the existence and uniqueness of the solutions for this

problem. We obtain an existence theorem without the uniqueness of the solution. In order

to get this result, we use the well-known Schauder fixed point theorem.

Keywords: Nonlinear 𝑞-Sturm-Liouville problem, singular point, Weyl limit-circle case,

completely continuous operator, fixed point. theorems.
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1. Introduction

Nowadays, quantum calculus, or 𝑞-calculus, attracts a lot of attention because it differs
from the classical calculus in the sense that it does not require the concept of limit. It plays an
important role in different mathematical areas, such as number theory, orthogonal polynomials,
fractal geometry, combinatorics, calculus of variations, mechanics, orthogonal polynomials, as
well as in statistic physics, nuclear and high energy physics, conformal quantum mechanics, and
theory of relativity. For a general introduction to the quantum calculus, we refer the reader to
the references [1]–[3].
So-called 𝑞-difference equations are important in quantum calculus. Recently, much efforts

were made in to study the existence of solutions to 𝑞-difference equations, see [4]–[18]. However,
there is no results on the existence of solutions to a singular impulsive nonlinear 𝑞-Sturm-
Liouville problems as the limit-circle case holds at infinity. In this paper, we fill the gap in this
area by using a special way of imposing boundary conditions at infinity. While proving our
results, we use the machinery and methods of [19], [20].
In the following section, we recall some necessary fundamental concepts of the quantum

calculus.

2. Preliminaries

Following the standard notations in [1]-[3], let 𝑞 be a positive number obeying the inequality
0 < 𝑞 < 1, 𝐴 ⊂ R and 𝑎 ∈ 𝐴. A 𝑞-difference equation is an equation that contains 𝑞-derivatives
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of a function defined on 𝐴. Let 𝑦 be a complex-valued function on 𝐴. The 𝑞-difference operator
𝐷𝑞, the Jackson 𝑞-derivative is defined by

𝐷𝑞𝑦(𝑥) =
𝑦 (𝑞𝑥) − 𝑦(𝑥)

𝑞𝑥− 𝑥
for all 𝑥 ∈ 𝐴.

Note that there is a connection between 𝑞-deformed Heisenberg uncertainty relation and the
Jackson derivative on 𝑞-basic numbers, see [21]. As 𝑞 → 1, the 𝑞-derivative is reduced to the
classical derivative. The 𝑞-derivative at zero is defined by

𝐷𝑞𝑦(0) = lim
𝑛→∞

𝑦 (𝑞𝑛𝑥) − 𝑦(0)

𝑞𝑛𝑥
(𝑥 ∈ 𝐴),

if this limit exists and is independent of 𝑥. The formulation of the extension problems requires
the definition of 𝐷𝑞−1 , which reads as follows:

𝐷𝑞−1𝑓(𝑥) :=

⎧⎨⎩
𝑓(𝑥) − 𝑓(𝑞−1𝑥)

𝑥− 𝑞−1𝑥
, 𝑥 ∈ 𝐴 ∖ {0},

𝐷𝑞𝑓(0), 𝑥 = 0,

provided 𝐷𝑞𝑓(0) exists. Associated with this operator, there is a non-symmetric formula for
the 𝑞-differentiation of a product

𝐷𝑞[𝑓(𝑥)𝑔(𝑥)] = 𝑔(𝑥)𝐷𝑞𝑓(𝑥) + 𝑓(𝑞𝑥)𝐷𝑞𝑔(𝑥).

A right-inverse to 𝐷𝑞, the Jackson 𝑞-integration is defined as

𝑥∫︁
0

𝑓(𝑡)𝑑𝑞𝑡 = 𝑥 (1 − 𝑞)
∞∑︁
𝑛=0

𝑞𝑛𝑓 (𝑞𝑛𝑥) (𝑥 ∈ 𝐴),

provided the series converges, and

𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑞𝑡 =

𝑏∫︁
0

𝑓(𝑡)𝑑𝑞𝑡−
𝑎∫︁

0

𝑓(𝑡)𝑑𝑞𝑡 (𝑎, 𝑏 ∈ 𝐴).

The 𝑞-integration for a function over [0,∞) was defined in [22] by the formula

∞∫︁
0

𝑓(𝑡)𝑑𝑞𝑡 =
∞∑︁

𝑛=−∞

𝑞𝑛𝑓 (𝑞𝑛) .

A function 𝑓 defined on 𝐴, 0 ∈ 𝐴, is said to be 𝑞-regular at zero if

lim
𝑛→∞

𝑓 (𝑥𝑞𝑛) = 𝑓(0),

for each 𝑥 ∈ 𝐴. In the rest of the paper, we deal only with functions 𝑞-regular at zero.
If 𝑓 and 𝑔 are 𝑞-regular at zero, then we have

𝑎∫︁
0

𝑔(𝑡)𝐷𝑞𝑓(𝑡)𝑑𝑞𝑡−
𝑎∫︁

0

𝑓(𝑞𝑡)𝐷𝑞𝑔(𝑡)𝑑𝑞𝑡 = 𝑓(𝑎)𝑔(𝑎) − 𝑓(0)𝑔(0).

Let 𝐿2
𝑞(0,∞) be the space of all complex-valued functions defined on (0,∞) such that

‖𝑓‖ :=

⎛⎝ ∞∫︁
0

|𝑓 (𝑥)|2 𝑑𝑞𝑥

⎞⎠ 1
2

<∞.
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The space 𝐿2
𝑞(0,∞) is a separable Hilbert space with the inner product

(𝑓, 𝑔) :=

∞∫︁
0

𝑓(𝑥)𝑔 (𝑥)𝑑𝑞𝑥, 𝑓, 𝑔 ∈ 𝐿2
𝑞(0,∞),

see [3], [23].
The 𝑞-Wronskian of 𝑦(𝑥), 𝑧(𝑥) is defined as

𝑊𝑞(𝑦, 𝑧)(𝑥) := 𝑦(𝑥)𝐷𝑞𝑧(𝑥) − 𝑧(𝑥)𝐷𝑞𝑦(𝑥), 𝑥 ∈ [0, 𝑎]. (2.1)

We consider the following nonlinear 𝑞-Sturm-Liouville equation

𝑙(𝑦) := −1

𝑞
𝐷𝑞−1 (𝑝(𝑥)𝐷𝑞𝑦(𝑥)) + 𝑟(𝑥)𝑦(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), (2.2)

where 𝑝, 𝑟 are real-valued functions defined on [0,∞) and continuous at zero, 1
𝑝
, 𝑟 ∈ 𝐿1

𝑞,𝑙𝑜𝑐 (0,∞)

and 𝑦 = 𝑦(𝑥) is a sought solution.
We denote by 𝒟 the linear set of all functions 𝑦 ∈ 𝐿2

𝑞(0,∞) such that 𝑦 and 𝑝𝐷𝑞𝑦 are 𝑞-
regular at zero and 𝑙 (𝑦) ∈ 𝐿2

𝑞 (0,∞). The operator 𝐿 defined by 𝐿𝑦 = 𝑙(𝑦) is called the maximal

operator on 𝐿2
𝑞(0,∞).

For each 𝑦, 𝑧 ∈ 𝒟 we have 𝑞-Green formula (or 𝑞-Lagrange identity)

𝑡∫︁
0

(𝐿𝑦)(𝑥)𝑧(𝑥)𝑑𝑞𝑥−
𝑡∫︁

0

𝑦(𝑥)(𝐿𝑧)(𝑥)𝑑𝑞𝑥 = [𝑦, 𝑧]𝑡 − [𝑦, 𝑧]0, 𝑡 ∈ (0,∞), (2.3)

where

[𝑦, 𝑧]𝑥 := 𝑝(𝑥){𝑦(𝑥)𝐷𝑞−1𝑧(𝑥) −𝐷𝑞−1𝑦(𝑥)𝑧(𝑥)},
see [3], [23].
In view of (2.3), it is clear that the limit

[𝑦, 𝑧]∞ = lim
𝑛→∞

[𝑦, 𝑧]
(︀
𝑞−𝑛

)︀
exists and is finite for all 𝑦, 𝑧 ∈ 𝒟.
For each function 𝑦 ∈ 𝒟, the values 𝑦(0) and (𝑝𝐷𝑞−1𝑦)(0) can be defined as

𝑦(0) := lim
𝑛→∞

𝑦(𝑞𝑛)

and

(𝑝𝐷𝑞−1𝑦)(0) := lim
𝑛→∞

(𝑝𝐷𝑞−1𝑦)(𝑞𝑛).

These limits exist and are finite since 𝑦 and (𝑝𝐷𝑞−1)𝑦 are 𝑞-regular at zero.
We assume that the following conditions are satisfied.
(A1) The functions 𝑝 and 𝑟 are such that all solutions of the equation

𝑙(𝑦) = 0 (2.4)

belong to 𝐿2
𝑞 (0,∞), i.e., the Weyl limit-circle case holds for the 𝑞-Sturm-Liouville expression 𝑙

[23].
(A2) The function 𝑓(𝑥, 𝑦) is real-valued and continuous in (𝑥, 𝜁) ∈ (0,∞) × R, and, for all

(𝑥, 𝜁) in (0,∞) ×R,
|𝑓 (𝑥, 𝜁)| 6 𝑔(𝑥) + 𝜗 |𝜁| , (2.5)

where 𝑔(𝑥) > 0, 𝑔 ∈ 𝐿2
𝑞 (0,∞), and 𝜗 is a positive constant.

Denote by 𝑢(𝑥) and 𝑣(𝑥) the solution of equation (2.4) satisfying the initial conditions

𝑢(0) = 0, (𝑝𝐷𝑞−1𝑢) (0) = 1, 𝑣(0) = −1, (𝑝𝐷𝑞−1𝑣)) (0) = 0. (2.6)
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Since the Wronskian of any two solutions of equation (2.4) are constant, we have 𝑊𝑞(𝑢, 𝑣) = 1.
Then, 𝑢 and 𝑣 are linearly independent and they form a fundamental system of solutions of
equation (2.4). By the condition (A1), we get 𝑢, 𝑣 ∈ 𝐿2

𝑞 (0,∞) and moreover, 𝑢, 𝑣 ∈ 𝒟. So, the
values [𝑦, 𝑢]∞ and [𝑦, 𝑣]∞ exist and are finite for each 𝑦 ∈ 𝒟. By using Green formula (2.3) and
conditions (2.6), we obtain:

[𝑦, 𝑢]∞ = 𝑦(0) +

∞∫︁
0

𝑢 (𝑥) 𝑙(𝑦(𝑥))𝑑𝑞𝑥,

[𝑦, 𝑣]∞ = (𝑝𝐷𝑞−1𝑦)(0) +

∞∫︁
0

𝑣(𝑥)𝑙(𝑦(𝑥))𝑑𝑞𝑥.

(2.7)

We complete problem (2.2) by the boundary conditions

𝑦(0) cos𝛼 + (𝑝𝐷𝑞−1𝑦)(0) sin𝛼 = 𝑑1,

[𝑦, 𝑢]∞ cos 𝛽 + [𝑦, 𝑣]∞ sin 𝛽 = 𝑑2,
(2.8)

where 𝛼, 𝛽 ∈ R. Our next assumption is as follows.
(A3) The inequality holds:

𝜌 := cos𝛼 sin 𝛽 − cos 𝛽 sin𝛼 ̸= 0,

and 𝑑1, 𝑑2 are arbitrary given real numbers.
Since the function 𝑦 in (2.8) satisfies equation (2.2), we have

[𝑦, 𝑢]∞ = 𝑦(0) +

∞∫︁
0

𝑢 (𝑥) 𝑓(𝑥, 𝑦(𝑥))𝑑𝑞𝑥,

[𝑦, 𝑣]∞ = (𝑝𝐷𝑞−1𝑦)(0) +

∞∫︁
0

𝑣(𝑥)𝑓(𝑥, 𝑦(𝑥))𝑑𝑞𝑥.

3. Green function

In this section, we construct a Green function for boundary value problem (2.2), (2.8), and
then, we reduce this problem to a fixed point problem.

We consider a linear boundary value problem

−1

𝑞
𝐷𝑞−1 (𝑝(𝑥)𝐷𝑞𝑦(𝑥)) + 𝑟(𝑥)𝑦(𝑥) = ℎ (𝑥) , 𝑥 ∈ (0,∞) , ℎ ∈ 𝐿2

𝑞 (0,∞) (3.1)

𝑦(0) cos𝛼 + (𝑝𝐷𝑞−1𝑦)(0) sin𝛼 = 0,

[𝑦, 𝑢]∞ cos 𝛽 + [𝑦, 𝑣]∞ sin 𝛽 = 0, 𝛼, 𝛽 ∈ R,
(3.2)

where 𝑦 is a sought solution, 𝑢 and 𝑣 are solutions of equation (2.4) satisfying conditions (2.6).
We let

𝜙(𝑥) = cos𝛼𝑢(𝑥) + sin𝛼𝑣 (𝑥) , 𝜓(𝑥) = cos 𝛽𝑢(𝑥) + sin 𝛽𝑣(𝑥), (3.3)

where

𝑊𝑞 (𝜙, 𝜓) = cos𝛼 sin 𝛽 − cos 𝛽 sin𝛼 = 𝑊.
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It is clear that these functions are solutions of equation (2.4) and are in 𝐿2
𝑞(0,∞). Further, we

have

[𝜙, 𝑢]𝑥 = 𝜙(0) = − sin𝛼, [𝜙, 𝑣]𝑥 = (𝑝𝐷𝑞−1𝜙) (0) = cos𝛼, (3.4)

[𝜓, 𝑢]𝑥 = 𝜓(𝑎) = − sin 𝛽, [𝜓, 𝑣]𝑥 = (𝑝𝐷𝑞−1𝜓) (0) = cos 𝛽, (3.5)

[𝜓, 𝑢]∞ = − sin 𝛽, [𝜓, 𝑣]∞ = cos 𝛽. (3.6)

We introduce a function

𝐺(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
− 𝜙(𝑥)𝜓(𝑡)

𝑊
as 𝑡 6 𝑥,

− 𝜙(𝑡)𝜓(𝑥)

𝑊
as 𝑡 > 𝑥.

(3.7)

The function 𝐺 (𝑥, 𝑡) is the Green function of boundary value problem (3.1)–(3.2).
Since 𝜙, 𝜓 ∈ 𝐿2

𝑞 (0,∞), we have

∞∫︁
0

∞∫︁
0

|𝐺(𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡 <∞, (3.8)

that is, 𝐺(𝑥, 𝑡) is a 𝑞-Hilbert-Schmidt kernel.

Theorem 3.1. The function

𝑦(𝑥) =

∞∫︁
0

𝐺(𝑥, 𝑡)ℎ(𝑡)𝑑𝑞𝑡, 𝑥 ∈ (0,∞) , (3.9)

is the solution to boundary value problem (3.1)–(3.2).

Proof. By a variation of constants formula, the general solution of equation (3.1) has the form

𝑦(𝑥) = 𝑘1𝜙(𝑥) + 𝑘2𝜓 (𝑥) +
𝑞

𝑊
𝜓(𝑥)

𝑥∫︁
0

𝜙 (𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡−
𝑞

𝑊
𝜙(𝑥)

𝑥∫︁
0

𝜓(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡, (3.10)

where 𝑘1 and 𝑘2 are arbitrary constants.
By (3.10), we get

(𝑝𝐷𝑞−1𝑦) (𝑥) =𝑘1 (𝑝𝐷𝑞−1𝜙) (𝑥) + 𝑘2 (𝑝𝐷𝑞−1𝜓) (𝑥)

+
𝑞

𝑊
(𝑝𝐷𝑞−1𝜓) (𝑥)

𝑥∫︁
0

𝜙(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡

− 𝑞

𝑊
(𝑝𝐷𝑞−1𝜙) (𝑥)

∫︁ 𝑥

0

𝜓(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡.

Hence, we have

𝑦(0) = 𝑘1𝜙(0) + 𝑘2𝜓 (0) = −𝑘1 sin𝛼− 𝑘2 sin 𝛽,

(𝑝𝐷𝑞−1𝑦) (0) = 𝑘1 (𝑝𝐷𝑞−1𝜙) (0) + 𝑘2 (𝑝𝐷𝑞−1𝜓) (0)

= 𝑘1 cos𝛼 + 𝑘2 cos 𝛽.

(3.11)

Substituting (3.11) into (3.2), we get

𝑘2 (cos𝛼 sin 𝛽 − sin𝛼 cos 𝛽) = 0, 𝑘2𝑊 = 0,
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that is, 𝑘2 = 0. Further, we have

[𝑦, 𝑢]𝑥 =𝑝(𝑥)
{︁
𝑦(𝑥)𝐷𝑞−1𝑢(𝑥) −𝐷𝑞−1𝑦(𝑥)𝑢(𝑥)

}︁
=𝑘1[𝜙, 𝑢]𝑥 + 𝑘2[𝜓, 𝑢]𝑥 +

𝑞

𝑊
[𝜓, 𝑢]𝑥

𝑥∫︁
0

𝜙(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡−
𝑞

𝑊
[𝜙, 𝑢]𝑥

𝑥∫︁
0

𝜓(𝑞𝑡)ℎ (𝑡) 𝑑𝑞𝑡

= − 𝑘1 sin𝛼− 𝑞

𝑊
sin 𝛽

𝑥∫︁
0

𝜙(𝑞𝑡)ℎ (𝑡) 𝑑𝑞𝑡+
𝑞

𝑊
sin𝛼

𝑥∫︁
0

𝜓(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡

= − 𝑘1 sin𝛼 +
𝑞

𝑊

𝑥∫︁
0

(− sin 𝛽𝜙 (𝑞𝑡) + sin𝛼𝜓(𝑞𝑡))ℎ(𝑡)𝑑𝑞𝑡

= − 𝑘1 sin𝛼 +
𝑞

𝑊

𝑥∫︁
0

𝑢(𝑞𝑡)ℎ (𝑡) 𝑑𝑞𝑡.

Thus,

[𝑦, 𝑢]∞ = −𝑘1 sin𝛼 + 𝑞

∞∫︁
0

𝑢(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡.

Similarly, we get

[𝑦, 𝑣]𝑥 =𝑝(𝑥)
{︁
𝑦(𝑥)𝐷𝑞−1𝑣(𝑥) −𝐷𝑞−1𝑦(𝑥)𝑣(𝑥)

}︁
=𝑘1[𝜙, 𝑣]𝑥 +

𝑞

𝑊
[𝜓, 𝑣]𝑥

𝑥∫︁
0

𝜙 (𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡−
𝑞

𝑊
[𝜙, 𝑣]𝑥

𝑥∫︁
0

𝜓(𝑞𝑡)ℎ (𝑡) 𝑑𝑞𝑡

and

[𝑦, 𝑣]∞ = 𝑘1 cos𝛼 + 𝑞

∞∫︁
0

𝑣(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡.

By conditions (3.2) we obtain

𝑘1 (− sin𝛼 cos 𝛽 + cos𝛼 sin 𝛽) + 𝑞

∞∫︁
0

[cos 𝛽𝑢(𝑞𝑡) + sin 𝛽𝑣 (𝑞𝑡)]ℎ(𝑡)𝑑𝑞𝑡 = 0.

Hence,

𝑘1 = − 𝑞

𝑊

∞∫︁
0

𝜓(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡.

By (3.10), we get

𝑦(𝑥) = − 𝑞

𝑊

𝑥∫︁
0

𝜙(𝑞𝑡)𝜓(𝑥)ℎ(𝑡)𝑑𝑞𝑡−
𝑞

𝑊

∞∫︁
𝑥

𝜙(𝑥)𝜓(𝑞𝑡)ℎ(𝑡)𝑑𝑞𝑡

that is, (3.7) and (3.9) hold true.

Our next statement is the following theorem.
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Theorem 3.2. The unique solution of boundary value problem (3.1) subject to conditions
(2.8) is given by the formula

𝑦(𝑥) = 𝜔(𝑥) +

∞∫︁
0

𝐺 (𝑥, 𝑡)ℎ(𝑡)𝑑𝑞𝑡,

where

𝜔(𝑥) =
𝑑1
𝑊
𝜙(𝑥) − 𝑑2

𝑊
𝜓(𝑥).

Proof. By the conditions (3.4)–(3.6), the function 𝜔(𝑥) is a unique solution of the boundary
value problem (3.1) satisfying conditions (2.8). This completes the proof.

From Theorem 3.2, boundary value problem (2.2), (2.8) in 𝐿2
𝑞 (0,∞) is equivalent to the

nonlinear 𝑞-integral equation

𝑦(𝑥) = 𝜔(𝑥) +

∞∫︁
0

𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦(𝑡)) 𝑑𝑞𝑡, (3.12)

where the functions 𝜔(𝑥) and 𝐺(𝑥, 𝑡) are defined above. In what follows we study equation
(3.12).

By (2.5) and (3.8), we can define the operator 𝑇 : 𝐿2
𝑞 (0,∞) → 𝐿2

𝑞 (0,∞) by the formula

(𝑇𝑦)(𝑥) = 𝜔(𝑥) +

∞∫︁
0

𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦(𝑡)) 𝑑𝑞𝑡, 𝑥 ∈ (0,∞) , (3.13)

where 𝑦, 𝜔 ∈ 𝐿2
𝑞 (0,∞). Then equation (3.12) can be written as 𝑦 = 𝑇𝑦.

Our next step is to find the fixed points of the operator 𝑇 because it is equivalent to solving
the equation (3.12). In the next section we study the operator 𝑇 by using a Banach fixed point
theorem.

4. Fixed points of operator 𝑇

Definition 4.1 ([24]). Let 𝐴 be a mapping of a metric space 𝑅 into itself. Then 𝑥 is called
a fixed point of 𝐴 if 𝐴𝑥 = 𝑥. Suppose there exists a number 𝛼 < 1 such that

𝜌 (𝐴𝑥,𝐴𝑦) 6 𝛼𝜌(𝑥, 𝑦)

for each pair of points 𝑥, 𝑦 ∈ 𝑅. Then 𝐴 is said to be a contraction mapping.

Theorem 4.2 ([24]). Each contraction mapping 𝐴 defined on a complete metric space 𝑅 has
a unique fixed point.

Theorem 4.3. Suppose that conditions (A1), (A2) and (A3) are satisfied. Let the function
𝑓(𝑥, 𝑦) satisfy the following Lipschitz condition: there exist a constant 𝐾 > 0 such that

∞∫︁
0

|𝑓(𝑥, 𝑦(𝑥)) − 𝑓 (𝑥, 𝑧(𝑥))|2 𝑑𝑞𝑥 6 𝐾2

∞∫︁
0

|𝑦(𝑥) − 𝑧(𝑥)|2 𝑑𝑞𝑥 (4.1)

for each 𝑦, 𝑧 ∈ 𝐿2
𝑞 (0,∞) . If

𝐾

⎛⎝ ∞∫︁
0

∞∫︁
0

|𝐺 (𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡

⎞⎠ 1
2

< 1, (4.2)

then boundary value problem (2.2), (2.8) has a unique solution in 𝐿2
𝑞 (0,∞) .
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Proof. It is sufficient to show that the operator 𝑇 is a contraction operator. For 𝑦, 𝑧 ∈ 𝐿2
𝑞 (0,∞),

we have

|(𝑇𝑦)(𝑥) − (𝑇𝑧)(𝑥)|2 =

⃒⃒⃒⃒
⃒⃒

∞∫︁
0

𝐺(𝑥, 𝑡) [𝑓 (𝑡, 𝑦 (𝑡)) − 𝑓 (𝑡, 𝑧(𝑡))] 𝑑𝑞𝑡

⃒⃒⃒⃒
⃒⃒
2

6

∞∫︁
0

|𝐺(𝑥, 𝑡)|2 𝑑𝑞𝑡
∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑧(𝑡))|2 𝑑𝑞𝑡

6 𝐾2 ‖𝑦 − 𝑧‖2
∞∫︁
0

|𝐺 (𝑥, 𝑡)|2 𝑑𝑞𝑡, 𝑥 ∈ (0,∞) .

Thus, we get

‖𝑇𝑦 − 𝑇𝑧‖ 6 𝛼 ‖𝑦 − 𝑧‖ ,

where

𝛼 = 𝐾

⎛⎝ ∞∫︁
0

∞∫︁
0

|𝐺 (𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡

⎞⎠ 1
2

< 1,

and hence, 𝑇 is a contraction mapping.

In the next theorem we consider the case, when the function 𝑓(𝑥, 𝑦) satisfies a Lipschitz
condition on a subset of 𝐿2

𝑞 (0,∞); this property is not assumed to hold on the entire space.

Theorem 4.4. Suppose that conditions (A1), (A2) and (A3) are satisfied. In addition, let
the function 𝑓(𝑥, 𝑦) satisfy the following Lipschitz condition: there exist constants 𝑀, 𝐾 > 0
such that

∞∫︁
0

|𝑓(𝑥, 𝑦(𝑥)) − 𝑓 (𝑥, 𝑧(𝑥))|2 𝑑𝑞𝑥 6 𝐾2

∞∫︁
0

|𝑦(𝑥) − 𝑧(𝑥)|2 𝑑𝑞𝑥 (4.3)

for all 𝑦 and 𝑧 in 𝑆𝑀 =
{︀
𝑦 ∈ 𝐿2

𝑞 (0,∞) : ‖𝑦‖ 6𝑀
}︀
, where 𝐾 may depend on 𝑀. If⎛⎝ ∞∫︁

0

|𝜔(𝑥)|2 𝑑𝑞𝑥

⎞⎠ 1
2

+

⎛⎝ ∞∫︁
0

∞∫︁
0

|𝐺(𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡

⎞⎠ 1
2

sup
𝑦∈𝑆𝑀

⎛⎝ ∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡))|2 𝑑𝑞𝑡

⎞⎠ 1
2

6𝑀 (4.4)

and

𝐾

⎛⎝ ∞∫︁
0

∞∫︁
0

|𝐺 (𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡

⎞⎠ 1
2

< 1, (4.5)

then boundary value problem (2.2)–(2.8) has a unique solution. This solution satisfies the
estimate

∞∫︁
0

|𝑦(𝑥)|2 𝑑𝑞𝑥 6𝑀2.
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Proof. It is clear that 𝑆𝑀 is a closed set of 𝐿2
𝑞 (0,∞). First, we are going to prove that the

operator 𝑇 maps 𝑆𝑀 into itself. For 𝑦 ∈ 𝑆𝑀 we have

‖𝑇𝑦‖ =

⃦⃦⃦⃦
⃦⃦𝜔 (.) +

∞∫︁
0

𝐺 (., 𝑡) 𝑓 (𝑡, 𝑦(𝑡)) 𝑑𝑞𝑡

⃦⃦⃦⃦
⃦⃦

6 ‖𝜔‖ +

⃦⃦⃦⃦
⃦⃦

∞∫︁
0

𝐺 (., 𝑡) 𝑓 (𝑡, 𝑦(𝑡)) 𝑑𝑞𝑡

⃦⃦⃦⃦
⃦⃦

6 ‖𝜔‖ +

⎛⎝ ∞∫︁
0

∞∫︁
0

|𝐺(𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡

⎞⎠ 1
2

sup
𝑦∈𝑆𝑀

⎛⎝ ∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡))|2 𝑑𝑞𝑡

⎞⎠ 1
2

6𝑀.

Thus, 𝑇 :𝑆𝑀 → 𝑆𝑀 .
We now proceed analogously to the proof of Theorem 4.2 and we get

‖𝑇𝑦 − 𝑇𝑧‖ 6 𝛼 ‖𝑦 − 𝑧‖ , 𝑦, 𝑧 ∈ 𝑆𝑀 .

We apply the Banach fixed point theorem and we obtain a unique solution of boundary value
problem (2.2), (2.8) in 𝑆𝑀 . The proof is complete.

5. Existence theorem without uniqueness

In this section, we obtain an existence theorem without the uniqueness of the solution. In
order to get this result, we will use the following Schauder fixed point theorem:

Definition 5.1 ([19, 20]). An operator acting in a Banach space is said to be completely
continuous if it is continuous and maps bounded sets into relatively compact sets.

Theorem 5.2 ([19, 20]). Let B be a Banach space and S be a non-empty bounded, convex,
and closed subset of B. Assume that 𝐴 : B → B is a completely continuous operator. If the
operator 𝐴 maps the set S into itself, that is, if 𝐴 (S) ⊂ S, then 𝐴 has at least one fixed point
in S.

Theorem 5.3. The operator 𝑇 defined by (3.13) is a completely continuous operator under
conditions (A1), (A2) and (A3).

Proof. Let 𝑦0 ∈ 𝐿2
𝑞 (0,∞). Then we obtain:

|(𝑇𝑦)(𝑥) − (𝑇𝑦0)(𝑥)|2 =

⃒⃒⃒⃒
⃒⃒

∞∫︁
0

𝐺(𝑥, 𝑡) [𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑦0(𝑡))] 𝑑𝑞𝑡

⃒⃒⃒⃒
⃒⃒
2

6

∞∫︁
0

|𝐺(𝑥, 𝑡)|2 𝑑𝑞𝑡
∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑦0(𝑡))|2 𝑑𝑞𝑡.

Thus,

‖𝑇𝑦 − 𝑇𝑦0‖2 6 𝐾

∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑦0(𝑡))|2 𝑑𝑞𝑡, (5.1)

where

𝐾 =

⎛⎝ ∞∫︁
0

∞∫︁
0

|𝐺 (𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡

⎞⎠ .
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We know that the operator 𝐹 defined by 𝐹𝑦(𝑥) = 𝑓 (𝑥, 𝑦(𝑥)) is continuous in 𝐿2
𝑞 (0,∞) under

condition (A2), see [25]. Hence, for a given 𝜖 > 0, we can find a 𝛿 > 0 such that the inequality
‖𝑦 − 𝑦0‖ < 𝛿 implies

∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑦0(𝑡))|2 𝑑𝑞𝑡 <
𝜖2

𝐾
.

It follows from (5.1) that

‖𝑇𝑦 − 𝑇𝑦0‖ < 𝜖,

that is, 𝑇 is continuous.
We denote

𝑌 =
{︀
𝑦 ∈ 𝐿2

𝑞 (0,∞) : ‖𝑦‖ 6 𝐶
}︀
.

By (3.13) we have

‖𝑇𝑦‖ 6 ‖𝜔‖ +

{︂
𝐾

∫︁ ∞

0

|𝑓 (𝑡, 𝑦(𝑡))|2 𝑑𝑞𝑡
}︂ 1

2

for all 𝑦 ∈ 𝑌.

Furthermore, using (2.5), we get

∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡))|2 𝑑𝑞𝑡 6
∞∫︁
0

[𝑔(𝑡) + 𝜗 |𝑦(𝑡)|]2 𝑑𝑞𝑡

6 2

∞∫︁
0

[︀
𝑔2(𝑡) + 𝜗2 |𝑦(𝑡)|2

]︀
𝑑𝑞𝑡

= 2
(︀
‖𝑔‖2 + 𝜗2 ‖𝑦‖2

)︀
6 2

(︀
‖𝑔‖2 + 𝜗2𝐶2

)︀
.

Thus, for all 𝑦 ∈ 𝑌, we obtain

‖𝑇𝑦‖ 6 ‖𝜔‖ +
[︀
2𝐾

(︀
‖𝑔‖2 + 𝜗2𝐶2

)︀]︀ 1
2 ,

that is, 𝑇 (𝑦) is a bounded set in 𝐿2
𝑞 (0,∞).

For all 𝑦 ∈ 𝑌 we have
∞∫︁

𝑁

|𝑇𝑦(𝑥)|2 𝑑𝑞𝑥 6 2
(︀
‖𝑔‖2 + 𝜗2𝐶2

)︀ ∞∫︁
𝑁

∞∫︁
0

|𝐺(𝑥, 𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡.

Hence, by (3.8), we see that for a given 𝜖 > 0 there exists a positive number 𝑁 depending only
on 𝜖 such that

∞∫︁
𝑁

|𝑇𝑦(𝑥)|2 𝑑𝑞𝑥 < 𝜖2

for all 𝑦 ∈ 𝑌 . Thus, 𝑇 (𝑦) is relatively compact in 𝐿2
𝑞 (0,∞), and the operator 𝑇 is therefore

completely continuous.

Theorem 5.4. Suppose that conditions (A1), (A2) and (A3) are satisfied. In addition, let
there exists a constant 𝑀 > 0 such that⎛⎝ ∞∫︁

0

|𝜔(𝑥)|2 𝑑𝑞𝑥

⎞⎠ 1
2

+

⎛⎝ ∞∫︁
0

∞∫︁
0

|𝐺𝑡)|2 𝑑𝑞𝑥𝑑𝑞𝑡

⎞⎠ 1
2

sup
𝑦∈𝑆𝑀

⎛⎝ ∞∫︁
0

|𝑓 (𝑡, 𝑦(𝑡))|2 𝑑𝑞𝑡

⎞⎠ 1
2

6𝑀, (5.2)
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where

𝑆𝑀 =
{︀
𝑦 ∈ 𝐿2

𝑞 (0,∞) : ‖𝑦‖ 6𝑀
}︀
.

Then boundary value problem (2.2), (2.8) has at least one solution with

∞∫︁
0

|𝑦(𝑥)|2 𝑑𝑞𝑥 6𝑀2.

Proof. We define an operator 𝑇 : 𝐿2
𝑞 (0,∞) → 𝐿2

𝑞 (0,∞) by (3.13). By Theorems 4.4 and 5.3
and inequality (5.2) we conclude that 𝑇 maps the set 𝑆𝑀 into itself. It is clear that the set 𝑆𝑀

is bounded, convex and closed. Now theorem follows Theorem 5.2.

REFERENCES

1. V. Kac, P. Cheung. Quantum calculus. New York, NY, USA, Springer-Verlag (2002).
2. T. Ernst. The History of 𝑞-calculus and a new method // U. U. D. M. Report. Uppsala, Sweden:

Department of Math., Uppsala Univ (2000).
3. M.H. Annaby, Z.S. Mansour. 𝑞-Fractional Ccalculus and equations. Lecture Notes Math. 2056.

Heidelberg, Germany, Springer-Verlag (2012).
4. B. Ahmad, J.J. Nieto. Basic theory of nonlinear third-order 𝑞-difference equations and inclusions

// Math. Model. Anal. 18:1, 122–135 (2013).
5. B. Ahmad, S. K. Ntouyas. Boundary value problems for 𝑞-difference inclusions // Abstr. Appl.

Anal. 2011, 292860, (2011).
6. B. Ahmad, S. K. Ntouyas. Boundary value problems for 𝑞-difference equations and inclusions with

nonlocal and integral boundary conditions // Math. Model. Anal. 19:5, 647–663 (2014).
7. B. Ahmad, S. K. Ntouyas, I. K. Purnaras. Existence results for nonlinear 𝑞-difference equations

with nonlocal boundary conditions // Comm. Appl. Nonl. Anal. 19:3, 59–72 (2012).
8. T. Saengngammongkhol, B. Kaewwisetkul, T. Sitthiwirattham. Existence results for nonlinear

second-order 𝑞-difference equations with 𝑞-integral boundary conditions // Diff. Equat. Appl. 7:3,
303–311 (2015).

9. T. Sitthiwirattham, J. Tariboon, S.K. Ntouyas. Three-point boundary value problems of nonlinear
second-order 𝑞-difference equations involving different numbers of 𝑞 // J. Appl. Math. 2013,
763786 (2013).

10. W. Sudsutad, S. K. Ntouyas, J. Tariboon. Quantum integral inequalities for convex functions //
J. Math. Inequal. 9:3, 781–793 (2015).

11. P. Thiramanus, J. Tariboon. Nonlinear second-order 𝑞-difference equations with three-point bound-
ary conditions // Comput. Appl. Math. 33:2, 385–397 (2014).

12. C. Yu, J. Wang. Existence of solutions for nonlinear second-order 𝑞-difference equations with
first-order 𝑞-derivatives // Adv. Difference Equat. 2013, 124 (2013).

13. M. El-Shahed, H.A. Hassan. Positive solutions of 𝑞-difference equation // Proc. Amer. Math.
Soc. 138:5, 1733-1738 (2010).

14. F.H. Jackson. On 𝑞-difference equations // Amer. J. Math. 32:4, 305–314 (1910).
15. Z. Hefeng, L. Wenjun. Existence results for a second-order 𝑞-difference equation with only integral

conditions // Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79:4, 221–234 (2017).
16. Z. Mansour, M. Al-Towailb.𝑞-Lidstone polynomials and existence results for 𝑞-boundary value

problems // Bound. Value Probl. 2017, 178 (2017).
17. M.J. Mardanov, Y.A. Sharifov. Existence and uniqueness results for 𝑞-difference equations with

two-point boundary conditions // AIP Conf. Proc. 1676, 020065 (2015).
18. R. P. Agarwal, G. Wang, B. Ahmad, L. Zhang, A. Hobiny, S. Monaquel. On existence of solutions

for nonlinear 𝑞- difference equations with nonlocal 𝑞-integral boundary conditions // Math. Model.
Anal. 20:5, 604–618 (2015).



EXISTENCE OF SOLUTIONS FOR NONLINEAR SINGULAR 𝑞-STURM-LIOUVILLE PROBLEMS 103

19. G.Sh. Guseinov, I. Yaslan. Boundary value problems for second order nonlinear differential equa-
tions on infinite intervals // J. Math. Anal. Appl. 290:2, 620–638 (2004).

20. B.P. Allahverdiev, H. Tuna. Nonlinear singular Sturm-Liouville problems with impulsive condi-
tions // Facta Univ., Ser. Math. Inf. 34:3, 439–457 (2019).

21. P.N. Swamy. Deformed Heisenberg algebra:origin of 𝑞-calculus // Physica A: Statist. Mechan.
Appl. 328:1-2, 145–153 (2003).
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