УДК 517.518

ОБ ОЦЕНКЕ ОСЦИЛЛЯТОРНЫХ ИНТЕГРАЛОВ С ФАЗОЙ, ЗАВИСЯЩЕЙ ОТ ПАРАМЕТРОВ

Ш.А. МУРАНОВ

Аннотация. Рассматриваются оценки преобразования Фурье мер, сосредоточенных на аналитических гиперповерхностях, содержащих множитель гашения. В качестве гасителя естественно выбирается степень гауссовой кривизны гиперповерхности. Известно, что если степень гауссовой кривизны достаточно большое положительное число, то преобразование Фурье соответствующей меры убывает оптимально. С.Д. Согги и И.М. Стейном поставлена задача о минимальной степени гауссовой кривизны, гарантирующей оптимальное убывание преобразования Фурье. В статье приведено решение задачи С.Д. Согги и И.М. Стейна об оптимальном убывании преобразования Фурье мер с множителем гашения для частного класса семейств аналитических поверхностей трехмерного евклидова пространства. Отметим, что степень, указанная в работе, точна не только для семейства аналитических гиперповерхностей, но и для фиксированной аналитической гиперповерхности. Доказательство основных результатов опирается на методы теории аналитических функций, точнее на утверждения типа подготовительной теоремы Вейерштрасса. Как показал Д.М. Оберлин, аналогичные утверждения для бесконечно-гладких гиперповерхностей не имеют место.

Ключевые слова: осцилляторные интегралы, преобразование Фурье, множитель гашения, максимальный оператор.

Mathematics Subject Classification: 35D05; 35D10; 35G05

1. Введение

В связи с проблемой об ограничении максимальных операторов, ассоциированных с гиперповерхностью $S \subset \mathbb{R}^{n+1}$, С.Д. Согги и И.М. Стейном [1] введены следующие демпфированные осцилляторные интегралы:

$$\widehat{\mu}_q(\xi) := \int_S e^{i(\xi,x)} |K(x)|^q \psi(x) d\sigma(x), \tag{1.1}$$

где K(x) – гауссова кривизна гиперповерхности в точке $x \in S, \psi \in C_0^\infty(S)$ – неотрицательная гладкая функция с компактным носителем, (x,ξ) – скалярное произведение векторов x и ξ , $d\sigma(x)$ – поверхностная мера. Они доказали, что если $q \geqslant 2n$, то интеграл (1.1) убывает в порядке $O(|\xi|^{-\frac{n}{2}})$ (при $|\xi| \to +\infty$), т.е. убывает оптимально. Отметим, что если гауссова кривизна не обращается в нуль, то преобразование Фурье поверхностной меры убывает в порядке $O(|\xi|^{-\frac{n}{2}})$ (при $|\xi| \to +\infty$), причем для ненулевой меры быстрее убывать не может, что означает оптимальность порядка убывания. Для семейства гладких гиперповерхностей $S(\eta) \subset \mathbb{R}^{n+1}$, гладко зависящих от параметров $\eta \in \mathbb{R}^m$, естественно определяется мера $d\mu(\eta) := \psi(x,\eta)d\sigma(x,\eta)$ и соответствующие осцилляторные интегралы с множителем гашения:

$$\widehat{\mu}_q(\xi) = \int_{S(\eta)} e^{i(x,\xi)} |K(x,\eta)|^q \psi(x,\eta) d\sigma(x,\eta),$$
(1.2)

Sh.A. Muranov, On estimates for oscillatory integrals with phase depending on parameters. (\hat{c}) Mypahob III.A. 2019.

Работа поддержана КОНИД при Министерстве ВССО РУзб (грант ОТ-Ф4-69). Поступила 8 октября 2018 г.

где для каждого фиксированного η , $d\sigma(x,\eta)$ – поверхностная мера на $S(\eta)$.

Постановка задачи. Найти минимальное значение q такое, что справедлива следующая оценка:

$$|\widehat{\mu}_q(\xi)| \le A|\xi|^{-\frac{n}{2}}.$$

Аналогичная задача для фиксированной гиперповерхности S поставлена в работе [1] Согги и Стейна. Решение поставленной задачи в одномерном случае, точнее, когда S – кривая, заданная полиномом, вытекает из результатов Д. Оберлина [2]. Фактически результаты Д. Оберлина связаны с семейством кривых.

В данной работе мы представим решение задачи С.Д. Согги и И.М. Стейна для частного класса аналитических поверхностей трехмерного пространства, зависящих от параметров.

Функция (x,τ) $|_{S_{(\eta)}}$ (где $\tau\in S^2$, т.е. τ – любой вектор, принадлежащий единичной сфере с центром в начале координат) – сужение семейства функций (зависящее от τ и η) (x,τ)

на поверхности $S(\eta) \subset \mathbb{R}^3$, называется фазовой функцией. Например, если $S = \{(x_1, x_2, \Psi(x_1, x_2, \eta))\}$, где $\Psi(x_1, x_2, \eta) = x_1^2 + x_2^4 + \eta x_2^2$, то $(x, \tau) \mid_{S(\eta)} = \tau_1 x_1 + \tau_2 x_2 + \tau_3 \Psi(x_1, x_2, \eta)$ является фазовой функцией, соответствующей S. Пусть $y = \Phi(x)$ $(x \in \mathbb{R}^n)$ — некоторая функция с критической точкой $x = x^0$. Если в некоторой окрестности $\Omega(x^0)$ точки x^0 , $\Phi(x)$ с помощью диффеоморфной замены $\Sigma = \Omega(x^0)$ $(x \in \mathbb{R}^n)$ — некоторой окрестности $\Omega(x^0)$ точки X^0 , X^0 с помощью диффеоморфной замены $\varphi: \Sigma \mapsto \Omega(x^0)$ (где $\Sigma \subset \mathbb{R}^n$ окрестность нуля) приводится к виду:

$$\Phi(\varphi(z)) = \Phi(x^0) \pm z_1^{k+1} \pm z_2^2 \pm z_3^2 \pm \dots \pm z_n^2$$

то $x=x^0$ называется критической точкой типа A_k [3].

Следующая теорема доказана в работе [4] (также см. [5]).

Теорема 1.1. Пусть $q \ge 1$ фиксированное вещественное число и $S(\eta) \subset \mathbb{R}^3$ – семейство аналитических гиперповерхностей, зависящих от параметра $\eta \in \mathbb{R}^m$. Если фазовая функция, соответствующая гиперповерхности S(0), имеет особенность типа A_k $(1 \leqslant k < \infty)$ в точке $(0,0,0) \in S(0)$, тогда существует окрестность нуля $V \times U \subset \mathbb{R}^3 \times \mathbb{R}^m$ такая, что при любой функции $\psi \in C_0^\infty(V \times U)$, для интеграла (1.2)справедлива следующая оценка:

$$|\widehat{\mu}_q(\xi)| \leqslant \frac{C||\psi(\cdot,\eta)||_{C^2}}{|\xi|},$$

 $\it rde\ C$ – фиксированное положительное число.

Основным результатом настоящей работы является следующая

Теорема 1.2. Пусть $q \ge 1$ фиксированное вещественное число, $S(\eta) \subset \mathbb{R}^3$ – семейство аналитических гиперповерхностей, удовлетворяющих следующим условиям:

- 1. Гиперповерхность S(0) содержит начало координат \mathbb{R}^3 , и хотя бы одна из главных кривизн поверхности S(0) в начале координат отлична от нуля.
- 2. Гауссова кривизна $K(x,\eta)$ на гиперповерхности $S(\eta)$ удовлетворяет условию: $K \not\equiv 0$. Тогда существует окрестность начала координат $V \times U \subset \mathbb{R}^3 \times \mathbb{R}^m$ такая, что при любой функции $\psi \in C_0^\infty(V \times U)$, для интеграла (1.2) справедлива следующая оценка:

$$|\widehat{\mu}_q(\xi)| \leqslant \frac{C||\psi(\cdot,\eta)||_{C^2}}{|\xi|},$$

 $rde\ C\ -\ \phi u\kappa cupo ванно е положительно е число.$

Вспомогательные утверждения

Согласно условиям теоремы 1.2, можем считать, что $\psi(x,\eta)$ имеет достаточно малый носитель. Более того, будем считать, что $S(\eta)$ задается в виде графика некоторой аналитической функции $x_3 = f(x_1, x_2, \eta)$, определенной в малой окрестности начала координат:

$$S(\eta) := \{(x_1, x_2) \in V_1 \subset \mathbb{R}^2 : x_3 = f(x_1, x_2, \eta), \eta \in U\},\$$

причем
$$f(0,0,0) = 0, \nabla_x f(0,0,0) = 0.$$

Действительно, пусть $S(\eta)$ семейство аналитических гиперповерхностей, зависящих от $\eta \in U \subset \mathbb{R}^m$. Тогда, после возможного применения евклидова движения, мы можем предполагать, что S(0) содержит начало координат, и касательная плоскость $T_0S(0)$ в начале координат задается уравнением: $x_3 = 0$.

Поэтому S(0) в окрестности точки (0,0,0) определяется уравнением $F(x_1,x_2,x_3)=0$, где F – вещественно-аналитическая функция удовлетворяющая условиям: F(0,0,0)=0, $\frac{\partial F(0,0,0)}{\partial x_1}=\frac{\partial F(0,0,0)}{\partial x_2}=0$ и $\frac{\partial F(0,0,0)}{\partial x_3}\neq 0$. Согласно теореме о неявной функции уравнение $F(x_1,x_2,x_3)=0$ в окрестности нуля имеет аналитическое решение $x_3=\Phi(x_1,x_2)$. Таким образом $\Phi(x_1,x_2)$ аналитическая функция удовлетворяющая условиям: $\Phi(0,0)=0$, $\nabla\Phi(0,0)=0$. Аналогично для семейства $S(\eta)$ существует функция $f(x_1,x_2,\eta)$ такая, что в окрестности нуля $S(\eta)$ задается уравнением $x_3=f(x_1,x_2,\eta)$ и

Отметим, что функция (x, τ) не имеет стационарных точек при $\tau \neq 0$, так как $(x, \tau)_x = \tau$. Но ее сужение на S имеет стационарные, т.е. критические точки (см.[7] гл. III, §4, стр.139). Это те точки $x(\tau)$, в которых гиперповерхность $(x, \tau) = const$ касается S.

 $f(x_1, x_2, \eta)$ удовлетворяет условиям: $f(x_1, x_2, 0) = \Phi(x_1, x_2)$. (Более подробно см.[6], стр.57)

Лемма 2.1. Стационарная точка $x(\tau) \in S$ невырождена тогда и только тогда, когда гауссова кривизна гиперповерхности S в этой точке отлична от нуля.

Лемма 2.1 доказана в [7](см. гл. III, §4, стр.144).

Отметим, если гауссова кривизна $K(0,0,0) \neq 0$, то, согласно лемме 2.1, фазовая функция $(x,\tau)\mid_{S(\eta)}$ в малой окрестности точки (0,0,0) имеет лишь невырожденные критические точки. Так как если гауссова кривизна отлична от нуля в окрестности нуля $V \times U$, то $|K(x,\eta)|^q \psi(x,\eta) \in C_0^\infty(V \times U)$. Поэтому, согласно лемме Морса (см. [7], стр. 66, лемма 3.3), она приводится к сумме квадратов и для интеграла $\widehat{\mu}_q(\xi)$ справедливо соотношение: $\widehat{\mu}_q(\xi) = O(|\xi|^{-1})$ (при $|\xi| \longrightarrow \infty$). Следовательно, в этом случае утверждение теоремы 1.2 справедливо. В дальнейшем будем предполагать, что K(0,0,0) = 0.

Прежде чем доказать теорему 1.2, рассмотрим некоторые необходимые вспомогательные утверждения.

Лемма 2.2. Пусть g = g(x) вещественнозначная непрерывно дифференцируемая функция, определенная на [c,d]. Если для любого $(x,\eta) \in [c,d] \times U$ выполняется неравенство $|g'| \geqslant \delta > 0$ и функции $a(\cdot,\eta), g'(\cdot,\eta)$ имеют ограниченную вариацию на [c,d], то справедлива следующая оценка:

$$\left| \int_{C}^{d} e^{i\lambda g(x,\eta)} a(x,\eta) dx \right| \leqslant \frac{C \left\| \frac{a(\cdot,\eta)}{g'} \right\|_{V}}{|\lambda|}, \tag{2.1}$$

 $cde \ \|a(\cdot,\eta)\|_V := |a(c,\eta)| + V_c^d[a(\cdot,\eta)] \ u \ V_c^d[a(\cdot,\eta)]$ полная вариация функции а на [c,d].

Доказательство. Сначала запишем интеграл в виде:

$$\int_{c}^{d} e^{i\lambda g(x,\eta)} a(x,\eta) dx = \int_{c}^{d} \frac{a(x,\eta)}{i\lambda g'(x,\eta)} d\left(e^{i\lambda g(x,\eta)}\right).$$

Далее, используя формулу интегрирования по частям для интеграла Стильтеса, получим следующую оценку

$$\left| \int_{c}^{d} e^{i\lambda g(x,\eta)} a(x,\eta) dx \right| \leq \left| \frac{a(d,\eta)}{i\lambda g'(d,\eta)} e^{i\lambda g(d,\eta)} - \frac{a(c,\eta)}{i\lambda g'(c,\eta)} e^{i\lambda g(c,\eta)} \right| + \left| \frac{1}{i\lambda} \int_{c}^{d} e^{i\lambda g(x,\eta)} d\left(\frac{a(x,\eta)}{g'(x,\eta)} \right) \right|.$$

Наконец, заметим, что $\max_{x \in [c,d]} |a(x,\eta)| \leq ||a(\cdot,\eta)||_V$, и поэтому если $a(x,\eta)$ и $g'(x,\eta)$ функции с ограниченной вариацией, то придем к выполнению оценки (2.1).

Лемма 2.2 является аналогом утверждения II предложения 2 монографии [8] (стр.332—333) (а также см. [9] и [10]). \Box

В этой работе используются следующие технические леммы, доказанные в работе [11]:

Лемма 2.3. Пусть $f \not\equiv 0$ вещественно-аналитическая функция в нуле $\mathbb{R} \times \mathbb{R}^m$, такая, что f(0,0) = 0. Существуют вещественно-аналитическое многообразие Y и отображение $\pi: Y \mapsto \mathbb{R}^m$, которое является собственным отображением, что для любой точки $y^0 \in Y$ существует карта $(\varphi_1, \ldots, \varphi_m)$ с центром в точке y^0 , для которой справедливо следующее соотношение:

$$f(x_2, \pi(y)) = \varphi_1^{\alpha_1}(y)\varphi_2^{\alpha_2}(y)\dots\varphi_m^{\alpha_m}(y)b(x_2, y)p(x_2, y), \tag{2.2}$$

где $b(x_2,y),\ b(0,y^0)\neq 0$ — вещественно-аналитическая функция, $p(x_2,y)$ — унитарный псев дополином. т.е.

$$p(x_2, y) = x_2^{m_1} + \tau_1(y)x_2^{m_1-1} + \tau_2(y)x_2^{m_1-2} + \dots + \tau_{m_1}(y),$$

здесь τ_1,\ldots,τ_{m_1} — вещественно-аналитические функции в точке y^0 и $\tau_\ell(y^0)=0,$ $\ell=1,\ldots,m_1.$

Лемма 2.4. Пусть $f:(\mathbb{R}\times\mathbb{R}^m,0)\mapsto(\mathbb{R},0)$ – вещественно-аналитическая функция в начале координат. Существует окрестность нуля $W\times U\subset\mathbb{R}\times\mathbb{R}^m$ такая, что для любого фиксированного положительного числа q функция $|f(\cdot,\eta)|^q$ имеет ограниченную вариацию по W, причем полная вариация этой функции $V_W[|f(\cdot,\eta)|^q]$ является ограниченной функцией в U.

А также нам понадобится следующая лемма:

Лемма 2.5. Пусть $f(x, \eta)$ – вещественно-аналитическая функция в начале координат $u \neq 1$ – фиксированное число. Тогда существует окрестность нуля $W \times U$ в $\mathbb{R} \times \mathbb{R}^m$ и выполняется следующее тождество

$$|x|g(x,\eta) = |f(x,\eta)|^q - |f(0,\eta)|^q,$$

где функция $g(x,\eta)$ имеет ограниченную вариацию по W и ее полная вариация ограничена в U.

Доказательство. Фактически лемма 2.5 является аналогом леммы 3.3 в работе [11]. Ради удобства читателей приведем подробное доказательство этой леммы.

Сначала предположим, что $f(x,\eta)$ многочлен. Скажем, $f(x,\eta):=Q(x,\eta)=x^\ell+\eta_1x^{\ell-1}+\cdots+\eta_\ell$, и коэффициенты многочлена ограничены; $|\eta|\leqslant 1$. Покажем, что функция

$$g(x,\eta) = \frac{|Q(x,\eta)|^q - |\eta_\ell|^q}{|x|}$$

имеет ограниченную вариацию по отрезку [-1,1], и ее полная вариация $V_{-1}^1[g(\cdot,\eta)]$ – ограничена константой, зависящей лишь от ℓ и q. Легко доказать, что $g(x,\eta)$ – кусочномонотонная функция. Действительно, пусть x>0 и $Q(x,\eta)>0$. Тогда числитель и знаменатель дифференцируемы. Вычислим производную функции $g(x,\eta)$ по x и получим

$$g'(x,\eta) = \frac{xq(Q(x,\eta))^{q-1}Q'(x,\eta) - ((Q(x,\eta))^q - |\eta_{\ell}|^q)}{x^2}.$$

Теперь покажем, что числитель имеет не более 2ℓ нулей. Вычислим производную числителя и, приравнивая ее к нулю, получим

$$qx(Q(x,\eta))^{q-2}((q-1)(Q'(x,\eta))^2 + Q(x,\eta)Q''(x,\eta)) = 0.$$

Последнее уравнение имеет не более, чем $2\ell-2$ корней, так как $Q'(x,\eta))^2+Q(x,\eta)Q''(x,\eta)$ многочлен степени $2\ell-2$.

Поэтому числитель не может иметь более чем $2\ell-2$ нулей при Q>0. Аналогично рассматривается случай $Q(x,\eta)<0$ или x<0. Отсюда следует, что уравнение $g'(x,\eta)=0$ имеет не более, чем $4\ell-4$ корней.

Так как $q\geqslant 1$, то при $x,y\in [-1,1]$ мы имеем очевидное неравенство: $||x|^q-|y|^q|\leqslant C(q)|x-y|$, где C(q) – некоторое положительние число, зависящее лишь от $q\geqslant 1$. Отсюда вытекает, что функция $g(x,\eta)$ ограничена числом $C(q)\frac{\ell(\ell-1)}{2}$ при $|x|\leqslant 1$. Действительно,

$$|x||g(x,\eta)|\leqslant ||Q(x,\eta)|^q-|Q(0,\eta)|^q|\leqslant C(q)|Q(x,\eta)-Q(0,\eta)|\leqslant C(q)\max_{-1\leqslant \zeta\leqslant 1}|Q'(\zeta,\eta)||x|$$
 и следовательно,

$$\max_{-1 \le x \le 1} |g(x, \eta)| \le C(q) \max_{-1 \le \zeta \le 1} |Q'(\zeta, \eta)| \le C(q) \frac{\ell(\ell - 1)}{2}.$$

Тогда имеем

$$V_{-1}^1[g(x,\eta)] \leqslant (4\ell-4) \max_{[-1,1]} |g(x,\eta)| \leqslant C(q) 2\ell(\ell-1)^2.$$

Таким образом, полная вариация функции g по отрезку [-1,1] оценивается константой, зависящей только от ℓ и g.

Пусть теперь $f(x,\eta)$ – любая вещественно-аналитическая функция. В этом случае, используя лемму 2.3, приводим нашу функцию к виду

$$f(x,\pi(y)) = \varphi_1^{\alpha_1}(y)\varphi_2^{\alpha_2}(y)\dots\varphi_m^{\alpha_m}(y)b(x,y)Q(x,y),$$

где b — вещественно-аналитическая функция, удовлетворяющая условию $b(0,0) \neq 0$, и Q(x,y) — некоторый псевдополином. В этом случае мы имеем соотношение

$$|b(x,y)Q(x,y)|^{q} - |b(0,y)Q(0,y)|^{q} = |Q(x,y)|^{q}(|b(x,y)|^{q} - |b(0,y)|^{q}) + |b(0,y)|^{q}(|Q(x,y)|^{q} - |Q(0,y)|^{q}).$$

Заметим, что функция $\frac{|b(x,y)|^q-|b(0,y)|^q}{|x|}$ имеет ограниченную вариацию, так как $b(0,0)\neq 0$. А также, согласно лемме $2.4,\ |Q(x,y)|^q$ имеет ограниченную вариацию в координатной окрестности V при $q\geqslant 1$.

Наконец, заметим, что $\pi: Y \mapsto U$ — собственное аналитическое отображение [13]. Поэтому $\pi^{-1}(\overline{U}) \subset Y$ компакное множество. Следовательно, для произвольной точки $y^0 \in \pi^{-1}(\overline{U})$ можем найти координатную окрестность $V \subset Y$ точки y^0 такую, что при $y \in V$ имеем соотношение

$$f(x,\pi(y)) = \varphi_1^{\alpha_1}(y)\varphi_2^{\alpha_2}(y)\dots\varphi_m^{\alpha_m}(y)b(x,y)Q(x,y),$$

где $(\varphi_1,\ldots,\varphi_m)$ – локальные координаты с центром y^0 , т.е. $\varphi_j(y^0)=0,\ j=1,\ldots,m,$ b(x,y) – вещественно-аналитическая функция, удовлетворяющая условию $b(x,y)\neq 0$ при $(x,y)\in W\times V,$ а Q(x,y) – псевдополином и $\alpha_j\geqslant 0$ $(j=1,\ldots,m)$ целые числа.

Согласно доказанному, $f(x,\pi(y))$ в окрестности $W \times V$ удовлетворяет утверждениям леммы 2.5. Так как $\pi^{-1}(\overline{U})$ компактное множество, мы можем выбрать конечное покрытие $\pi^{-1}(\overline{U})$ и окрестность нуля $W \subset \mathbb{R}$ такие, что утверждения леммы 2.5 справедливы при $(x,y) \in W \times \pi^{-1}(\overline{U})$. Поэтому выполняются утверждения леммы 2.5 на множестве $W \times U \subset \mathbb{R} \times \mathbb{R}^m$. Отсюда приходим к доказательству леммы 2.5.

Теперь приведем аналог леммы Эрдейи [14]:

Лемма 2.6. Если F(x,s) – гладкая функция, определенная в малой окрестности начала координат $W \times U \in \mathbb{R} \times \mathbb{R}^m$ и удовлетворяющая условиям:

$$F'(0,s)=0, \quad F''(0,s)\neq 0 \quad \text{dis indoor} \quad s\in U \quad u \quad a\in C_0^\infty(W\times U),$$

то при $0 \leqslant q \leqslant 1$ выполняется неравенство:

$$\left| \int_{-\varepsilon}^{\varepsilon} |x|^q e^{i\lambda F(x,s)} a(x,s) dx \right| \leqslant \frac{C_q \|a(\cdot,s)\|_V}{|\lambda|^{\frac{q+1}{2}}},$$

 $\epsilon de \ \varepsilon - docmamoчнo$ малое положительное число.

Доказательство. При доказательстве леммы используем лемму Морса с параметрами (см. [7], стр. 66, лемма 3.3). Согласно лемме Морса существует диффеоморфное отображение x=x(y,s), отображающее отрезок $I=[-\varepsilon,\varepsilon]$ в $[-\delta_1(\varepsilon),\delta_2(\varepsilon)]$, такое, что функция F(x,s) имеет вид $F(x(y,s),s) = F(0,s) \pm y^2$, причем $x(0,s) \equiv 0$. Из последнего равенства вытекает, что x(y,s) записывается в виде x(y,s)=yG(y,s) с гладкой функцией G(y,s) и $G(0,0) \neq 0.$

Мы применим замену пременных x = x(y, s) в интеграле

$$\int_{-\varepsilon}^{\varepsilon} |x|^q e^{i\lambda F(x,s)} a(x,s) dx,$$

и получим:

$$I_q(\lambda) = e^{i\lambda F(0,s)} \int_{-\delta_1(\varepsilon)}^{\delta_2(\varepsilon)} |y|^q e^{\pm i\lambda y^2} a_1(y,s) dy,$$

где $a_1(y,s) = |G(y,s)|^q (G(y,s) + yG'(y,s)) a(yG(y,s),s)$ и $a_1(y,s) \in C_0^\infty([-\delta_1(\varepsilon),\delta_2(\varepsilon)])$. Теперь рассмотрим оценку интеграла $I_q(\lambda)$, который при $0 \leqslant q \leqslant 1$ записывается в виде $I_q(\lambda) = I_1(\lambda) + I_2(\lambda).$

Сначала оценим интеграл

$$I_1(\lambda) := \int_0^{\delta_2(\varepsilon)} y^q e^{\pm i\lambda y^2} a_1(y,s) dy.$$

Аналогично оценивается интеграл $I_2(\lambda) := \int_{-\delta_1(\varepsilon)}^0 y^q e^{\pm i\lambda y^2} a_1(y,s) dy$.

Если $\delta_2(\varepsilon) \leqslant \lambda^{-\frac{1}{2}}$, то, из тривиальной оценки интеграла, имеем:

$$|I_1(\lambda)| \leqslant \frac{\max_{y \in [0, \delta_2(\varepsilon)]} |a_1(y, s)|}{\lambda^{\frac{q+1}{2}}}.$$
(2.3)

Теперь предположим, что $\delta_2(\varepsilon) > \lambda^{-\frac{1}{2}}$. В этом случае интеграл $I_1(\lambda)$ записывается в виде суммы следующих двух интегралов

$$I_{11}(\lambda) = \int_0^{\lambda^{-\frac{1}{2}}} y^q e^{\pm i\lambda y^2} a_1(y,s) dy \quad \text{if} \quad I_{12}(\lambda) = \int_{\lambda^{-\frac{1}{2}}}^{\delta_2(\varepsilon)} y^q e^{\pm i\lambda y^2} a_1(y,s) dy.$$

Очевидно, что $I_{11}(\lambda)$ имеет оценку вида (2.3).

Теперь используем формулу интегрирования по частям для интеграла $I_{12}(\lambda)$ и получим следующую оценку:

$$|I_{12}(\lambda)| \le \lambda^{-\frac{q+1}{2}} C_1 V_0^{\delta_2} [a_1(\cdot, s)].$$
 (2.4)

Тогда, с помощью неравенств (2.3) и (2.4), мы имеем оценку

$$|I_1(\lambda)| \leqslant \frac{C||a_1(\cdot,s)||_V}{\lambda^{\frac{q+1}{2}}}, \quad (C = const).$$

Суммированием полученных оценок приходим к доказательству леммы 2.6.

Лемма 2.7. Существует окрестность $V_1 \times U \subset \mathbb{R}^2 \times \mathbb{R}^m$ начала координат, такая, что для любого $q>0, \ \psi\in C_0^\infty(V_1\times U)$ и $max\{|\xi_1|,|\xi_2|\}\geqslant |\xi_3|$ имеет место следующая оценка:

$$|\widehat{\mu}_q(\xi)| \leqslant \frac{C\|\psi\|_{C^1}}{|\xi|}.$$

Доказательство. Отметим, что $K(x_1,x_2,\eta)=\frac{Hessf(x_1,x_2,\eta)}{(1+|\nabla f(x_1,x_2,\eta)|^2)^2}$ является аналитической функцией (см [6]. стр. 72, теорема 3) в малой окрестности начала координат. Так как $|\nabla_x f(0,0,0)|=0$, то существует окрестность начала координат $V_1\times U$, такая, что для любой точки $(x_1,x_2,\eta)\in V_1\times U$ выполняется неравенство $|\nabla_x f(x_1,x_2,\eta)|\leqslant \frac{1}{2}$. Без ограничения общности мы можем считать, что $|\xi_1|=max\{|\xi_1|,|\xi_2|\}\geqslant |\xi_3|$. Случай $|\xi_2|=max\{|\xi_1|,|\xi_2|\}\geqslant |\xi_3|$ может быть аналогично рассмотрен. В этом случае интеграл $\widehat{\mu}_q(\xi)$ записывается в виде следующего двумерного демпфированного осцилляторного интеграла:

$$\widehat{\mu}_{q}(\xi) = \int_{\mathbb{R}^{2}} e^{i(x_{1}\xi_{1} + x_{2}\xi_{2} + f(x_{1}, x_{2}, \eta)\xi_{3})} a(x_{1}, x_{2}, \eta) |Hessf(x_{1}, x_{2}, \eta)|^{q} dx_{1} dx_{2}, \tag{2.5}$$

где

$$a(x_1, x_2, \eta) = \frac{\psi(x_1, x_2, f(x_1, x_2, \eta))}{\sqrt{(1 + |\nabla f(x_1, x_2, \eta)|^2)^{4q - 1}}}.$$

Теперь используем теорему Фубини для интеграла (2.5) и получим:

$$\widehat{\mu}_q(\xi) = \int_{\mathbb{R}} \widehat{\mu}_q^0(\xi_1, \xi_3, x_2) e^{i\xi_3 s_2 x_2} dx_2,$$

где

$$\widehat{\mu}_{q}^{0}(\xi_{1}, \xi_{3}, x_{2}) = \int_{\mathbb{R}} e^{i\xi_{1}F_{1}(x_{1}, x_{2}, \xi_{1}, \xi_{3}, \eta)} a(x_{1}, x_{2}, \eta) |Hessf(x_{1}, x_{2}, \eta)|^{q} dx_{1}$$

и $F_1(x_1,x_2,\xi_1,\xi_3,\eta)=\frac{\xi_3}{\xi_1}f(x_1,x_2,\eta)+x_1$. Очевидно, что для любого $(x_1,x_2,\eta)\in V_1\times U$ выполняется неравенство:

$$|F'_{1x_1}(x_1, x_2, \xi_1, \xi_2, \eta)| = |1 + \frac{\xi_3}{\xi_1} f'_{x_1}(x_1, x_2, \eta)| \geqslant \frac{1}{2}.$$

Согласно лемме 2.4 функция $|Hessf(x_1,x_2,\eta)|^q$ имеет ограниченную вариацию по $Pr_1(V_1)$ и ее полная вариация ограничена в $Pr_2(V_1) \times U$ при любом q>0, где $Pr_1(V_1)$ ($Pr_2(V_1)$) проекция на ось \mathbb{R}_{x_1} (\mathbb{R}_{x_2}) соответственно. Поэтому, используя лемму 2.6, получим следующее неравенство:

$$|\widehat{\mu}_{q}^{0}(\xi_{1},\xi_{3},x_{2})| \leq \frac{C_{1}||a(\cdot,x_{2},\eta)||_{C^{1}}}{|\xi_{1}|} \leq \frac{\sqrt{3}C_{1}||a(\cdot,x_{2},\eta)||_{C^{1}}}{|\xi|}.$$

Интегрируя последнее неравенство по $Pr_2(V_1)$ для интеграла $\widehat{\mu}_q(\xi)$, имеем оценку:

$$|\widehat{\mu}_q(\xi)| \leqslant \frac{C\|\psi\|_{C^1}}{|\xi|}.$$

Лемма 2.7 доказана.

Следствие 1. Пусть $\varepsilon > 0$ – произвольное фиксированное положительное число и $\Gamma_{\varepsilon} \in \mathbb{R}^3$ – конус, определенный соотношением

$$\Gamma_{\varepsilon} := \{ \xi \in \mathbb{R}^3 : \varepsilon | \xi_3 | \leqslant \max\{ |\xi_1|, |\xi_3| \} \}.$$

Существуют окрестность $V_1 \times U$ начала координат и положительное число $C_{\varepsilon} > 0$ такие, что для любого q > 0, $\psi \in C_0^{\infty}(V_1 \times U)$ и $\xi \in \Gamma_{\varepsilon}$ выполняется следующая оценка:

$$|\widehat{\mu}_q(\xi)| \leqslant \frac{C_{\varepsilon} ||\psi||_{C^1}}{|\xi|}.$$

Следствие 1 показывает, что для $\widehat{\mu}_q(\xi)$ справедлива искомая оценка при $\xi \in \Gamma_{\varepsilon}$, при всех q > 0. Далее исследуем поведение $\widehat{\mu}_q(\xi)$ при $\xi \in \mathbb{R}^3 \backslash \Gamma_{\varepsilon}$.

3. Об асимптотическом поведении $\widehat{\mu}_{q}(\xi)$

В этом параграфе исследуем поведение $\widehat{\mu}_q(\xi)$ в случае, когда $\xi \in \mathbb{R}^3 \backslash \Gamma_{\varepsilon}$, где ε – достаточно малое фиксированное положительное число. В этом случае $\widehat{\mu}_q(\xi)$ записывается в виде следующего двумерного осцилляторного интеграла:

$$\widehat{\mu}_q(\xi) = \int_{\mathbb{R}^2} e^{i\xi_3 F(x_1, x_2, s_1, s_2, \eta)} a(x_1, x_2, \eta) |Hessf(x_1, x_2, \eta)|^q dx_1 dx_2, \tag{3.1}$$

где

$$a(x_1, x_2, \eta) = \frac{\psi(x_1, x_2, f(x_1, x_2, \eta))}{\sqrt{(1 + |\nabla f(x_1, x_2, \eta)|^2)^{4q - 1}}},$$

$$F(x_1, x_2, s_1, s_2, \eta) = f(x_1, x_2, \eta) + s_1 x_1 + s_2 x_2, \ s_1 = \frac{\xi_1}{\xi_3}, \ s_2 = \frac{\xi_2}{\xi_3},$$

$$Hess f(x_1, x_2, \eta) = det D^2 f(x_1, x_2, \eta).$$

Выбирая малую окрестность $V_1 \times U$, можем предположить, что ψ бесконечно гладкая функция с достаточно малым носителем.

Заметим, что если $rank(D^2 f(0,0,0)) = 1$, то

либо
$$\frac{\partial^2 f(0,0,0)}{\partial x_1^2} \neq 0$$
, либо $\frac{\partial^2 f(0,0,0)}{\partial x_2^2} \neq 0$.

Ради определенности можно предполагать, что $\frac{\partial^2 f(0,0,0)}{\partial x_1^2} \neq 0$. Тогда, согласно теореме о неявной функции, уравнение

$$F_{x_1}(x_1, x_2, s_1, s_2, \eta) = f_{x_1}(x_1, x_2, \eta) + s_1 = 0$$

имеет единственное аналитическое решение $x_1 = x_1(x_2, s_1, \eta)$ в малой окрестности начала координат в $\mathbb{R}_{x_1} \times \mathbb{R}_{s_1} \times U$.

Согласно теореме Фубини интеграл (3.1) записывается в виде

$$\widehat{\mu}_q(\xi) = \int_{\mathbb{R}} \widehat{\mu}_q^1(\xi, x_2) e^{i\xi_3 s_2 x_2} dx_2,$$

где

$$\widehat{\mu}_{q}^{1}(\xi, x_{2}) = \int_{\mathbb{R}} e^{i\xi_{3}F_{1}(x_{1}, x_{2}, s_{1}, \eta)} a(x_{1}, x_{2}, \eta) |Hessf(x_{1}, x_{2}, \eta)|^{q} dx_{1}$$

и $F_1(x_1,x_2,s_1,\eta)=f(x_1,x_2,\eta)+s_1x_1$. Теперь рассмотрим интеграл $\widehat{\mu}_q^1(\xi,x_2)$.

Предложение 1. Если аналитическая функция $f(x_1, x_2, \eta)$ удовлетворяет условиям: $\nabla f(0,0,0) = 0, \frac{\partial^2 f(0,0,0)}{\partial x_1^2} \neq 0,$ то существует окрестность нуля $V_1 \times U \subset \mathbb{R}^2 \times \mathbb{R}^m$ такая, что для интеграла $\widehat{\mu}_q^1$ при $q \geqslant 1$ справедливо следующее асимптотическое соотношение:

$$\begin{split} \widehat{\mu}_{q}^{1}(\xi,x_{2}) &= \sqrt{\frac{2\pi}{|\xi_{3}|}} e^{i(\frac{\pi}{4}sgn(\frac{\partial^{2}f(0,0,0)}{\partial x_{1}^{2}}\xi_{3}) + \xi_{3}F_{1}(x_{1}(x_{2},s_{1},\eta),x_{2},s_{1}))} \times \\ &\times |Hessf(x_{1}(x_{2},s_{1},\eta),x_{2},\eta)|^{q} a(x_{2},s_{1},\eta) + \\ &+ O\left(\frac{1}{|\xi|}\right) \quad (npu \quad |\xi| \to +\infty), \end{split}$$

где $a(x_2,s_1,\eta):=a(x_1(x_2,s_1,\eta),x_2,\eta)\phi(x_2,s_1,\eta),$ здесь ϕ – некоторая гладкая функция, причем $O\left(\frac{1}{|\xi|}\right)$ равномерно относительно малых параметров $(x_2,s_1,\eta),$ т.е. существуют C>0, и окрестность нуля U_1 такие, что при всех $(x_2,s_1,\eta)\in U_1$ выполняется неравенство $\left|O\left(\frac{1}{|\xi|}\right)\right|\leqslant \frac{C}{|\xi|}.$

 \mathcal{A} оказательство. В интеграле $\widehat{\mu}_q^1$ применим замену переменных

$$x_1 = X_1 + x_1(x_2, s_1, \eta)$$

и получим:

$$\widehat{\mu}_{q}^{1}(\xi, x_{2}) = \int_{\mathbb{R}} e^{i\xi_{3}F_{1}(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, s_{1}, \eta)} a(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta) \times |Hessf(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta)|^{q} dX_{1}.$$

Заметим, $Hessf(X_1+x_1(x_2,s_1,\eta),x_2,\eta)$ – вещественно-аналитическая функция. И так как $q\geqslant 1$, то из леммы 2.5 следует, что

$$|Hessf(X_1 + x_1(x_2, s_1, \eta), x_2)|^q - |Hessf(x_1(x_2, s_1, \eta), x_2)|^q =$$

$$= |X_1|\vartheta(X_1, x_2, s_1, \eta),$$
(3.2)

где $\vartheta(X_1, x_2, s_1, \eta)$ – функция, имеющая ограниченную вариацию по X_1 , и ее полная вариация $V_{-\delta}^{\delta}[\vartheta(\cdot, x_2, s_1, \eta)]$ – ограниченная функция от (x_2, s_1, η) .

Запишем интеграл $\widehat{\mu}_{a}^{1}(\xi, x_{2})$ в следующем виде:

$$\widehat{\mu}_{q}^{1}(\xi, x_{2}) = \int_{\mathbb{R}} e^{i\xi_{3}F_{1}(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, s_{1}, \eta)} a(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta) \times$$

$$\times [|Hessf(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta)|^{q} - |Hessf(x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta)|^{q}] dX_{1} +$$

$$+ |Hessf(x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta)|^{q} \int_{\mathbb{R}} e^{i\xi_{3}F_{1}(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, s_{1}, \eta)} \times$$

$$\times a(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta) dX_{1} = I_{1} + I_{2}.$$

Используя соотношение (3.2), можем записать I_1 в форме осцилляторного интеграла с множителем гашения:

$$I_1 = \int_{\mathbb{D}} e^{i\xi_3 F_1(X_1 + x_1(x_2, s_1, \eta), x_2, s_1, \eta)} |X_1| a_1(X_1, x_2, s_1, \eta) dX_1,$$

где $a_1(X_1,x_2,s_1,\eta)=a(X_1+x_1(x_2,s_1,\eta),x_2,\eta)\vartheta(X_1,x_2,s_1,\eta)$ и $|X_1|$ играет роль гасителя. Согласно лемме 2.6 получим неравенство :

$$|I_1| \leqslant \frac{C||a(\cdot, x_2, s_1, \eta) \cdot \vartheta(\cdot, x_2, s_1, \eta)||_V}{|\xi_3|} \leqslant \frac{C_1||a(\cdot, x_2, s_1, \eta) \cdot \vartheta(\cdot, x_2, s_1, \eta)||_V}{|\xi|},$$

поскольку $|\xi_3| \geqslant \frac{1}{\sqrt{3}} |\xi|$ и $C_1 = \sqrt{3}C$.

Теперь рассмотрим следующий одномерный осцилляторный интеграл:

$$I_{2} = |Hessf(x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta)|^{q} \int_{\mathbb{R}} e^{i\xi_{3}F_{1}(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, s_{1}, \eta)} \times a(X_{1} + x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta) dX_{1}.$$

Заметим, что амплитуда последнего осциллирующего интеграла является гладкой функцией с достаточно малым носителем.

Благодаря лемме Морса существуют окрестность $\mathbb{R}_y \times \mathbb{R}_{x_2} \times \mathbb{R}_{s_1} \times U$ начала координат и диффеоморфизм (см. [7], стр. 66, лемма 3.3):

$$(X_1, x_2, s_1, \eta) \mapsto (X_1(y, x_2, s_1, \eta), x_2, s_1, \eta)$$

такой, что фазовая функция $F_1(X_1+x_1(x_2,s_1,\eta),x_2,s_1,\eta)$ приводится к виду

$$F_1(X_1(y, x_2, s_1, \eta) + x_1(x_2, s_1, \eta), x_2, s_1, \eta) = \pm y^2 + F_1(x_1(x_2, s_1, \eta), x_2, s_1, \eta),$$

причем знак перед y^2 совпадает с $sign\left(\frac{\partial^2 f}{\partial x_1^2}(0,0,0)\right)$ и $(X_1(0,\cdot,\cdot,\cdot)\equiv 0$. Таким образом, для осцилляторного интеграла I_2 мы имеем:

$$I_2 = |Hessf(x_1(x_2, s_1, \eta), x_2, \eta)|^q e^{i\xi_3 F_1(x_1(x_2, s_1, \eta), x_2, s_1, \eta)} \times$$

$$\times \int_{\mathbb{R}} e^{\pm i\xi_3 y^2} a(X_1(y, x_2, s_1, \eta) + x_1(x_2, s_1, \eta), x_2, \eta) \frac{\partial X_1(y, x_2, s_1, \eta)}{\partial y} dy.$$

Теперь, используя стандартный метод стационарной фазы [7], получим:

$$I_{2} = |Hessf(x_{1}(x_{2}, s_{1}, \eta), x_{2}, \eta)|^{q} e^{i\xi_{3}F_{1}(x_{1}(x_{2}, s_{1}, \eta), x_{2}, s_{1}, \eta)} \times \left(\sqrt{\frac{2\pi}{\xi_{3}}} e^{\pm isgn(\xi_{3})\frac{\pi}{4}} a(x_{2}, s_{1}, \eta) + O\left(\frac{1}{|\xi_{3}|^{\frac{3}{2}}}\right) \right),$$

где $a(x_2, s_1, \eta) = a(x_1(x_2, s_1, \eta), x_2, \eta) \frac{\partial X_1(0, x_2, s_1, \eta)}{\partial y}$.

В результате, для осцилляторного интеграла $\widehat{\mu}_{a}^{1}(\xi,x_{2})$, имеем:

$$\widehat{\mu}_{q}^{1}(\xi, x_{2}) = \sqrt{\frac{2\pi}{|\xi_{3}|}} e^{i\left(\pm\frac{\pi}{4}sgn(\xi_{3}) + \xi_{3}F_{1}(x_{1}(x_{2}, s_{1}, \eta), x_{2}, s_{1}, \eta)\right)} \times$$

$$\times |Hessf(x_1(x_2, s_1, \eta), x_2, \eta)|^q a(x_2, s_1, \eta) + O\left(\frac{1}{|\xi|}\right),$$

где

$$F_1(x_1(x_2, s_1, \eta), x_2, s_1, \eta) = s_1x_1(x_2, s_1, \eta) + f(x_1(x_2, s_1, \eta), x_2, \eta).$$

Предложение 1 доказано.

Следствие 2. Пусть $f(x_1, x_2, \eta)$ удовлетворяет условиям предложения 1, тогда существует окрестность нуля $V_1 \times U \subset \mathbb{R}^2 \times \mathbb{R}^m$ такая, что для интеграла $\widehat{\mu}_q$ при $q \geqslant 1$ справедливо следующее асимптотическое соотношение:

$$\widehat{\mu}_{q}(\xi) = \sqrt{\frac{2\pi}{|\xi_{3}|}} e^{\frac{\pi}{4}isgn(\frac{\partial^{2}f(0,0,0)}{\partial x_{1}^{2}}\xi_{3})} \times$$

$$\times \int e^{i\xi_{3}(F_{1}(x_{1}(x_{2},s_{1},\eta),x_{2},s_{1})+s_{2}x_{2})} |Hessf(x_{1}(x_{2},s_{1},\eta),x_{2},\eta)|^{q} a(x_{2},s_{1},\eta) dx_{2} +$$

$$+O\left(\frac{1}{|\xi|}\right) (npu |\xi| \to +\infty),$$

где $a(x_2, s_1, \eta) := a(x_1(x_2, s_1, \eta), x_2, \eta)\phi(x_2, s_1, \eta)$, здесь ϕ – некоторая гладкая функция, причем $O\left(\frac{1}{|\xi|}\right)$ равномерно относительно малых параметров (η) .

Следствие 2 непосредственно вытекает из предложения 1.

Следующая лемма доказывается непосредственными вычислениями (см. [15]).

Лемма 3.1. Пусть $F(x_1,x_2,s_1,s_2,\eta)$ гладкая функция, зависящая от параметров (s_1,s_2,η) и $F'_{x_1}(0,0,0,0,0)=0$, $F''_{x_1}(0,0,0,0,0)\neq 0$. Если $x_1=x_1(x_2,s_1,s_2,\eta)$ является гладким решением уравнения $F'_{x_1}(x_1,x_2,s_1,s_2,\eta)=0$, то для второй производной от функции $F(x_1(x_2,s_1,s_2,\eta),x_2,s_1,s_2,\eta)$ относительно x_2 имеет место следующее тождество:

$$\frac{\partial^2 F(x_1(x_2, s_1, s_2, \eta), x_2, s_1, s_2, \eta)}{\partial x_2^2} = \frac{HessF(x_1(x_2, s_1, s_2, \eta), x_2, s_1, s_2, \eta)}{\frac{\partial^2 F(x_1(x_2, s_1, s_2, \eta), x_2, s_1, s_2, \eta)}{\partial x_1^2}}.$$

Так как $HessF_1(x_1, x_2, s_1, \eta) = Hessf(x_1, x_2, \eta)$, то, в силу леммы 3.1, имеем:

$$\frac{\partial^2 F_1(x_1(x_2,s_1,\eta),x_2,s_1)}{\partial x_2^2} = \frac{Hessf(x_1(x_2,s_1,\eta),x_2)}{\frac{\partial^2 f(x_1(x_2,s_1,\eta),x_2,\eta)}{\partial x_1^2}}.$$

Таким образом, достаточно рассмотреть поведение следующего одномерного осцилляторного интеграла с множителем гашения:

$$I_q(\xi_3) = \int e^{i\xi_3(F_1(x_2, s_1, \eta) + x_2 s_2)} \widetilde{a}(x_2, s_1, \eta) |F_1''(x_2, s_1, \eta)|^q dx_2, \tag{3.3}$$

где $\widetilde{a}(x_2,s_1,\eta)=a(x_2,s_1,\eta)|\frac{\partial^2}{\partial x_1^2}f(x_1(x_2,s_1,\eta),x_2)|^q$ и $F_1(x_2,s_1,\eta)$ – аналитическая функция. Если $F_1(x_2,s_1,\eta)$ является полиномом, то в силу теоремы Д.М. Оберлина [2] при $q\geq \frac{1}{2}$ для интеграла (3.3) получим:

$$I_q(\xi_3) = O\left(\frac{1}{|\xi_3|^{\frac{1}{2}}}\right), \text{ (при } |\xi_3| \to \infty).$$

Далее докажем аналог теоремы Д. М. Оберлина для аналитических функций, которая представляет самостоятельный интерес. Так, доказательство основной теоремы 1.2 сводится к задаче об оценке одномерных осцилляторных интегралов с произвольной аналитической фазой, зависящей от параметров, что является более общим результатом. Как показал Д.М. Оберлин [2], для функции класса C^{∞} аналогичное утверждение не имеет место.

4. Доказательство основной теоремы 1.2

Теперь рассмотрим следующий одномерный осцилляторный интеграл:

$$I_q(\xi_3) = \int e^{i\xi_3 F(x_2, \eta)} a(x_2, \eta) |F''(x_2, \eta)|^q dx_2, \tag{4.1}$$

где $F(x_2,\eta)$ — вещественнозначная аналитическая функция в окрестности нуля $W \times U(W \times U \subset \mathbb{R} \times \mathbb{R}^m)$, удовлетворяющая следующим условиям: $F(x_2,\eta) \not\equiv 0, F(0,0) = 0$ и $a(x_2,\eta) \in C_0^\infty(W \times U)$.

Предложение 2. Пусть $F(x_2, \eta)$ – вещественнозначная аналитическая функция в начале координат. Тогда существует окрестность начала координат $W \times U \subset \mathbb{R} \times \mathbb{R}^m$ такая, что для любого вещественного числа $q \geqslant \frac{1}{2}$ справедлива следующая оценка:

$$|I_q(\xi_3)| \leqslant \frac{C||a||_V}{|\xi_3|^{\frac{1}{2}}}.$$

Доказательство. Если функция $F(x_2,\eta)$ удовлетворяет условиям подготовительной теоремы Вейерштрасса [16], т.е. $F(x_2,0)\not\equiv 0$, то получим результат работы [4], ибо в этом случае $F(x_2,0)$ имеет особенность типа A_k . Это условие эквивалентно тому, что $F'_{x_2}(x_2,0)$ в точке $x_2=0$ имеет корень кратности k ($k<\infty$) при условии $F'_{x_2}(0,0)=0$.

Мы рассмотрим случай, когда функция $F(x_2, \eta)$ не удовлетворяет условиям подготовительной теоремы Вейерштрасса [16]. Точнее, случай, когда $F(x_2, 0) \equiv 0$, хотя $F \not\equiv 0$. Отметим, что в этом случае, как показано в классической работе Осгуда, аналог теоремы Вейерштрасса не имеет место (см. [17], §2, стр. 90).

В случае когда $F(x_2, \eta)$ аналитически продолжается во множество $\mathbb{C} \times B$, где $B \subset \mathbb{C}^m$ некоторый шар с центром в начале координат, мы можем использовать лемму 3 работы [12]. Однако, как показывает контрпример Осгуда (см. [17], §2, стр. 90), в общем случае утверждение леммы 3 работы [12] неверно.

Тем не менее мы можем использовать лемму 2.3, так как $F(x_2,\eta)$ – ненулевая вещественнозначная аналитическая функция на множестве $W\times U$ и F(0,0)=0. Тогда, применяя лемму 2.3, построим многообразие Y и собственное аналитическое отображение $\pi:Y\mapsto U$ такие, что функция $F(x_2,\pi(y))$, в локальных координатах, имеет вид

$$F(x_2, \pi(y)) = \varphi_1^{\alpha_1}(y)\varphi_2^{\alpha_2}(y)\dots\varphi_m^{\alpha_m}(y)b(x_2, y)p(x_2, y),$$

где $p(x_2,y)$ – псевдополином и $\varphi(y)$ – локальные координаты. В этом случае для каждой точки $y^0 \in Y$ существуют локальные координаты $(\varphi_1,\ldots,\varphi_m)$ с центром в этой точке и удовлетворяющие условиям $\varphi_j(y^0)=0,\ j=1,\ldots,m$. Мы будем считать $\pi^{-1}(\overline{U})\subset Y$ – некоторое компактное множество на вещественно-аналитическом многообразии Y.

Следовательно, интеграл (4.1) имеет следующий вид:

$$I_q(\xi_3) = \int e^{i\xi_3 F_1(x_2, y)} a(x_2, y) |F_1''(x_2, y)|^q dx_2, \tag{4.2}$$

где $F_1(x_2,y)=\varphi_1^{\alpha_1}(y)\varphi_2^{\alpha_2}(y)\ldots\varphi_m^{\alpha_m}(y)b(x_2,y)p(x_2,y)$ Теперь докажем следующую лемму.

Пемма 4.1. Пусть $F(x_2,\eta)$ – вещественнозначная аналитическая функция на множестве $W \times \pi^{-1}(\overline{U})$. Тогда, для любой точки $y^0 \in \pi^{-1}(\overline{U})$ существует окрестность $\omega\subset\mathbb{R}^m$ такая, что при любом $q\geqslant \frac{1}{2}$, для интеграла $I_q(\xi_3)$ справедлива следующая оцен-

$$|I_q(\xi_3)| \leqslant \frac{C||a(\cdot,y)||_V}{|\xi_3|^{\frac{1}{2}}},$$

где $\omega \subset \mathbb{R}^m$ – соответствующая окрестность начала координат в \mathbb{R}^m .

Доказательство. Далее, используем покрытие множества $\pi^{-1}(\overline{U})$ с конечным числом окрестностей ω_i точек $y^j \in \pi^{-1}(\overline{U})$.

Пусть y^0 — некоторая фиксированная точка в $\pi^{-1}(\overline{U})$. Так как, φ^{α} $(\varphi^{\alpha} = \varphi_1^{\alpha_1}(y)\varphi_2^{\alpha_2}(y)\dots\varphi_m^{\alpha_m}(y))$ ограничена в некоторой окрестности точки y^0 , то функция $F_1(x_2, y)$ имеет вид:

$$F_1(x_2, y) = \varphi^{\alpha} F_2(x_2, y),$$

где $F_2(x_2, y) = b(x_2, y)p(x_2, y)$.

Из леммы 2.3 вытекает, что для каждой точки $y^0 \in Y$ этого многообразия существует координатная окрестность ω такая, что $F_2(x_2,y)$ – вещественнозначная аналитическая функция в точке $(0, y^0)$, и при этом выполняется условие $F_2(x_2, y^0) \not\equiv 0$. Поэтому мы можем применить подготовительную теорему Вейерштрасса к функции $F_2(x_2, y)$.

Заметим, что $arphi^lpha$ ограничено в окресности ω . Используя предложение 2.1 работы [4] и применяя стандартные методы анализа при $q \geqslant \frac{1}{2}$, мы приходим к следующей оценке

$$|I_q(\xi_3)| \leqslant \frac{C}{|\xi_3|^{\frac{1}{2}}}.$$
 (4.3)

Так как, $\pi^{-1}(\overline{U})$ – компактное множество, то, повторяя эти рассуждения для каждого множества ω_i , мы приходим к оценке (4.3). Наконец, эти локальные оценки позволяют получить искомую оценку для $\pi^{-1}(\overline{U})$. Лемма 4.1 доказана.

Так как $\pi: Y \mapsto U$ собственное аналитическое отображение [13], применяя лемму 4.1 с использованием стандартных методов анализа, приходим к доказательству предложения 2. Действительно, согласно лемме 4.1 для каждой точки $y^0 \in \pi^{-1}(\overline{U})$ существует координатная окрестность V с центром в точке y^0 такая, что $F(x_2, \pi(y))$ записывается в виде

$$F(x_2, \pi(y)) = \varphi_1^{\alpha_1}(y)\varphi_2^{\alpha_2}(y)\dots\varphi_m^{\alpha_m}(y)b(x_2, y)p(x_2, y),$$

где $b(x_2,y)$ – вещественно-аналитическая функция, причем $b(x_2,y) \neq 0$ для любой точки $(x_2,y) \in W \times \omega$ и $p(x_2,y)$ – унитарный псевдополином.

Таким образом, имеем необходимую оценку при $(x_2, y) \in W \times \omega$. Так как $\pi^{-1}(\overline{U})$ компактное множество, то существуют конечное покрытие $\pi^{-1}(\overline{U}) \subset \bigcup_{j=1}^N \omega_j$ и окрестность нуля W_j такие, что в $W_j \times \omega_j$ мы имеем также искомую оценку. Наконец, переобозначая $W := \bigcap_{j=1}^N W_j \neq \varnothing$, получим искомую оценку в $W \times U$, что доказывает предложение 2. \square

Предложение 2 завершает доказательство теоремы 1.2.

В заключении автор выражает глубокую благодарность рецензенту за ценные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. C. D.Sogge, E. M.Stein Averages of functions over hypersurfaces in \mathbb{R}^n // Invent. Math. 1985. 82:3. P. 543–556.
- 2. D.M. Oberlin Oscillatory integrals with polynomial phase // MATH.SCAND. 1991. 69:1, P. 45–56.
- 3. Арнольд В.И., Варченко А.Н., Гусейн Заде С.М. Особенности дифференцируемых отображений. Част І. 1982. М.: Наука).
- 4. Sh.A. Muranov On estimates for oscillatory integrals with damping factor // Uzbek Mathematical Journal. 2018. 4. P. 112–125.
- 5. Икромов И.А., Муранов Ш.А. *Об оценках осцилляторных интегралов с множителем гашения* // Математические заметки. **104**:2. 2018. С. 236–251.
- 6. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия Методы и приложения Том I, М.: Эдиториал УРСС. 1998.
- 7. Федорюк М.В. Метод перевала.М.: Наука. 1977.
- 8. E.M. Stein Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory integrals, Princeton University Press Princeton, New Jersey. 1993.
- 9. G.I. Arkhipov, A.A. Karatsuba and V.N. Chubarikov *Trigonometric integrals* // Izv. Akad. Nauk SSSR Ser. Mat, **43**:5, 971–1003 (1979). 1197 (Russian); English translation in Math. USSR-Izv.15, 21–239 (1980).
- 10. J.G. VanDer Corput Zahlentheoretische Abschätzungen // Math. Ann. 1921. 84. P. 53-79.
- 11. Икромов И.А. Демпфированные осцилляторные интегралы и максимальные операторы // Математические заметки. **78**:6. 2005. С. 833–852.
- 12. Садуллаев А.С. Критерии алгебраичности аналитических множеств // Функц. анализ и его прил. 1972. **6**:1. С. 85–86.
- 13. Edward Bierstone, Pierre D. Milman Arc-analytic functions Invent. math. 101. 1990. P. 411–424.
- 14. Эрдейи А. Асимптотические разложения. 1962. М.: Физматгиз.
- 15. I.A. Ikromov, D. Müller, M. Kempe Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces // Duke Math.J. 2005. **126**:3. P. 471–490.
- 16. Мальгранж Б. Идеалы дифференцируемых функций. 1968. М.: Мир.
- 17. W. Osgood Lehrbuch der Funktionentheorie, Bd.II, Teubner, Leipzig. 1929.

Шахриддин Абдуллаевич Муранов,

Самаркандский государственный университет,

Университетский бульвар, 15,

140104, г. Самарканд, Узбекистан

E-mail: muranov-2017@mail.ru