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CLASSIFICATION OF A SUBCLASS
OF QUASILINEAR TWO-DIMENSIONAL LATTICES
BY MEANS OF CHARACTERISTIC ALGEBRAS

M.N. KUZNETSOVA

Abstract. We consider a classification problem of integrable cases of the Toda type two-
dimensional lattices un gy = f(Un+1, Un, Un—1, Unz, Uny). The function f = f(x1,x9,- - x5)
is assumed to be analytic in a domain D C C°. The sought function w, = u,(z,y) depends
on real x, y and integer n. Equations with three independent variables are complicated
objects for study and especially for classification. It is commonly accepted that for a given
equation, the existence of a large class of integrable reductions indicates integrability. Our
classification algorithm is based on this observation. We say that a constraint uy = ¢(z,y)
defines a degenerate cutting off condition for the lattice if it divides this lattice into two
independent semi-infinite lattices defined on the intervals —oco < n < 0 and 0 < n <
400, respectively. We call a lattice integrable if there exist cutting off boundary conditions
allowing us to reduce the lattice to an infinite number of hyperbolic type systems integrable
in the sense of Darboux. Namely, we require that lattice is reduced to a finite system of
such kind by imposing degenerate cutting off conditions at two different points n = Ny,
n = N for arbitrary pair of integers N1, No. Recall that a system of hyperbolic equations
is called Darboux integrable if it admits a complete set of integrals in both characteristic
directions. An effective criterion of the Darboux integrability of the system is connected
with properties of an associated algebraic structures. More precisely, the characteristic Lie-
Rinehart algebras assigned to both characteristic directions have to be of a finite dimension.
Since the obtained hyperbolic system is of a very specific form, the characteristic algebras
are effectively studied. Here we focus on a subclass of quasilinear lattices of the form

Unp,zy = p(un—la Un, un-l—l)un,x + T(un—la Unp, un-l—l)un,y + Q(Un—la Un, un-l—l)-

Keywords: two-dimensional lattice, integrable reduction, characteristic Lie algebra,
degenerate cutting off condition, Darboux integrable system, x-integral.

Mathematics Subject Classification: 37K10, 37K30, 37D99

1. INTRODUCTION
The problem of classifying integrable two-dimensional chains of the form
Un,zy = f(un+1:un>unfla un,:wun,y)a —00 <N <00, (11)

is topical and currently remains open. The function f = f(zq,%2,--x5) is assumed to be
analytic in a domain D C C°, and the sought function u, = u,(z,y) depends on real z, y and
integer n.

In this paper we focus on the following subclass of quasilinear lattices :

un,xy = p(unJrl; Up, unfl)un,:p + T(Un+1, Up, unfl)un,y + Q(un+1> Up, unfl)y —0o0 < n < 00.
(1.2)
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Here functions p(x1, xe, x3), 7(x1, 2, x3), q(x1, 2, x3) are assumed to be analytic in a domain
D c ¢

Equations with three independent variables are complicated objects for study and
especially for classification. Currently, there are different approaches to studying integrable
multidimensional equations [I]-[I0]. The presence of a wide class of integrable reductions
indicates the integrability of the equation. This fact is often used in the study of
multidimensional equations, see [I, 2, 3], where the existence of integrable reductions of a
hydrodynamic type is taken to determine the integrability. Here we use a similar idea by treating
integrability as the presence of an infinite sequence of Darboux integrable hyperbolic systems.

In describing Darboux integrable systems of hyperbolic equations of a special type, the
concept of the characteristic Lie algebra [11], [12] 3] was used a lot. The transition to a more
general characteristic Lie-Rinehart algebra opens up new possibilities [14]-[1§].

The characteristic Lie algebra for two-dimensional lattices was introduced in [19]. Namely,
the structure of this algebra was described for two-dimensional Toda lattice. It was observed in
paper [16] that any integrable lattice of the form admits a so-called degenerate cutting off
boundary conditions. When such kind boundary conditions are imposed at two different points
n = N7 and n = Ny, the lattice reduces to a Darboux integrable system of the hyperbolic type
equations. In our works [16], [17], [18], we suggested and developed a classification algorithm
based on this observation. Let us briefly discuss the essence of the method.

We say that a constraint

uy = p(r,y)

defines a degenerate cutting off condition for lattice ((1.1)) if it divides (1.1)) into two independent
semi-infinite lattices defined on the intervals —oo <n < 0 and 0 < n < 400, respectively.

Definition 1.1. Lattice (1.1)) is called integrable if there exist functions o1 and @y such that
for any pair of integers N1, No, where Ny < Ny — 1, the hyperbolic system

Un, = ‘Pl(%iy),
Un,ay = f(un—i-la Upy Up—1, Un,z, un,y), N1 <n < Ny,
UNy, = 902(‘1'7 y)

obtained from lattice (1.1)) by imposing degenerate boundary conditions is integrable in the sense
of Darbouz.

Recall that a system of hyperbolic equations is called Darboux integrable if it admits a
complete set of integrals in both characteristic directions, see [14], [15]. An effective criterion of
the Darboux integrability of the system is connected with properties of an associated algebraic
structures. More precisely, the characteristic Lie-Rinehart algebras |20 21| assigned to both
characteristic directions have to be of a finite dimension. Since the obtained hyperbolic system
is of a very specific form, this allows us to study effectively the characteristic algebras. The
method was shown to be effective in our articles [I7], [I8]. A large class of the integrable
lattices of form was represented in [22], where they were studied in the framework of
the symmetry approach. It is remarkable that all equations of this class turned out to be
integrable in the sense of Definition [I.I} Another argument in favor of our definition is that the
resulting hyperbolic systems admit explicit solutions, which are extended to solutions of the
original nonlinear chain. So, the chains integrable in our sense have a very wide class of explicit
solutions.

In this article we continue the study initiated in [I7], [I8], where the integrable in the sense
of Definition cases of the two-dimensional quasilinear lattices of the form

Un,zy = OpUn zUn.y + Pnln g + TnUn,y + Gn, (13)
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were described under the non-degeneracy condition 830‘11 # 0. Here the coefficients depend on

three successive variables
Qp = a(uTL+17 U,y un—l)u Pn = p(un+17 U, un—l);
o = T(Uns1, Un, Un—1), G = q(Unt1, Un, Un—1).-
We mention review [23], where a complete classification of lattices of the form

of of

au'rH— 1 aun—«—l

Up,zx = f(uTLfl) Up,y Up+1, un,m)> 7é 07
was presented. In our paper [I§], we found two new equations of form , which were
integrable in the sense of Definition We note that these equations were two-dimensional
generalizations of the equations from the list in paper [23].

Now we focus on a particular case of lattice , as «, vanishes identically. We suppose
that the following conditions are satisfied: at least one of the following derivatives is non-zero:

or, or,
1.4
aun+1 ;é O or au”il ;é 07 ( )
s 40 or o £0. (1.5)

The main result of this paper is as follows.

Theorem 1.1. If chain (1.2)), (1.4) is integrable in the sense of Definition[1.1] then by point

transformations it is reduced to one of the following forms:
Unay = (€717 = T Yt (1.6)
Unazy = (_un+1 + 2up, — Unfl)un,y- (17)

Lattices (1.6), (L.7) were known before [22]. Condition implies that lattices obtained
under classification procedure coincide with these lattices up to the change = < y.

In the next section we describe briefly a theoretical base of the main research method; a
detailed explanation was presented in [17, [18].

2. PRELIMINARIES

According Definition , there exist cutting off conditions at two points that reduce (1.2)) to
the finite hyperbolic type system:

U-1 = Y1,
Un,zy = Pnlnz + TnUny + Gn, 0 <n < N, (21)
UN+1 = P2.

Here Pn = p(unfla Unp, un+1); Tn = 7ﬂ(“nfla Up, un+1)> qn = Q(unfb Unp, unJrl)-

We recall that a hyperbolic system of partial differential equations is integrable in the
sense of Darboux if it admits a complete set of functionally independent x- and y-integrals (see
[14]). A function I depending on finitely many dynamical variables u, u,, u,,,... is called y-
integral if it solves the equation D, = 0 (see [I4]), where D, is the operator of total derivative
with respect to variable y and u is a vector with coordinates ug, uy, ..., uy. Since system ([2.1))
is autonomous, we consider autonomous y-integrals depending at least on one of the dynamical
variables u, u,, U, .. ..

We suppose that system (2.1]) is Darboux integrable and denote by I(u,u,, ...) its nontrivial
y-integral. By definition, I solves the equation D,/ = 0. Let us calculate an action of the
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operator D, on functions of the form I(u,u,,...). It is determined by the rule D,/ = Y1,
where

N
) 0 )
Y = o _ AR
;(M o TG Tl )

1,2

Here f; = pju;, + riu;, + ¢; is the right hand side of lattice (1.2). Therefore, the function /
satisfies the equation YI = 0. Coefficients of the equation Y'I = 0 depend on the variables u; ,,
whereas a solution [/ is independent of wu;,. Hence, I satisfies the system of linear equations:

YI=0, X;J=0, j=0,...,N, (2.2)
where X; = 2. It follows from (2.2) that the commutator ¥; = [X;, Y] = X;Y — Y X; of

Ougy
operators Y and X;, i = 0,1,..., N also annihilates I. In the case of lattice (1.2]) operator YV
can be represented as:

N
Y =) w,Yi+R, (2.3)
=0
where Y; and R are defined as
0 0 0
Yy =2+ Xi(f) 5 + Xi(Dafi) 5 + -
g0, T Xilf) u, (Dafi) Tuims
0 0 0
- , D.(r: 2 e
8ui tTi 8Ui7x * ( x(rl) + i ) (9ul-7m + (24)
Y ) 0
R = Z(uzmpz + Qz)a— + (Da(wiwpi + @) + (wiaps + Qz)rz)au— +o
i=0 LT 2T
Let F be a ring of locally analytical functions of the dynamical variables u, u,, u,;,.... We

consider the Lie-Rinehart algebra L(y, N) over the ring F generated by differential operators
Y, Yy, Y1, ..., Y. We call this algebra the characteristic Lie algebra of system along the
y-direction. We shall show that we can multiply the elements in the algebra by functions
depending on finitely many dynamical variables; this fact distinguishes our algebra from an
ordinary Lie algebra. The characteristic Lie algebra of system along the z-direction is
defined in the same way.

Now we shall work with the operators in the algebra L(y, N). Algebra L(y,N) is of a
finite dimension if there exist a finite basis 2, Zs,..., Z; consisting of linearly independent
operators such that each element Z € L(y,N) is represented as a linear combination
Z = a14y + asZs + ...+ apZy, where the coefficients aq, as, ..., a, are analytic functions
depending on  the  dynamical  variables defined in an open  domain.
Then the identity a14; + asZs + ... + axZr = 0 implies that a1 = ay = ... = ap = 0.
System ([2.1)) is integrable in the sense of Darboux if and only if the characteristic Lie algebras
in both directions are of a finite dimension [14].

In our study, we shall apply the operator D, to smooth functions depending on the dynamical
variables u,u;,u;.,.... On this class of functions, we obtain the following commutation
relations for the operators Y;, R:

D, Yi] = —riY;, (2.5)
N
1=0

The following statement holds [13], 19} [14]:
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Lemma 2.1. If a vector field

solves the equation [D,, Z] =0, then Z = 0.

We shall also use the standard notation adx(2) := [X, Z].
The key method, on which the classification algorithm is based, is a test sequence method.
We call a sequence of operators Wy, Wi, W, ... in the algebra L(y, N) a test sequence if

(D, W] Zw]m

holds true for all m. The test sequence allows us to derive integrability conditions for hyperbolic

type system (2.1)), see [24, [14, [15].
The first step of our study is to define the functions p,,, r,. Let us note that when we search

the function r,, we study the subalgebra Lie generated by the operators Y;, see . It follows

from (2.3 . . - ) that this subalgebra coincides with the Lie algebra of a hyperbolic type
system corresponding the lattice

Un,zy = Tn(“n—l—l; Up, un—l)un,y- (26)
The following statement holds true for this lattice.

Lemma 2.2. [f lattice (2.6)) is integrable in the sense of Definition then it us reduced by
point transformations to one of the following forms:

Up,zy = (e“”_“”*l — e“"“_“”)unvy, (2.7)
Up gy = (—Un+1 + 2u, — un,l)umy.
Proof of Lemma is given in Section 3.
Remark 2.1. If the function r,, depends only on the variable u,, that is r, = r,(u,), then
Ve, Y;] =0

for all k, j and system (2.6) splits into the system of independent equations tp zy = T (Up)Un,y-
This system has integrals in the direction we consider. We mention that a wide class of scalar
equations of the form u, , = f(u, uy, u,) was studied in [14] within the characteristic Lie algebras
approach. But the case r, = r,(un) or p, = pn(uy,) holds for lattice (1.2)) and is to be studied,
see Section 4.

3. INTEGRABILITY CONDITIONS

3.1. The first test sequence. Let us define a sequence of operators in the characteristic
algebra L(y, N) by the reccurent formula:

Yo, Y1, le[Yo,Yﬂ, WQZ[YOan]? Wk+1:[YOaWk}a (3.1)

The following commutation relations are valid for the first elements of the sequence (3.1)), see

formula (2.5)):

{Draif()] - _TO}/EM [Dz,Yﬂ - _lei' (32)
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By using the Jacobi identity we get the formulae
(Do, Wh] = —(r1 +10)W1 — Yo(r1)Y1 + Y1(r0) Yo, (3.3)
[Dy, W] = —(r1 + 2rg)Wa — Yo(2r1 4 ro) Wi — Y (r1) Y1 + YoYi(ro) Yo,
[DI, Wg] = — (7’1 + 37’0)W3 - %(37”1 + 37’0)W2 - %2(37’1 + To)Wl

3 2 (3.5)
— Y5 (ri)Y1 + Y5 Yi(ro) Yo,
[Dy, Wy = — (11 + 4r0) Wy — Yo(4r1 + 6r)Ws — Y (611 + 4rg)Wo (3.6)
— Y5 (4ry 4 o)Wy =Yg (1) Y + Y'Y (r1) Yo '
It can be proved by induction that is a test sequence. Moreover, for k > 4
[Dy, Wi| = ap Wi, + bp Wiy + sgWi—o + 4 Wig + - -+, (3.7)
where
k— k?
ar = —(r1 + kro), br = 5 Yo(ro) — Yo(r1)k, (3.8)

1
sp=—Y7(3r + 1) + §(k —3)Yo(g5 + qi-1),

. 1
tk; = —5/03(47"1 + 7’0) + 5(]? — 4)%(84 + Skfl).

By assumption, in the algebra L£(y, N) there are finitely many linearly independent elements
of sequence (3.1)). Therefore, there exists M such that

Wy = \Wy_q1+---, (3.9)
the operators Yy, Yy, Wy, ..., Wy_1 are linearly independent, the dots stand for a linear
combination of the operators Yy, Y, Wi, ..., Wy _o.

Let us consider the first three elements.

Lemma 3.1. If condition (1.4)) holds, then the operators Yy, Y1, W1 are linear independent.
Otherwise, if ro = ro(ug) depends only on the variable ugy, then Wy = 0.

Zokxasameavcmeo. Let rg depend on at least one of the variables u_q, u;. We are going to prove
that Yy, Yy, W, are linear independent in this case. We argue by contradiction assuming that

MW+ Y1 + peYo = 0.
The operators Yy, Y7 are of the form
0 0

Yo=—+---, Yi=—+---,
0 3u0 ! aul
while W) contains terms of the form % and %. Hence, the coefficients puq, pp are equal to

zero. If A\ # 0, then Wy = 0. We apply the operator adp, to both sides of the last identity,
then by virtue of (3.2) we obtain the equation

Y0(7”1)Y1 - Yl(ro)Yo = 0.

It implies that Yy(ry1) = r14, = 0 and Yi(r¢) = 7o, = 0. This is equivalent to 7o, , = 0,
rou, = 0 and we arrive at a contradiction to condition ([1.4]).
By direct calculation of the operator

Wi = [Yo, V1] = oY1 — V1Yo
and using formula (2.4), we prove the second part of the lemma. The proof is complete. O
In what follows we assume that M > 2 and condition (|1.4]) holds.
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Lemma 3.2. If relation (3.9)) holds true for M > 2, then the function ry has one of the
following forms:
i) if A\=0, then

ro(u, ug, u—1) = a(u_y) — alug) + 6(uq); (3.10)

i) if X # 0, then

2

ro(uy, uo, u—y) = Blu_y)e” T 4 ah(ug, uy), (3.11)
where functions B and ¢ satisfy the equation
1 __2
Ap(ug, ur) + S M(M — 1)thuy (uo, ur) + Me M“E"“Aulﬂl(uo) = 0. (3.12)

2

oxasameavcmeo. We apply the operator adp, to both sides of identity (3.9). Combining the
coefficients before Wj;_1, we get the equation:

Dm<)\) = )\(CLM - CLM,1) + bM (313)
We substitute formulae (3.8)) into (3.13)):

M(M —1
Da:(/\) = —7"0)\ — %’FO’UO - Mrl,u()' (314)
From identity (3.14) it follows that A is a constant and
M(M —1
7’0)\ + %TO,UO + Mrl,uo =0. (315)
Let us apply the operator 8%2 to (3.15)):
]\47“1@0“2 = 0
This is equivalent to 79, ,,, = 0 and, hence,
ro(u1, g, u_1) = p(u_1,u) + ¥ (ug, ur). (3.16)
We substitute function (3.15)) into (3.14))
M(M -1
)\SO’U,—I + ( 9 )quou_1 = 0. (317)
We consider two different cases:
i) A=0;
ii) A # 0.

If i) holds, then ¢,.,_, = 0, so that (u_1,up) = a(u_1) + B(ug) and

ro(u1, ug, u_1) = a(u_1) + B(ug) + ¥ (ug, ur).
We re-denote 5+ ¢ — ¢ and we get

ro(ur, uo, u—1) = a(u_1) + ¥ (ug, uy). (3.18)
We substitute (3.18)) and A\ = 0 into (3.15):

M(M -1

%@ZJUO(UQ, Ul) + Ma’(uo) = 0. (319)

Applying the operator 6%1 to identity (3.19)), we obtain t,,,, = 0 and, hence,

¥ (uo, ur) = y(uo) + 0(ur).
We substitute 1 into (3.19) and we find

Y(uo) = —
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and, then

ro(U1, ug, u—1) = a(u—y) — aug) + 6(uq).

M —1
Let us consider case ii). Solution of equation is the function
o(u_1,up) = a(ug) + e_m’\uoﬁ(u_l).
Then function becomes
ro(uy, ug, u_1) = a(ug) + e_mkuoﬁ(u_l) + 1 (ug, uy).
We redenote a + ¢ — ¢ and we get
ro(uy, ug, u_1) = e_m’\uoﬁ(u,l) + Y (ug, u).

Substituting ry into (3.15)), we obtain (3.12]). The proof is complete. O

3.2. Second test sequence. We construct the test sequence containing operators Yy, Y7, Y5
and their multiple commutators:

ZOZY()a ZIZYia 22:}/27 Z3:D/17)/0]7 Z4:D/27}/1]7
Z5:D/27Z3]7 ZGZ[Yi723]7 Z7:D/1724}7 ZSZD/I725]-

The elements Z,,, m > 8 are defined by the recurrent formula Z,, = [Y1, Z,,_3].
The following commutation relations hold:

(D, Yol = —10Yy,  [Do,Yi] = =Y, [Dg, Y] = =15, (3.20)
[Dy, Z3] = —(r1 +10) Z3 + Yo(r1) Y1 — Yi(r0) Yo, (3.21)
[Dy, Zy| = —(ra+11)Zs + Yi(r2)Ya — Yo (r1) Y7, (3.22)
(D, Zs) = — (ro + 11 +12)Z5 — Ya(r1 +10) Z3 + Yo(11) Z4 (3.23)
+ Yo Yy (1) Y1 — YaY1(ro) Yo, '

(D, Zs) = —(ro + 2r1) Zs — Y1(2rg +11) Z3 + Y1 Yo (r1) Y1 — Y{(ro) Yo,

[Da, Z7) = —(2r1 + 12) Z7 — Yi(r1 + 2r9) Zy + Y (19) Yo — Y1 Ya(r1) Y4,

(D, Zs| = — (ro + 2r1 + 1r9) Zs + Yo(r1) Z7 — Ya(ro +r1) Z — Yi(ro +r1 4+ 12) Z5 (3.24)

+ Y1Yo(r1)Zs — Y1Ya(r1) Zs + Y1YaYo(r1) Y1 — Y1YaYi(rg)Yo.

We recall that we assume condition (L.4), otherwise, starting with Zs, all elements of the
sequence vanish.

Lemma 3.3. The operators Zy, Z1, ..., Zs are linearly independent.

Joxazameavcmeo. 1t is easy to show that the operators 2y, 21, ..., Z4 are linearly independent;
this is similar to the proof of Lemma We prove Lemma [3.3] by arguing by contradiction.
We suppose that

Zs =Y \Z;. (3.25)
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We apply the operator adp, to both sides of identity (3.25), and we use formulae (3.21)—(3.23))
to simplify the obtained identity:

4
—(ro+r1+r2) Z NiZ; 4 Yo(r1)Zy — Ya(r1) Zs + YaYo(r1) Y1 — YaYi(ro) Yy
7=0
4
=" Do) Z; 4+ Ma(—(ra + 1) Zy + Yi(ra)Ys — Ya(r)Y)) (3.26)
j=0

+ /\3(—(7‘1 +19)Z3 + Yo(r1)Y1 — Y1(7“0)Y0)
— XY — 2 — A\ Y] — AroYo.
Combining the coefficients at Z, in (3.26]), we get the equation:
Dy(Ay) = —1oAg + 71 u-
This identity implies that A4 is a constant and
— ToAg + T4y = 0. (3.27)

We shall study this equation in two different cases i) and ii):
i) If 7o is defined by formula (3.10)), then (3.27) casts into the form

- (oz(u_l) — MQ_ 1a(u0) + 5(u1)> Ay + o (ug) = 0. (3.28)

If Ay # 0, then (3.28) implies that functions «, d are constants since the variables uy, ug, u_1
are independent. Then we get that r( is a constant that contradicts condition (1.4). If A, = 0,
then it follows from (3.28) that o/(uy) = 0 and

T0<U1,U0,U_1> == 5(U1) (329)
ii) If 7o is defined by (3.11]), then identity (3.27) becomes
— (Bluy)e WO 4+ 4p(ug, w) ) Ay + B (ug)e” TN =0, (3.30)

We apply the operator % to (3.30):

ﬁl(u—l)eim/\w& = 0.

If Ay = 0, then it follows from (3.30) that 5'(ug) = 0 and, hence, 8 = ¢4, where ¢, is a constant.
If Ay # 0, then it follows from (3.30) that

2
B(u—1)e MAT=DXuo 4 ah(ug, u1) = 0.

The expression in the left hand side of the last identity coincides exactly with 7o (uq, ug, u_1).
Therefore, the last identity contradicts condition (1.4)).
Thus, we obtain that Ay = 0 and r( is defined by the formula

ro(ur, ug, U—1) = 046_1”“3“1)/\”O + Y(ug, up). (3.31)

We collect the coefficients at Z3 in (3.26)), take into consideration that A, = 0, and we obtain
the equation

D.(A\3) = —rods — 11 4,-
Hence, A3 is a constant, and
7“2)\3 + 7’1,U2 = 0.
Applying the shift operator, we get the equation

T1A3 + 704, = 0. (3.32)



CLASSIFICATION OF A SUBCLASS OF QUASILINEAR TWO-DIMENSIONAL LATTICES ... 119

i) Let us substitute the function ry defined by formula (3.29)) into (3.32):
6(u2))\3 + 6/(U1) = 0.

A simple analysis of the last equation gives the contradiction to condition (I.4)).
ii) Let us substitute the function ry defined by formula (3.31]) into (3.32)):

<C4€_ M(J\?ffl))\u1 + @b(ul, UQ)) A3 + wul (Uo, ul) =0. (333)

We apply the operator 8%2 to both sides of identity Py, (U1, u2) A3 = 0. Studying
in this case, we arrive to contradiction to condition (1.4)).

Otherwise, if A3 # 0, then the expression in the left hand side of identity (3.33)), coinciding
with 7y, is equal to zero. Thus, we obtain the contradiction to condition he proof is
complete. O

For further purposes, it is convenient to divide sequence (3.26)) into three subsequences {Zs,, },
{ZBm+1}7 {ZBm—i-Z}
Lemma 3.4. Operator adp_ acts on sequence (3.26) according the following formulae:

m—m2

Dy, Zsy| = — (10 + miy) Zs,y, + ( Yi(ry) — mYl(ﬁJ)) Zam—g + -,

m—m2

Dy, Zsms1] = —(re + mry) Zgmyr + ( 5 Yi(r) — mYl(rg)) Lym—o + -+,
(D, Zsmya) = —(ro +mri +72) Zsmiz + Yo(r1) Zamir — Y2(r1) Zsm
— (m = 1) (FYa(r) + Yi(ro +72)) Zogps + -+
Lemma [3.4] can be easily proved by induction.
Theorem 3.1. Assume that Zsjo is a linear combination
Z3jtr2 = Mo Z3kg1 + Lk + Vi Lgp—1 + - - (3.34)

of the previous terms in sequence (3.26) and none of the operators Zsj o for j < k is a linear

combination of operators Z with s < 3j + 2. Then the coefficient v, satisfies the equation

k(k—1)
2

Lemma 3.5. Suppose that the assumptions of Theorem are satisfied and the operator
Zsk. (the operator Zsy 1) is linearly expressed in terms of the operators Z;, i < 3k. Then in this
decomposition the coefficient at Zs,_1 vanishes.

D,(vy) = —rivg — Yi(r) — (B — 1)Yi(ro + 72). (3.35)

okasameavemeo. We argue by contradiction. Suppose that
ng - )\ngfl + - (336)

and A\ # 0. We apply the operator adp, to both sides of identity (3.36]). Using formulae from
Lemma [3.4] we get

—(TO + k?’f‘l)/\ng_l + o= Dz(/\)ZZSk—l — )\(7’0 —+ (]{7 — ].)7’1 —+ T’Q)ng_l “+ .-
Collecting coefficients at Z3;_1, we obtain
Dx()\) = )\(7"2 — Tl)k.

This equation implies that A is a constant and A(ry — r1)k = 0. Then ry = r; = const that
contradictions condition (1.4). The proof is complete. O
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In order to prove Theorem [3.1] we apply the operator adp, to both sides of the identity (3.34).
Then we simplify a obtained identity using formulae from Lemma Collecting coefficients
at Z3p_1, we obtain equation (3.35)).

The next step of our work is studying equation as 1o is defined by formulae or
(3.11)) under condition and for M > 2, k > 2.

We find exact values of coefficients in equation (3.35) and substitute them into (3.35):

k(k—1
D:p(Vk) = —T"lVr — %Tl,ul — (k — 1)(7’0#1 + 702#1)'
This equation implies that v, is a constant and, hence,
k(k—1
Ve + %rm 4 (k= 1)(rom, + o) = 0. (3.37)

Lemma 3.6. If relations (3.9), (3.34)) hold true for some M > 2, k > 2, and condition (1.4)
holds true, then
i)if A=0, vy =0, then

2 k
Tn(un-l-launvun—l) = a(un—l) T 1@(%) + (M — 1 1) a(un-i-l) + (3-38)
i) if A £0, g =0, k=2, M #3, then
o (Upg1, U, U1 ) = €U~ MUn=1 1 cetinsr=hun, (3.39)

iii) if N # 0, v, # 0, then r, is defined by formula (3.39)).

The proof of this lemma is rather complicated and is presented in Appendix.

We proceed to relations (3.9)), (3.34).

We need another one test sequence:
Yoo Yio Wi=[VYal, Wa= [, Wi = Vi) ...
The following commutation relation hold:
[De, Wi = —(r1 +10) W1 + Yo(r1) Y1 — Yi(ro) Yo, (3.40)
[Dy,Ws] = —(2r1 + 1o)Ws — Yi(r1 + 2ro) W1 + V1Yo (r1)Y: — Y{(ro)Yo, (3.41)
[Dy, W5] = — (3r + ro) W3 — Y1(3r1 + 3r9)Wa — Y{(r1 + 3rg) W,

) 5 (3.42)
+ Y Yo(r)Y1 — Y7 (o) Yo,
(Do, Wy =— (471 + 10) W4 — Yi(6r1 + dro) W5 — Y7 (411 + 6r9) W (3.43)
— YP(r1 +4rg) W1 + Y2Yo(r)Y: — Y (o) Yo. .
It is easy to prove that
(Do, W] =@ Wi + bWyt +5iWho + -+, (3.44)

for k > 3, where

k — k?

ay = —(k?T‘l + 7"0), Z_)k; = Yi(rl) - Yi(?“o)k,

1
Sk = —YE(ry 4 3r0) + 5 (k = 3)Yi(@s + T ).

We observe that the first terms Yj, Y;, W7 = —W; obey Lemma
We suppose that L(y,N) is finitely-dimensional, that is, each sequence of its elements
terminates at some step. Consequently, there exists IV such that:

Wy=AWnx_1+--, (3.45)

where the operators Yy, Yi, W1, ..., WN_l_are linearly independent, and the dots stand for
linear combination of the operators Yy, Yi, Wy, ..., Wy _o.



CLASSIFICATION OF A SUBCLASS OF QUASILINEAR TWO-DIMENSIONAL LATTICES ... 121

3.3. Case M = 2. Suppose that relation holds true for M = 2:
Wy = AW, + €Y1 + nY,. (3.46)
We apply the operator adp, to both sides of identity and we get:
—(r1 =+ 2r0) (AW + €Y1 + nYy) — Yo(2r1 + 1) Wy — Y (r1) Y1 + YoYi(ro) Yo
= >\(—(7”1 + 1)W1 — Yo(r1)Y1 + Y1(7”0)Y0) —er Y1 — nroYo.

Collecting the coefficients at independent operators Wy, Y7, Yy, we obtain the system

7“0)\ + 2T1,U0 + 7"07“0 = O, (347)
270 + T'1uguy — AM1ue = 0, (3.48)
—(r1 +70)0 + Tougus — Ao, = 0. (3.49)

3.3.1) Let us consider the case when thefunction r, is described by formula (3.38) and A =

0. We substitute function (3.38) and A = 0 into system (3.47)—(3.49). Then equation ([3.47))
becomes identity and we arrive to the system:

d*a(ug)
du?
(a(uo) + 2a(ur) — (k — Da(us) + 2¢1 + a(u—y) + (k — )ev(uy))n = 0.
This system yields that

2(o(uy) = 2a(ug) + (k — 1)a(ur) + ¢1)e + =0,

e=n=0, a(ug) = Crug + Cy,
ro(u1, up, u—1) = (k — 1)Cruy — 2C ug + Cru—_y + Cs,

where C3 = —2C5+kCs+c¢,. We will study the lattice corresponding to this function, in Section
3.5.1, see (3.62)).
3.3.ii) Let us consider the case when the function r,, is described by formula (3.39) and A # 0.

System (3.47)—(3.49) casts into the form:
(A + D)eo=mu=1 4 (—ch + Ac — 2h)e"r 0 = 0,
2ee0™Mu=1 4 (2ec 4 h% 4 Ah)e" M0 = 0,
—petomhu-t 4 (—n — e — ch — Ae)e" M0 — peet2mhm =,

A simple analysis of the last system leads us to the identities A\ = -1, h=1,c=—1,e =n = 0.
We get that r,, has the following form:

T (Ung1, Up,y Up—q) = €47 4n—t — glnt1™un, (3.50)
And Wy = —W,p, Wy = W,
Now let us substitute (3.50)) into (3.37)):
(yk + %l& — %k + 1) e 4 (—uk + %kQ - gk + 1) e"? ! = (),
which implies v, = 0, k = 2.
Thus, relation is of the form
7y =ply+0Zs+ 175+ ¢Z1 + 720, (3.51)
and
Zg = [Yh [Yl,yo]] = WQ = Wl = thyb} = Zs,
Zy = [, [Ya, Yi]] = Dy, [Yo, Y1, Yo]] = =D, W2 = D, W1 = —Z,.
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Commutation relation (3.24]) become
[DI, Zg] = — (7’0 + 27‘1 + T’Q)Zg — }/1(7”0 + ™ + 7‘2)25 + (}/1}/0(7’1) — Yo(Tl))Z4
- (Yz(ro +71) + Y1Y2(7°1))Zs + 1YYy (1) Y1 — Y1Y5Y1(ro)Yo.

We apply the operator adp, to both sides of identity (3.51) and take into consideration the
formulae (3.20)—(3.23)), (3.52)), then we collect coefficients at independent operators Z,, Z3, Zo,
Zy, Zy:

(3.52)

—eTM)p =0, (—e®T 4 eMT)g =0,

eloTi=l p @1TH0 _ et T T pet2 T = ()

ol — T2 — pet2TH  gettTH0 = ().

217U — et2THL _ BT ) gt = (),

It is clear that p =0 =7 = ¢ =7 = 0. Hence, Zs = 0.

3.4. Case M = 3. Suppose that relation holds true for M = 3:

W3 = AWs + pWy + €Y 4+ nY. (3.53)

We apply the operator adp, to both sides of identity (3.53) and use formulae (3.2)), (3.3)), (3.4)),
(3.5). Collecting coefficients at the independent operators, we obtain the system

7”0)\ + 3T1,u0 —+ 3’/’0,“0 = 0,

—2r0p + AN271 0y + T0u0) — 3T u0u0 — T0uoue = 0,
— 3roe + )‘Tl,uow) + P ue — T1uguouo = 0,

— (7“1 + 27’0)7’] — >\T0,uou1 — PT0,u1 + T0,uouour = 0.

3.4.1) Let us consider case (3.38), A = 0. It follows from equations (3.54)—(3.57) that
k—2

O{(Un) - Clun + 027 Tn(un—&—h Uy, un—l) - Olun+1 - Clun + Clun—l + 037

where C3 = %C’gk — (5 4 ¢q. Further study of the lattice with 7, defined by this formula is
provided in 3.5.1, see ([3.62).

3.4.ii) Let us consider case (3.39) A # 0. We substitute r, into (3.47)—(3.49). Studying this
system, we obtain that A = =3, p = -2, e =n=0,h=1,¢c = —%. The function ((3.39))
becomes

_ 1 _
rn(un+17un7unfl) = elnTinTt — —etnii T,

2
We substitute this function into equation (3.37) and we get k = 1 or k = 3. These identities
contradict condition k > 2.

3.5. Case M > 3. Let the following relation be true for M > 3
Wy = Wy + oWy o+ kWap 3+ --- (3.58)
Taking into account formula (3.7), we apply the operator adp, to both sides of the above
identity:
anf(AWar—1 + pWar—o + Wiz + -+ ) +bayWar—1 + suWa—o + taWa—z + - - -
=Man—1Wa—1 + by War—o + sy War—z + -+ +)
+ plar—2Wa o+ by oW s+ ) + klay sWay3+--+)
We collect coefficients at the independent operators Wy,_1, War—a, War_3:
May — apr—1) + by =0, (3.59)
play — apr—2) + sy — Abpr—1 = 0, (3.60)
k(ay — apr—3) +ty — Asp—1 — pby—o = 0. (3.61)
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3.5.1) By system (3.59)—(3.61) we obtain that a(u,) = Ciu, + Cy and

k—(M—-1 2C
rn(un—‘rly U, un—l) - %Olun—i—l - M—_llun + C(1un—1 + O?n
where
oM — ¢y — 20y + kCy

Ol =
3 M—1

Now we consider the function
T (Unt1s U,y Un—1) = C1Up41 + CoUy, + C3Up_1 + Ca.

Commutation relations (3.7)), (3.44) become
(Do, Wil = Wi, + bkWi—1,  [Da, Wi | = @Wi + bWy,

where
k — k?
ar = —(r1 + kro), by = 5 C2~ csk,
- k—k?
ayp = —(k??"l + 7‘0), bk = 9 Cy — 01/{3.
Assume that sequence {W,} is terminated at the step M:
M—1
Wiy = Z Ay War—r + ¢1Y1 + ¢oYo.
k=1

We apply the operator adp, to both sides of identity (3.66])

k=1
M-2

= Z Anr—k(an—iWr—i + opr—kWar——1)

k=1
+ Ay (= (r1 +ro)Wi — c3Y1 + 1Y) — ¢ Y1 — ¢oroYo.
We collect the coefficients at Wy, in this identity:

M—1
ay (Z Api—iWh—i + 01 Y1 + ¢OYO> + oW1

AMfl((lM — (lel) + bM =0.
We substitute formulae (3.64)),(3.65) into the last equation:
— M?

M
—Apoa (01U1 + CoUp + C3U_1 + 04) + TCQ —c3M = 0.

123

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

A simple analysis of this equation shows that Ay, = 0 and ¢3 = %02. Then, collecting

coefficients before Wy, _r, k =2,..., M — 2, we arrive at the equations
AM_k(aM—aM_k):O, k’:2,...,M—2,

which implies Ay, =0,k = 2,..., M — 2. The coefficient at Wy is Aj(ap; +7114+1709) = 0. Then
A1 = 0. The coefficients at Y; and Yy read as (ap + r1)¢1 = 0, (apr + ro)¢o = 0 and hence,

¢1 = ¢o = 0. Thus, Wy = 0.

Similarly, if sequence {W;} is terminated at step N, then ¢; = %02 and Wy = 0. As a
result, we obtain:
1-N 1—- M
T (Ung1; Un, Un—1) = 5 C2lnt1 + Cotin + Collp—1 + C4.

By rescaling $u; — v;, the original lattice is reduced to a lattice of the same form with function

r, defined by the formula
Tn(un—l-lu U, un—l) - (]- - N)“n—i—l + 2un + (1 - M)un—l + ¢,
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where c¢ is an arbitrary constant. If 4 — M — N # 0, then we exclude constant ¢ by the shift

transformation v — v — ;7. If M + N = 4, then M = N = 2, and c is excluded by the
transformation u,, — u, + gnz. Thus, the function r, becomes:
Tn(Ung1, Uy Up—1) = (1 — N)upi1 + 2uy, + (1 — M)u, (3.67)

and, in particular,

Tn(un—&—lv Unp, un—l) = —Up+1 + 2y — Up—1- (368)

We substitute (3.67)) into (3.37)), and we get that £ = M + N — 2. We substitute (3.68]) into

(3.37), and we get that k = 2.
Let us consider lattice (2.6 when r,, is defined by (3.67)). We impose cut-off conditions ug = 0,

ur+1 = 0 and we reduce this lattice to the following hyperbolic system:
Uy oy = (2u1 + pug)u y,
Uk oy = (QUk—1 + 2ug + PUpy1) Uy, 2< k< L—1, (3.69)
ULy = (qui—1 + 2up)ug,y,
where p = 1 — N, ¢ = 1 — M; we recall that N > 1, M > 1. This system is reduced by
differential substitution v; = Inw;, to the exponential system:
V1 gy = 2" + pe'?,
Vgay = q€* 1 + 2" +pe’+t. 2< k< L—1, (3.70)

Uay = qE" + 26,

(me = Ae").

We denote by A the matrix of coefficients before exponents in the right hand side of the system
and we denote by v = (vy,v,...,vx)T, €' = (e, €e,...,e"¥)" the column vectors. System
(3.70) is related with the system

Wi,zy = €2WI+pw2>

Wh gy = TH—1P2ORTPWRRL 9 e L — 1, (3.71)
o wr_1+2w

WL oy = edWL—1 L.

(wzy = eAW>.

by the following point change of variables

V1 = 2w + pwe,
Vg = qQWi_1 + 2w + pwgy, 2< k< L-—1, (3.72)

v = qwr1 + 2wy,

(V = Aw > .
System (3.71]) is reduced to system (3.69) by differential substitution

)

It is shown in [I1] 25] (see also [14]) that if A is the Cartan matrix of a simple Lie algebra,
then the system @D ((8.71)) is integrated in quadratures. Comparing the Cartan matrix and
matrix A, one can see that p = ¢ = —1. Thus, we have that M = N = 2. In this case we find
that Wy =0, Wy =0, Zg = 0.

Let us show that if systems ([3.70)), is integrable in the sense of Darboux then system
(3.69) is integrable in the sense of Darboux, too. Suppose that I(W,, W, -+ ) is an y-integral
of system ({3.71). We change variables by the rule w;, = u;, W;jze = ;, and so on, due to
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(3.73), then we obtain an y-integral I(u,u,,---) of system (3.69). Assume that I(v,, vy, )
is an z-integral of system ([3.70). Using (3.73]) and (3.72]), we derive:

u=w, = A lv,.
Hence, by virtue ({3.70))
u, = A_lvxy =A"1Ae¥ =¢".
We change variables in the function I(v,,v,,,...) by the rule v; = Inw,;,, v;, = (Inwu;,), and

so on. Thus, we get an z-integral I((Inw; )y, (Inw;y)yy, .. .) of system (3.69).

3.5.ii) Let us consider case (3.39) and A # 0. We substitute r, into system (3.59)—(3.61)) and
into equation (3.37)), we get the following system:

Aleuo—hu,1 + Bleul—huo — 07
A2€u0—hu,1 + BQ€u1—hu0 — 07
A3€u0—hu,1 + Bgeul—huo — 0,
A46u1—hu0 + B4€u2—hu1 = 0.

Obviously, the coefficients A;, B; at independent exponent functions have to be equal to zero.
Thus, we obtain a system of 8 algebraic equations in 8 unknowns ¢, h, M, A, p, k, k, v;. Studying
this system, we get the following possible variants:

M = 4, k_130 M =5, k:%; M=2 k=2

All of these variants contradict our assumptions about values of k, M.
Thus, we have proved the following statement.

Lemma 3.7. If relations (3.9), (3.34), (3.45) hold true for some M > 2, k > 2, N > 2,
then the function r, casts into one of the forms (3.50) or (3.68) up to point transformations.

Lemma is implied immediately by Lemma [3.7]

Summarizing the rezults of this section, we observe that we have lattice 1-) for further
study, where ther function r, is defined by one of the formulae r, = r,(u,), (3.50), (3.68]
Similarly, function p,, is defined by one of the following formulae:

Pn = pn(un)7
pn(“n-‘rla Unp, un—l) =it — 6un+l_un>
pn(un-i-la Uy, un—l) = —Up+1 + 2un — Up—1-

4. FUNCTION g,

We recall that the operator Y can be represented as follows, see formula (£2.3)):
Y =3 Y+ R

where
0 0 0
Vi — — ) D.(r; 2 ..
! 8uz +r aui,x + ( I(TZ) * " ) aui,x:ﬁ *
) 0
R = Z (wipi + q’)ﬁ + (Dao(uiwpi + @) + (Wiwpi + @)7) EY +o

We shall determine the function ¢, by using the operator R. We define a sequence of operators
in the characteristic algebra L(y, N) by the following recurrent formula:

Y—l) }/Oa }/17 }/0,—1 - D/O)Y—l] ) }/1,0 = [}/17%] 3 (41)
Ry =[Yo,R], Ri=[Yo,Ro|, Ro=[Yo,R], ... Ryy1=[Yo,Rs|.
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For elements of the sequence the following commutation relations hold:
[De, Y] = =11 Yoy, (D2, Yo] = —1oYo, (D, Yi] = =Y,
[Dy, Yo,—1] = —(r—1 +70)Yo,—1 — Yo(r—1)Y_1 + Y_1(r0) Yo,
(D, YIO] —(ro +71)Y10 — Y1(r0) Yo + Yo(r1) Y1,
[

D, R =— Z hiYs,  hi = piuie + g,

[Dy, Ro] = —roRo 4+ h1Y19 — h_1Yy 1
= Yo(h1)Y1 + (R(ro) — Yo(ho))Yo — Yo(h—1)Y1,
D,, Ry| = —2r¢Ry — Yo(ro)Ro + - -+,
(D, Ry] = —3rgRy — 3Yy(ro) Ry — Yy (ro)Ro + - - -,
[D., R3] = —4rgR3 — 6Yy(ro) Ry — 4Yy (ro) Ry — Yi (ro) Ro + -+ -,

where the dots stand for a linear combinations of operators Y; o, Yo 1, Y1, 0, Y_1. By induction
we prove that the following formula holds for all n > 2:

[Dxa Rn] = aan + ban—l +eey

where )

a, =—(Mm+Dry, b,=— Yo(ro),

and the dots stand for a linear combinations of the operators Ry, k < n—1, Y1, Yy 1, Y1, Yo, Y_1.

Lemma 4.1. If the operator Ry is linearly expressed in terms of operators (4.1)
Ry = puY1o + 1Yy, 1+VY1+77Y0+€Y1, (4.2)
then chain is reduced to one of forms (2.7] , 2.8) by point transformations.

Hokasameavemeo. We apply the operator adp, to both sides of identity (£.2). Collecting the
coefficients at independent operators Y; o, Yo _1, Y3, Yy, Y_1, we get the system of equations

Dy(p) = ripp 4+ ha, (4.3
D.(ft) =r_1t — h_q, (4.4
V) = (11— ro)v — Yo(hn) — u¥o(r), (45
) = R(ro) — Yo(ho) + uY1(ro) — aY-1(ro), (4.6
) = (r—1 = ro)e — Yo(ho1) + 1Yo (r-1). (4.7
We consider equation (4.3)):

71 (U2, 1, uo) i+ p1(Ug, ur, Uo) Uy e + (U, ur, ug) = Dy(p).

A simple analysis of this equation shows that 1 = u(uy) and, hence, this equation splits into
two equations

' (ur) = p1(ug, ur, o),  r1(ug, ur, uo)p(ur) + ¢ (ug, ur, ug) = 0.
Hence,
pn(un—i-la U, un—l) = ,u,(un)a Qn(un—i-la U, un—l) = _Tn(un-i-la Un, un—l):u(un)' (48)

Using equation (4.4)), we obtain that g = f(u_1), a(v) = —pu(v).
We simplify identity (4.5 using (4.8)) and we get

D.(v) = (r1 —ro)v.

It easy to see that v = 0. S1mllaufly7 it follows from (4.7) that e = 0.
We simplify identity (4.6) as follows:

Dz(n) = —Pouo0,2 — 90,ug — T0P0 + HT0u; — HT0u_:-
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A simple analysis of this equation shows that n = n(up) and, hence, this equation splits into
two equations

1 (%) = ~Po.uo —qo,up — ToPo + U0, — A0, = 0. (4.9)
We substitute formulae (4.8)) into identities (4.9) and we obtain 7' (ug) = —u" (uo),
70wt (to) + (1) 700y + p(tu—1)rou , = 0. (4.10)
We substitute the function r,, defined by formula (3.50) into (4.10)), and we get that u = c is
an arbitrary constant. Therefore, p, =0, ¢, = —cr,,, and lattice (1.2)) becomes

un,xy — (eun_unfl _ eun+1_un)un’y _ c(eun_unfl _ eun+1_un).

The transformation w,, — cy — u,, reduces this lattice to (2.7]).

If r, is defined by (3.68)), then (4.10)) implies ;1 = ¢, where ¢ is an arbitrary constant. Hence,

pn =0, g, = —cry,, and lattice (1.2 takes the following form:
Unp,zy = (_un-‘rl + 2un - un—l)un,y + C(_un—i-l + 2un - un—1)~

The transformation u,, — cy — u,, reduces this lattice to (2.8).

If 7, = rp(uy), then it follows from (4.10) that x4 = 0 or ., = 0. In the first case formulae
imply p, = 0, g, = 0. Then chain (1.2)) becomes wuy, 4y = 7 (U )ty In the second case
ro = ¢1, where ¢; is an arbitrary constant, hence, by [1.8)), p, = ¢/ (us), ¢ = —c1p(uy), and
chain casts into the form u, 4, = p/ (U )t + 1, — c1pu(uy,). The proof is complete. [

Suppose that R, depends linearly on Ry, k <n, Y10, Yy 1, Y3, Yo, Y_; for some n:
R,=MR, 1+---, n>0. (4.11)

Lemma 4.2. If function r, has one of forms (3.50)), (3.68), then case (4.11)) is not realized.

Jloxasameavcmeo. We apply the operator adp, to both sides of identity (4.11]). Collecting
coefficients at R,,_; in obtained relation, we get the equation:

n?+n
DI(A) == —To)\ — 9 TO,uo-
A simple analysis of this equation shows that A is a constant, hence
2
S L (4.12)
Substituting formulae ([3.50]), (3.68)) into (4.12)), we get that A = 0 and n?+n = 0. Hence, n = 0
or n = —1. Both solutions contradict the assumption n > 0. The proof is complete. O

heorem is implied Lemma
5. APPENDIX. PROOF OF LEMMA [3.6]

The proof is a study of equation ((3.37):

k(k — 1)

VT + Trl,lq + (k - 1>(T0,u1 + T2,u1) - (5]‘)

0
in different cases (3.10) and (3.11)) under conditions (1.4), M > 2, k > 2. We denote vy, = v.
(3.10)

i) We substitute function ro defined by formula into (5.1])

v (a(uo) — M2— 1a(u1) + (5(u2)> — %O/(ul) + (k=1)(8"(w1) + ' (w)) =0.  (5.2)

We apply the operator 6‘%2 to this identity, and we get vd’(uz) = 0. It is easy to show that the

case v # 0 leads us to a contradiction to (|1.4]). Assume that v = 0, then from (5.2 we obtain
that the function ry becomes

2
M-1

a(ug) + (Mk_ . 1) a(uy) +c.

TO(Ul,UO,U_l) == a(u—l) -
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ii) We substitute the function ro defined by formula (3.11)) into equation (5.1).

B(ug)(vM?* — vM + kX — k*)\)
M(M —1)

e M(M 0+ (]{; _ 1)5’(1“)6*%

(5.3)
OY(ug,ur) 1 OY(uy, uy)
k—1)———+ —(k—1)k—————==0.
)+ (e~ 20 Ly PV
We apply the operator 5 - to both sides of identity (-3)
o4 (uo)(uM2 —vM + kX — k:2)\)€ S (- )821/J(u0,u1) _o.
MM —1) Duodus
This equation has the following solution::
M? —vM + kX — E2\ uy
(g uy) = AL —VAE Je T 4 () + Fo(w). (5.4)

2(k — 1)\
We substitute function (5.4)) into equation (/5.3)), then we differentiate an obtained identity with

2 \u
respect to us, and we multiple both sides of the obtained identity by eM™37-1):

v(vM? —vM — E*X + kXN B(uy)
a Mk —1)(M —1)

(5.5)
T (AR + E2A + kM?v — EMv + 4kX — 4X) 8 (uy) 2\uy
N E! M(M=1) ) —
2 (M —1)M - Fylup)en 0TIy = 0.
Let us consider two different cases v = 0 and v # 0.
ii.1) If v = 0, then (5.5) becomes

IAE=1)(k—=2)(k+2)p
LA = 1)k = )k + 2)5'(m) _ 6:5)

2 M(M - 1)

It follows from this identity that & = 2 or '(u;) = 0.
ii.1.1) If £ = 2, then equation (.3 casts into the form FY(u;) + Fj(ui) = 0. It is clear that
Fy(uy) = —Fi(u1) + ¢;. Equation (3.12)) becomes

2 ug

<_)‘5(“0) - %5,(U0)M2 + gMﬁl(UO)> e MOI-T) .

1
+ —M(M l)F (Uo) + )\(Fl(UQ) Fl(ul) + Cl) =0.
We apply the operator 5-5— - to both sides of identity .

= M?(]A;il) 200 (ug) + M(M — 3)5" (uo)
M(M —1)

=0.

By the condition \ # 0 we see that
208 (ug) + M(M — 3)8" (ug) = 0. (5.8)

ii.1.1.1) If M = 3, then B(uy) = ¢y, where ¢ is an arbitrary constant. The function r¢ defined
by formula (3.11)) becomes

ro(u1, ug, u—1) = coe’%)‘“o — coe’%’\“1 + Fi(ug) — Fi(uy) + ¢, (5.9)
and equation (3.12)) reads as
— Acoe” 3 — AF1(uy) + AF1(ug) + Aey + 3F (ug) = 0. (5.10)
We apply the operator B_ul to identity - :
1

g)\Qcoe 3 \Fl(uy) = 0,
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hence,
Fl(ul) = —CoeiéAul + Ol.
We substitute Fi into (5.9) and we get ro = C. This contradicts condition (1.4)).
ii.1.1.2) If M # 3, then equation (5.8)) has the solution
22w
B(uo) = Cl + CQQiWIE{i).

We differentiate equation (3.12]) with respect to u; and, since A # 0, this equation gives

2 \u
Fi(u) = —Cle_m + O,
Equation (3.12) becomes Ac; = 0, hence, ¢; = 0, and, finally,

S S W N > W
To(ul,uo,ufl) 2026 M(M—1) M(M—3) _Cze M(M—3) MM-1) "1 (5_11)

We return back to equation (5.6) and consider the following case.
ii.1.2) If 8'(uy) = 0, then 5(u1) = c3, where c3 is an arbitrary constant. By equation (5.1]) we
find

1
FQ(Ul) = —§k3F1(U1) —+ c4.
Equation (3.12) is transformed as

1 1 Aug
)\Fl(uo) + §M<M — 1)F{(UO) — 5)\ (Cgk@iM?M*l) + kFl(ul) — 2(34) = 0. (512)

We apply the operator ai to both sides of identity (5.12)

U1

BT S
2 M(M —1)

This equation has the solution

2 \u
(—203>\€_M<Mi1) + M(M — 1)F{(u1)> = 0.

22wy
F1<U1) = —(C3¢€ M(M-1) 4 Cs.

We substitute F; into (5.12)), and we find ¢4: ¢4 = 5¢5(k —2). We substitute the found functions
and constants into (3.11]) and we get ro(u1, ug, u—;) = 0, which contradicts condition ([1.4)).
We return back to equation (5.5).

ii.2) If v # 0, then FQ/(U,Q)GM(];EI) = ¢; and, hence,

2 u

1 M(M — 1)¢ e M0rm

Fyuz) = =3 )

+ Co.

Equation (5.5) reads as
V(M2 —vM = B*A + k) B(w)
M(k—1)(M—1)

LW+ PN 4 kMPy — kMy + 4kX — 40) ' (wy) e =0, (5.13)
2 (M —1)M
We denote:
A=vM?* —vM — E*X + k), (5.14)
B = * 4+ E°A + kM?v — kMv + 4k — 4. (5.15)

We shall consider the following different cases:
ii.2.1) A=0, B=0;
i.2.2) A=0, B#0;
ii.2.3) A+£0, B=0;
ii.24) A#0, B #0.
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In case ii.2.1), that is, as
vM? — vM — E*XA + kX =0, A2+ 2N + EM?y — kMuv + 4kX — 4\ = 0.

Then we express v from the first equation and we substitute this function into the second
equation, and we get 4(k — 1)\ = 0, which contradicts to k > 2, A\ # 0.
ii.2.2) Assume that
A=vM?—vM — K’ X+ kX =0.
We express v from this identity and we substitute v into . This equation has the solution
B(w) = keius + c3. Equation becomes

1 dF1<U1> n ]{3(1{3 — 1))\ 2Auy k(k) — 1)02)\ .

—k(k—1 F k —1)e MG1-1) =0.

PRk =)= = P g —pfrlm) alk = 1e M-
This equation has the solution

2 — k 22
Fl(ul) — —%6 ]M(]v]il) — Cy.
Equation (3.12) casts into the form
_aMM 1) ey aMM-—k-1) gas
k 2

It is clear that this identity holds true only if ¢; = 0 (we are working under the condition
M > 2). Hence, we have

2\
ro(u1, ug, u—1) = (c3 + c4)e” M“‘;E”,

which contradicts condition (1.4]).
ii.2.3) Suppose that
B =M + KA + kM?v — kMv + 4kX — 4\ = 0.
We express v:
MR =1)(k—2)(k+2)
B EM(M — 1)
Since v # 0, then k # 2. Equation becomes
AME—=1)(k—=2)(k+2)
kE2M?2(M — 1)?
We find the function S:

(Clk’MQ — ClkM + 4)\6(’&1)) = 0.

) LU 1)

Taking into consideration the obtained function, we simplify equation (5.3):

(5.16)

PR iar—1) i)
(k= 1)ere ot 4 @Ak ;A?((L__lisk 2,

This equation has the solution:
kM (M —1) 2Mu; 2A(k—2) (k+2)

Fl(ul) = o e MT-T) 4 Cle *MM-1) o Co.
Let us transform equation (3.12)
2X(k—2) (k+2)
4)\01 eimul _ O
k? '

It follows from this identity that C; = 0. Substitution found functions and constants into (3.11)),
we obtain that 7o = 0, that contradicts condition (|1.4]).
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ii.2.4) If A+ 0 and B # 0, then equation ([5.13) has the solution
20(vM2—vM—k2A+kN)uq M01<k _ 1)<M _ 1)

— T (k—1) (A FRZAFARAF R M20—kMu—4X) ) 5.17
Blun) = cse TN — UM — A 1 En (5.17)
We substitute (5.17)) into ((5.3)) and we obtain
1 dF _ 2 \u
§k:(k - 1)%?1) +vFi(w)+calk—1)e MO 4 ey, (5.18)

Equation (5.18) has the solution
_ 2vuy aM(M—-1)(k—1) __2w
F — _ k(k—1) — M(M-1)
1) = —ca ey VI — uM — KA+ FA
Function (3.11]) becomes
2vug 2Auq 2vAu_q ACS 2 uq 2vAug

7"0(“1, Ug, U—l) — 646_ k=1 636_ M(M-1)" B(k-1) 4 — = " M(M-1) B(k—1)

2(k — 1)\

Here A, B are defined by formulae (5.14), (5.15). We substitute these functions into (3.12)
Acy  _ 2w Acs(AB+UM?A —vMA — MNeB — AMvA + AMuk)) 2w 2va

T eTRED MO BG-D = (),
k(k—1)° 2BEN(k — 1) ¢
Since A # 0, v # 0, it follows from the last identity that ¢4 = 0 and
AB +vM?A —vMA — kB — 4Mv\ + 4MvkX = 0.
Thus, we have specified the function ry:
23wy 2vAu_ Acs 22wy 20dyg
To(Uh Ug, uil) = c3e MU= BGE-D) 4 —— " " M(M-1) B(F-1)

2(k—=1)A
We can rewrite 7 in the following form:
To(ul, Ug, U71) = C’lehuto—hzu_l + CQBhlul—hQUO’

where C1Cy # 0, hihy # 0 are some constants.
Lattice (1.2) is reduced to one with 7, of the following form

7,1n(un+17 Up, un—l) — eun_hunfl + Ceun+1_hu7z

by rescaling hyu,, — u,, cithiz — x. Similarly transformations one can apply to the lattice in
case ii.1.1.2 (see (5.11))). The proof of Lemma [3.6]is complete.
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