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EXHAUSTION BY BALLS AND ENTIRE FUNCTIONS OF
BOUNDED L-INDEX IN JOINT VARIABLES

A.I. BANDURA, 0.B. SKASKIV

Abstract. For entire functions of several complex variables, we prove criteria of
boundedness of L-index in joint variables. Here L : C" — R’ is a continuous vector
function. The criteria describe local behavior of partial derivatives of entire function on
sphere in an n-dimensional complex space. Our main result provides an upper bound for
maximal absolute value of partial derivatives of entire function on the sphere in terms of
the absolute value of the function at the center of the sphere multiplied by some constant.
This constant depends only on the radius of sphere and is independent of the location of its
center. Some of the obtained results are new even for entire functions with a bounded index
in joint variables, i.e., L(z) = 1, because we use an exhaustion of C™ by balls instead an
exhaustion of C" by polydiscs. The ball exhaustion is based on Cauchy’s integral formula
for a ball. Also we weaken sufficient conditions of index boundedness in our main result
by replacing an universal quantifier by an existential quantifier. The polydisc analogues of
the obtained results are fundamental in theory of entire functions of bounded index in joint
variables. They are used for estimating the maximal absolute value by the minimal absolute
value, for estimating partial logarithmic derivatives and distribution of zeroes.

Keywords: entire function, ball, bounded L-index in joint variables, maximum modulus,
partial derivative, Cauchy’s integral formula, geometric exhaustion.
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1. INTRODUCTION

Recently, we published two papers [4], [3] devoted to the properties of entire functions of
bounded L-index in joint variables. Our studies employed a more general concept of an entire
function with bounded L-index in joint variables than in [10], [12]. Unlike these papers, here
we suppose that L(z) = (l1(2),...,0,(2)) and z = (21, 29,..., 2,) € C", while M.T. Bordulyak
and M.M. Sheremeta [10], [12] assumed that L(z) = (I;(|z1]), ..., l(|za]))-

The main method we employ to study this subclass of entire functions consists in applying the
integral Cauchy’s formula and exhaustion of C" by polydiscs and its skeletons. This turns out
to be very flexible and convenient. This helped us to establish the criteria of the boundedness
of L-index in joint variables and this describes a local behavior of partial derivatives and the
maximal absolute value of an entire function in a polydisc [4], [3].

Besides a polydisc, an important geometric object in C” is a ball. Obviously, C" can be
exhausted by balls, too. There are two well-known monographs [25], [21] on the spaces of
holomorphic functions in the unit ball of C": Bergman spaces, Hardy spaces, Besov spaces,
Lipschitz spaces, the Bloch space, etc. Authors of these books chose the unit ball because most
of the results can be proved here using straightforward formulae without much technicalities.
However, in the theory of entire and analytic functions in polydisc of bounded L-index in joint
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variables or of bounded index (L = 1) the situation is different. Many papers were devoted to
the polydisc properties, see [10], [12], [16], [17], [18], [22], [13], [14], [15], [5], [6]. In view of this,
it is natural to pose the question: What are the ball properties of entire functions of bounded
L-index in joint variables? This problem is considered in the present paper.

We note that for each entire function F' with bounded multiplicities of zero points |11], [9],
there exists a positive continuous function L : C" — R’} such that F' is of bounded L-index in
joint variables. Thus, the concept of bounded L-index allows one to study the properties of a
very wide class of entire functions.

In addition to L-index in joint variables, there is another approach to introduce a bounded
index in C", a so-called L-index bounded in a direction (see more in [1], [2]). This concept uses
slice function to study properties of entire functions in C".

It should be noted that the concepts of bounded L-index in a direction and bounded L-index
in joint variables have few advantages in the comparison with traditional approaches to study
properties of entire solutions of differential equations. In particular, if an entire solution has a
bounded index [8], [7], [19], this implies immediately estimates for its growth rate, an uniform
distribution of its zeros, a certain regular behavior of the solution, etc. A full bibliography on
applications in theory of ordinary and partial differential equations can be found in [1], [23].

2.  MAIN DEFINITIONS AND NOTATIONS

We recall some standard notations. We denote
Ry = [0, +00), 0=(0,...,0) e RY,

R=(r1,...,rn) € RY, z=(21,...,2n) € C",

For A = (ay,...,a,) € R", B= (by,...,b,) € R", we will use the formal notations

AB:<6L1b1,"' ,anbn), A/B:(al/bl,...,an/bn),

ABZG?ICLSQ"--'CLZ", 1A = a1 + - + ay,

and the notation A < B means that a; < b;, j € {1,...,n}; the relation A < B is defined in
a similar way. Given K = (ky,...,k,) € Z7%, we let K! = ky!-...-k,!. The summation, scalar
multiplication, and conjugation on C" are defined componentwise. For z € C" and w € C", we
define
(z,w) = 211 + -+ - + 2,Wy,

where wy, is the complex conjugate of wy,. The polydisc {z € C": |z; — z;-)\ <r;, j=1,...,n}
is denoted by D"(2%, R), its skeleton {z € C" : [z; — 2J| = r;, j = 1,...,n} is denoted by
T"(2°, R), and the closed polydisc {z € C" : [z — 2J| < r;, j = 1,...,n} is denoted by
D"[2° R], D" = D"(0,1), D = {2 € C: |z| < 1}. The open ball {z € C": |z — 2°| < r} is
denoted by B"(2°,7), its boundary is the sphere S*(z°,r) = {z € C" : |z — 2°| = r}, the closed
ball {z € C": |z—2% < r}is denoted by B"[2Y,r], B* =B"(0,1),D=B'= {2 € C: |z| < 1}.

For K = (ki,...,k,) € Z7 and the partial derivatives of an entire function F(z) =
F(z,...,2,) we use the notation

B P E

Let L(z) = (l1(2),...,1,(2)), where [;(z) : C* — R, is a positive continuous function. We
denote

FE)(2)

l(z) = lrgjign i (=), L(z) = lrgjfcg%l-(z).

It is obvious that ¢(z) < L(z).
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An entire function F': C" — C is said to be of a bounded L-index in joint variables if there
exists ng € Z, such that for all z € C" and for all J € Z; the inequality

[FD ()] [P »

holds true. The least among such integers ng is called the L-index in joint variables of the
function F and is denoted by N(F,L) (see [4]- [12]).
By @5 we denote the class of functions L obeying the condition

(Vr>0, je{l,...,n}): 0< A (r) < Ay (r) < oo, (2)

where

A1 j(r) = inf inf{ () 2z € B” [2°,r/0(2)] } : (3)

20eCn lj(ZO)
(r) = sup su Mz 20 /020
asr) = sup sup { PO e 25,0700 . (@)

Al(T) = (/\171(7”), ey /\Ln(?")), AQ(T’) = ()\2’1(7“), . ,)\2771(7“)).

It is not difficult to confirm that the class Q)i can be defined as following:

lj(Z).Z_w n oo for a ) n
JE;{Mww’ ’gmmMQLAM}}< forall jeil.nk ()

i. e. conditions and are equivalent. Moreover, Qfp C Q" (see the definition of Q"
in [4], [1]).
We also need the following lemma, see [25, Lm. 1.11].

Lemma 1. Suppose m = (my,...,my) is a multi-index of nonnegative integers. Then
o (n —1)!m! I(n) [T T'(m; +1)
£ Pdo(e) = =
Sn (n =1+ |lml])! (n+[[ml)

Using the idea of the proof of Lemma [l| and the definition of the Gamma function, it is easy
to prove a more general formula

C(n) T, T(m;/2+1
[ ety =PI T2+
I'(n+ [lml|/2)
Indeed, we identify C* with R?" and let dV be the usual Lebesgue measure on C", dv be
the normalized volume measure on B" so that v(B" = 1, ¢, is the Euclidean volume of B", i.e.,
cpdv = dV.

We find the integral I = [, |z™|e~1?dV () in two steps. First, by employing Fubini’s

theorem and the substitution

ZL':\/;COS(,O, y:\/?singp, ’I“G[0,00),(,DE [0727T]

for each m € Z7. (6)

give

H/ 2?4 )" e ) drdy = ot H/ rme 26 dr = " HF (mj/2+1).

7j=1

Then we pass to the polar coordinates and we obtain
o0
I :2ncn/ P2t e=r* gr [ 1emdo (€)
0 sn

—ncy, / g tHim2e=tqr [ |€m|do(€)
0 Sn
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=neal(n -+ mll/2) | 1" ldo(e)

Two obtained identities yield
ne,I'(n + ||m]|/2)

n . . . .
i.e., ¢, = 7. Substituting ¢, in (7)) we arrive

!fmlda(f) =

"

nen (n nHH

Let m = 0 = (0,...,0). Thenl—
at@.

3. LOCAL BEHAVIOR OF DERIVATIVES OF FUNCTION OF
BOUNDED L-INDEX IN JOINT VARIABLES

The following theorem is basic in theory of functions of bounded index. It is motivated by
the need to prove a more efficient criteria of index boundedness, which describes a behavior of
maximal absolute value on a disc or a behavior of the logarithmic derivative (see [1], [23], [24]).

Theorem 1. Let L € Q. If an entire in C" function F' s of bounded L-index in joint
variables then for each r > 0 there exist ng € Z., po > 0 such that for each z2° € C" there exists
K° € Z1, | K°|| < no, such that

() (5 (k)0
maX{f;LK(@))' I < no, 2 € Ba [ZDJ’/»C(zO)]} < po}f:]m—f(ﬁ(;o'). (8)

If for each r > 0 there exist ng € Zy, py > 0 such that for every 2° € C" there exists K° € 7,
| KO < no, such that

S Do g 70 g% 9
KILE (2) O KOILK® (20) (9)
then the entire in C™ function F' s of bounded L-index in joint variables.

Proof. Let F' be of bounded L-index in joint variables with N = N(F,L) < oco. For each r > 0
we let

(K) (K% (.0
max{u: K| < ng, z€B, [zo,r/ﬁ(zo)]} <p LGl

q=q(r)=[2(N+1)rvn H(/\Lj(T))_N()\2,j(7“))N+l] +1

where [z] is the integer part of the real number z. For p € {0,...,q} and 2" € C" we denote
(K)
0, [F ()] n|,0 _PT
Sp(z,'r’)—max{K'LK( ) |IK||<N, zeB L@ |
)
*/ 0 o |F ( )’ n 0 pr
Sp(Z ,T)—maX{K‘LK<Z ) HKH N z€B m .
By and

we have

&@%m:m“{§£%1LK )”K” <sew |}

<SH(0r maX{H N 1z e B” {zo,qﬁp(zo)]}
—1 lj
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Using , we obtain

SZ<Z°aT>=maX{fx($<(<ZZ)>| 5(% IS N’ZEEH{ qﬁpéo)”

<maX{%(A2( DE K] < Nzela%"[ z ]} (10)

n

<Sp(2° ) [ [ (e ()™

J=1

Let K@ with ||[K®| < N and z®) € B" [

) af ZO)} be such that

Ia K<”>)(Z(p))|

*0 . 0 _
Sp(2hr) = K®ILE® (20) (1)
Since by the maximum principle z® € S™(2°, %), we have z(P) #£ 2 We choose
—1
Eép)_z?—i—pp (Z](p)—z?), je{l,...,n}.
Hence,
o) _ o P 1 o 0|_p—1 pr (12)
2 — 2 = 2V —=zZ7 = ,
| | p | P qL(2°)
-1 1 r
) _ L)) — 0 4 P () _ 0y _ ) = 21,0 _ )| —
2P — 2P| = 2"+ —— (2" = 2") = W | = —|z" = WP | = : (13)
| = 128+ B0 = 29— 20 = o
By we obtain Z) € B [20, %} and
)
SE (%) = [P (20)
p—1 ) = K(P)!LK@)(ZO).
It follows from that
(K@) ()| _ |pEP) (3P
w0 © (0 [FE )] [FTOEY))
0<Sp(2r) = S5(27,1) < K®ILE (50)
_ 1 ' d FED) (30 4 (0 _ 300)) (gt
—K®ILEY (20) [, i :
(14)

1 (P ~Ap) || K@ 41, 1~
2 = 2| F i(ZP) 4 (@) — Z@))Y |4t
K ®)ILE® (;0) /0 Z:| J J I ( ( )|

— p)lLK<P) Z |z 'p)HFK(PLQ—lj(Z(p) + 75*(Z(p) _ %p)))l’

where

* =p) 4 +( () _ 5(p) ng,0 P
0<t" <1, 2P (2P —-ZWP) e B (Z’qﬁ(zo))’

For z € B"(2°, o) and J € Z1 [[J[| < N +1 we have

(PO ()L (2) |FE)(2)]
JIL7 (20)L7 (2) <(Az(r))” max {m K < N}

- (K) (5
<JT0us ¥ x 1,j<r>>-Nmax{I'£L—K<(z>o’>:uKn <N}

Jj=1
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<O )Y Oy ()NS5 (0 ).
j=1
By and we obtain
0 <S;(zo,r) — S;_l(zo, T)

<L ()N g (1) VS0 ) SR + 1)) — 2]
j=1

—.

<
I
=

o (M)A () VS () (N +1) Y 1200 — 2P|

Jj=1

(Mg ()N (A, (r) ™M (N + 1>S;(ZO,R)\/E£(,ZO)]2@) —z0)

—.

<
Il
—

<
I
—

N

(N +1)r
q(r)

This inequality implies S (2°,7) < 255 (2%, 7), and in view of inequalities and we
get:

1 *
p( O,R) < §SP(ZO,R).

(Ao () (A () ™/

—.

<
Il
-

(2% ) 2T ()NS5 4 (2% ) < 2T [y (r) ™Y (Ao (1) VS (20, 7).
Jj=1 J=1

Therefore,

max { 2L i < v e, [0, 2]

n

= S,(z° 1) 2] [y (M) ™M Qg (M)NSma (2°,7) < ..

; ~ (15)
< T s ()PS0l )
= [0t Oy e { N ey <

The above inequalities imply with po = (2 [T(A1;(r) N (A2;(r))™)? and some K° with
=1

| K°|] < N. The necessity of condition ({§)) is proved.

We proceed to proving the sufficient condition. Assume that for each r > 0 there exist
ng € Z, po > 1 such that for all zy € C" and some K° € Z7, ||K°|| < ny, inequality (9) holds
true. We write Cauchy formula for a ball (see [25, p. 109] or [21}, p. 349]) as follows: for all
MeC, Kezt,SeZ, e B (2", r/((z°)) the identity

N (n+ S| —1)! € = 2°1(€ = 20)F5(¢)
e el B = ey o

§7(2%,r/£(29))

holds true, where do(§) is the normalized surface measure on S,, so that o(S,(0,1)) = 1. We
choose z = 2° to obtain:

sy - L ISL D) (€= F )

(n - 1)' "(ZO,T/Z(ZO)) ‘5 — ZOP TL+||SH)

do(§) (16)
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Therefore, thanks to @ and @, we get

— — (K)
i) oy <t 1S = 1) /WW))M DEFE] o

(n—1)! € — 20[2(n+lST—1
< (E(ZO))Q(MS)_l (n+[I1S]| = 1)!
AN (n—1)!
(& — 2)S||FIO (O KILE(€)
' d
/S"(zO,r/E(ZO)) K'LE(¢) o(¢)
(N2 (s 1))
P ( r (n—1)!
(€ — 20)5||FED (29| KILE (2)
. /S”(Zo,r/é(zo)) KOILK® (zo) dO'(g)

. (e(z()) 2SOy 18| = 1) [FED 0 KT, A5S ()L (2°)
M0

r (n—1)! KOILK® (20)
- / (€ — 2)31do(€) <
sn(

0N (4 (18] = )P () K TTE, A5o (r) LK (2°)
<o ( r (n—1)! KOILK°(20)

_ (€ = 2°)°] (&=
/Sn(ZO,r/e(ZO)) (7’/5(2’0))”5”d (T/E(ZO)>

0NN (4 1S = DD (20) K0, A (r)LE (2°)
SPo ( ) (n—1)! KOILEY(20)

oyy IS _
- (f(z )) (n+ 5] ‘ D!
F

r (n—1)!
FU O KT, A (LR (=) D) T T(si/2 + 1)
KOILK®(20) I'(n+15]//2)

This implies

| FUE+S) (0] |F(K°)(z0)\ 0(2°) ISl
(K 1 5)ILA+5(20) <K0!LK°(zo)p0( ; >
KT Ay () (e + 1S = DTG, Disg /2 + 1)
(K + 9)IT(n+|S]|/2)L5(2°)

[PED )| KT A5 (r) (n+ 1S1 = DT D(s;/2 + 1)

SKOLE(20) (K + S)T(n + [[S]/2)r151

105

(17)

(18)

We choose r > 1. Since || K[| < no, the quantity poK![[;_, A3%(R) is independent of S. Hence,

there exists n; such that

poK! Ty A55(r)
BIE]

<1 forall [|S]|>n.

(19)
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nt[[SII- 1! TT7, Ts;/2+1)
(K+S)T (n+][5][/2)rT5T

The asymptotic behavior of ( is more complicated as ||S|| — +oo. Using

the Stirling formula
mym 0
D(m + 1) = v2rm (;) 1+ 55-).
where § = 6(m) € [0, 1], we obtain
(n+ISI = DTG T(si/2+1) _ (n+ 1151 = DT Tsy /2 + 1)
(K +S)IT(n+[S[l/2)r151 = SIT(n + |15 /2)r 18
_ V2SI - (=) IS T /2w /2(50)72
[T, /27s5(2)5\/2n(n + [[S] /2 = 1) (RHELEL s lsi
9(n+|[S|—1 n 0(s;/2)
0+ ) [ (0 + 525

o IST/2) \ 777 0
(I + Bsrz) 1= U+ 1220)

We denote

O(n+|S[|=1) \ T» 0(s;/2)
(1+ 12(n+||S||—1)) szl(l + 1253-/2)
O(n+S1/2) \ 177 0(s;)
(1 + ) Ii= U+ 125)
and simplify the previous inequality to obtain
(n+ IS = DTG, Ts;/2+ 1)
(K + S)IT(n+ S| /2)rsl

o(S) =

n

n . n—1+||S||/2
<o 20=m/2e=151/2 1y — 1 4 || S| 1517 (n— 14 ||S|)Is2 H(i)sjp
Nl n—1+19|/2 T 28
o(n=1+]S1)/2,~IS|/2 e
_ 1511/2 —)si/?
]:
ISl n—1
9(n—1)/2 n—1\n1i2 "o
_ ) lIS11/2 i
S (1 g ) IS ]1;[1 P

. TRNLE
1 2T'sT]
< O(85)(2e)n1)/2 <; H (Hsi”) ) as  §; — 00.
j=t N 7

We denote z; = I8l e (1,400), # = (21,...,2,). It is clear that ©(S) — 1 as s; — oo,

5
j€{l,...,n}. Then implies the constrained optimization problem

n

H = o S , )

(x) H.CEJ — max, Z . 1, z;€(1,4+00) (21)

Jj=1 j=1

If this problem is solvable, then H(z) does not exceed some H* and we choose r > H* in (20)).
We introduce a Lagrange multiplier A and we study the Lagrange function £(z, ) defined

by
L(x,\) = gl — = .
(x,\) H z;' 4+ A Z . 1
7j=1 7j=1
A necessary condition for optimality in constrained problems yields

oL 1—Inx: v = A
xj 2xj Py T3
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or

l—Inz; A
2 Tor
HZ:1 Ly, g
Hence,
A
rj=exp|1l—-2——+1,
2x
HZ:1 Ly, g
ie, xr;1 =x9 =...=x,. Constraint (21)) implies

“ 1
>i-ro
= T T

or r; = n for each j € {1,...,n}. Hence, H(z) <[[j_, @) = /.
We choose r > /n. For this r we have

S

J

1 21T
- H (M) <1
r =1 Sj

In view of (20), this implies the existence of n such that
(n+ 151 = DI, T'(s;/2+ 1)
(K + S)IT(n+[1S]|/2)rIsT =

(22)

for all ||.S]| > na.
The asymptotic behavior of the right hand side in for other S can be studied in the
same way. Taking into consideration (18], and (22), for all ||S|| > n1 + ny we get
(U0 [FUOE)
(K + S)ILSTK(20) = KOILK®(20)

This means that
[FY (%) |FUO(20)]
———— <max< —————:
JILY(29) KILE(29)
for each J € Z, where ng, n1, ny are independent of z,. Therefore, the function ' has bounded
L-index in joint variables with N(F,L) < ng + ny + ny. The proof is complete. H

1] <no+n1+n2}

Imposing an additional constraint for the function L, by Theorem [I] we arrive at the following
criterion.

Theorem 2. Let L € Qg be such that
L(z)
su
An entire function F' has bounded L-index in joint variables if and only if for each r > 0 there

exist ng € Zy, po > 0 such that for each 2° € C" there exists K € 7, |K°|| < ng such that
imequality @D 18 satisfied.

=(C < 0.

Proof. The sufficiency was proved in Theorem . To prove the necessity, we choose
¢ =q(R) = 2(N + 1)Crv/n [ [ ()™ Qay (M)¥ 1] +1
j=1

and we replace £(z°) by £(z°) in the proof of Theorem [1} No other changes are needed and this
proves this theorem. O
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Theorem 3. Let L € Q. If an entire function F' has bounded L-index in joint variables,
then for all v > 0 there exist ng € Zy, p > 1 such that for all z° € C" there exists K° € 7}
obeying ||K°|| < ng and

max {|F(K0)(z)| cz € B [zo,r/ﬁ(zo)}} < p|FED(0)]. (23)

If for all r > 0 there exists ng € Z, p = 1 such that for all z° € C", j € {1,...,n} there
exists KJQ =(0,...,0, k? ,0,...,0) such that k? < ng and
~—

j-th place
max {|F(K?)(z)| :z € B" [20,7’/5(20)]} < p|FED (20)] forall je{l,...,n}, (24)
then the entire function F' has bounded L-index in joint variables.

Proof. Proof of Theorem |1 implies that inequality is true for some K°. Therefore, we have

po [FUOGO {M eB [zo,r/az%]}

KOl LE°(20) KOLK(z)

FE) (4 LX°(20 0 0
:max{| KO!( ) LKO(zO)(LK)O(z) 2z € B [2%r/L(2 )}}

(E) (5 b (Ag ()" 0 0
>max{’F KO!( )’HJ_L<KO(;0))) 2z € B [ r/L(2 )}}

This inequality implies

0 /\23 no | m(K9) 50 (K%) 2 0 0
b H ;{O‘ ( )) ’iKo(io))‘ > max{}if!To((;l) cz e B” [Z ,’f‘/ﬁ(z )]} (25)

Thanks to the obtained inequality we arrive to inequality with p = po [[_; (A2;(r))"™
The necessity of condition is proved.

We proceed to proving the sufficiency of . Assume that for each r > 0 there exists
ng € Zy, p > 1 such that for all zp € C" and some K} € Z% with kj < ng inequality is
satisfied.

In view of , we write Cauchy formula as follows: for all z° € C", S € Z" we have

0 (n+[1SI = 1)! (€= FUD(g)
FETEN = (n—1)! / (20,r/0:0)) 1§ — 202 HISID= )

As in ([L7), this yields
n+||S||)—
F05+9) () (15T = 1) (M) >2< s
r

(n—1)!
~mmﬂF“M@thWﬂfﬁﬂwﬂ}/ (E=20)do (€)
Sn(29,r/£(29))

(n+ [1S]| — 1)t ()N 0. o
ST oo > ma {[FEA()]: 2 € BT [0 r/0)] }

- |<s—z0> ¥ 20
\/S" 201 /£(20)) (r/ﬁ(zo))HSH (r/f(zo))
(n+ |S] — 1) /6O

(n—1)! r )
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-max {|FED(2)]: 2 € B* [2%,r/0(2°)] } o %] dor ()
n N TEONNEL .
:( —i(_anHl)‘ 1)' (ar )) maX{|F(KJ')(z)|: 2 € B® [ZO,’I“/E(ZO)}}
)1 Tsi/2+ 1)
I'(n+15]/2)

We let r = 8 > y/n and by we obtain

[FUSH9)(,0)] < (€(z°)> I+ 18] = DTG D(sy/2 + 1)

s T'(n+S1/2)
-max{|FX)(2)]: z e B" [2°, 5/0(°)]} (26)
0(2%) S]] (n+ S| — 1)! H?:l ['(s;/2+1) (K9)( 0
< ("7 F(n+ 151/2) FEEN

The above inequalities imply that for all j € {1,...,n} and k:? < ng the inequalities

PRS0 KN+ S] = DT (ss/2+ 1) [P ()

LK?JFS(ZO)(KJQ +9)! = ﬁHSH(KJQ + 9! (n+ ||S]|/2) LK?(,ZO)K]Q!

(n+ IIS] = DT, T(s;/2 + 1) [FOD (0]
BISTSIT(n + [51/2) L0 (20) K0!

<pno!

hold true. In view of there exists n; such that for all ||S|| = n; we have

(n IS - DT Disg/2+ 1)
PISISIT(n + [1511/2) h

It is obvious that there exists ny such that for all ||S|| = ny we have the inequaliuty

P!
— K
BlIsl s L

Thus, we have

FEF+S) (0 FED (L0
e < B E for a1 5y 4y
L% (20) (K2 + 8)! L% (20) K

i.e., N(F,L) < ng 4+ ny + ng. This complete the proof. ]

Remark 1. Inequality s a boundedness criterion for l-index of functions of one variable
125], [24]. But it is unknown whether this condition is sufficient for boundedness of L-index in
joint variables. QOur restrictions are corresponding multidimensional sufficient conditions.

Lemma 2. Let Ly, Ly be positive continuous functions and for each z € C" the inequality
Li(2) < Ly(2) holds. If an entire function F' has bounded Ly-indez in joint variables, F is of
bounded Lo-index in joint variables. If, in addition, for each z € C" we have L1(z) < {3(2)
then N(F, LQ) < N(F, L1>
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Proof. Let N(F,Ly) = ng. By we get

[FO@)| _Li() [FOE)]
JILI(z)  Li(z) J'LJ<)
{(2)

) [P n
) max W{((Z)KEZ—H ||K||<n0

Li(z

Ly (=
b (2) [P )!
K(2) KIL

ng; {i 2) G) KeZ}, |K| < no} (27)
1(2))"" K)(z)| )
HK||<no ( {K'LK( ) KeZy, |K| < no}-

Since Ly (z) < Ly(z), this implies that for all ||.J|| = nng the inequality

|FU)(2)| |FF(2)]
e G VN kezr, |IK|| <
L) S M\ FmEe) - K% KT <n

holds true. Thus, F' has bounded Ls-index in joint variables.
If, in addition, for each z € C" L£(2) < ¢3(z), then by for all ||.J]| = no we get

F(J) ,C llJ—K]|] F(K)
FO(z) <H%o( 1<z>> mx{& Kezn, ||K||<no}

JILY(z) lo(z) KI'LE(2)
FUO(2) )
Smax{m: K€Z+, HKH<n0
and N(F,Ls) < N(F,L;). The proof is complete. O

We denote L(z) = (I1(2),...,1n(2)). The notation L = L means that there exist
@1 = (917j,...,€917n) - RT_,'L_, @2 = (02,]-,...,92@) - Rg_ such that 9173‘[]'(2’) < ZJ(Z) < 927jl]’(2)
for each j € {1,...,n} and for all z € C".

Theorem 4. Let L € Q, L < L SUp,ccn % C < o0o. An entire function F' has bounded

L-indez in joint variables if and only if it has bounded L-index.

Proof. 1t is easy to prove that if L € Qf and L < f, then L € Q5.
Let N(F L) = fig < +00. Then by Theorem , for each 7 > 0 there exists p > 1 such that

for each z° € C" and some K° with || K°|| < 7o, 1nequahty (8) holds with L and 7 instead of L
and r. Hence,

pIFEIE) b o [FEDE) b [FUOE0)
KO LE°(20) KOl ©F"LK°(20) =~ KOl QK LK (:0)

|[FUO(2)] w0~/ 7
aX{K'LK(Z) IK|| < 7o, 2 € B [z ,r/z(zﬂ}

K| p(K)
>@1 max{M K| < g,z € B [z , min ©4;r/L(z )1}

P

m
KO
O,

KO

2 K'LK(z) <en
min {@1 } .
O<IKll<no [FU () ) ~ I -
>T max {m . HK” < Ng, 2 € B z 71%1371 @17],74/‘6(2)
min {@{(} . o
0<|| K ||<no |FUEO(2)] ~ o Tminjcjc, O
ZT e i r oy Kl <o,z € BT |27 <<n O ||
oK° fax { KILK(z) K| < 70, 2 € z iC)

Thanks to Theorem [1, now we conclude that the function F has bounded L-index. O
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Theorem 5. Let L € @, F' be an entire function. If there exist v > 0, ng € Z4, po > 1
such that for each z° € C" and for some K° € Z7 with | K°|| < no inequality (9)) holds true,
then I has bounded L-index in joint variables.

Proof. The proof of the sufficiency in Theorem |1| with r > /n implies that N(F,L) < +o0.
Let L*(2) = @, *(z) = @, and r is radius for which (9)) is true. In a general case,
by @D for F' and L with r» < 8 we obtain

(K) (%
max{‘F—<)|K K| < no, 2 €B, [ZO’ \/ﬁ/g*(zo)}}

K1 (=)
max FOG] no, 2 22 v/ (Vnl(2°) /r
< max { PO ) < oz € B, [0 v (e ) |
(K) (5
< max{% K| < no, 2z € B, [zo’r/f(zo)]}
po [FUDE0) _ B1%py  [FED ()] pepm [FU(2)]

SOKO LKE°(20) pIKOIKOY (/nL(z)/r)K°  rmo KON(L*(2))K

ie., @ holds for F, L* and r = /n. As above, now we apply Theorem 1| to the function F(z)
and L*(z) = /nL(z)/r. This gives that F is of bounded L*-index in joint variables. Therefore,
by Lemma [2] the function F' has bounded L-index in joint variables. O]

Remark 2. We note that counterparts of Theorems[1{5 were obtained in [1], [3], [{], [10]. [5]
for polydiscs. But for balls these theorems are new even if L(z) = 1, that is, in the case of entire
functions of bounded index in joint variables (see results in (13, [14)], [15], [16], |22], [20]).
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