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Abstract. We introduce modulo-loxodromic functions and study their representations,
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1. Introduction

In the work [1, p. 133], which A. Ostrowski [2] called “besonders schöne und überraschende”,
G. Julia gave an example of a meromorphic in the punctured plane C* = C ∖ {0} function such
that

𝑓(𝑞𝑧) = 𝑓(𝑧) (1)
for some non-zero 𝑞, |𝑞| ≠ 1, and all 𝑧 ∈ C*. He noted that the family {𝑓𝑛(𝑧)}, 𝑓𝑛(𝑧) = 𝑓(𝑞𝑛𝑧)
is normal [3] in C* since 𝑓𝑛(𝑧) = 𝑓(𝑧) for all 𝑧 ∈ C*.

The functions satisfying (1) are called multiplicatively periodic. The theory of meromorphic
in C∖{0} multiplicatively periodic functions was developed by O. Rausenberger [4]. G. Valiron
[5] (see also [6]) called these functions loxodromic since for non-real 𝑞, the points, at which such
function takes the same value, are located on a logarithmic spirals (the images of loxodromes
under the stereographic projection). They give a simple construction [5], [6] of elliptic functions,
which are well known due to the works of K. Jacobi, N. Abel, and K. Weierstrass.

We consider modulo-loxodromic functions.

2. Modulo-loxodromic meromorphic functions

Definition 1. A meromorphic in C* function 𝑓 is said to be modulo-loxodromic with a
multiplicator 𝑞 if there exists 𝑞 (0 < |𝑞| < 1) such that |𝑓(𝑞𝑧)| = |𝑓(𝑧)|, 𝑧 ∈ C*.

We denote by |ℒ|𝑞 and ℒ𝑞 the sets of all modulo-loxodromic and loxodromic functions with
a multiplicator 𝑞, respectively.

It is obvious that ℒ𝑞 ⊂ |ℒ|𝑞. However, there are modulo-loxodromic functions in C* which
are not loxodromic.

Indeed, consider an entire function with the zero sequence {𝑞−𝑛}, 𝑛 ∈ N, where 0 < |𝑞| < 1,

ℎ(𝑧) =
∞∏︁
𝑛=1

(1− 𝑞𝑛𝑧).
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The function

𝑃 (𝑧) = (1− 𝑧)ℎ(𝑧)ℎ

(︂
1

𝑧

)︂
= (1− 𝑧)

∞∏︁
𝑛=1

(1− 𝑞𝑛𝑧)

(︂
1− 𝑞𝑛

𝑧

)︂
is called the Schottky-Klein prime function [8].

This function is holomorphic in C* with zero sequence {𝑞𝑛}, 𝑛 ∈ Z. It was introduced by
Schottky [9] and Klein [10] for studying the conformal mappings of doubly-connected domains.

Now consider the function

𝑓(𝑧) =
𝑃 (𝑒−𝑖𝛼𝑧)

𝑃 (𝑧)
,

𝛼

𝜋
̸∈ Q. (2)

Taking into consideration that
𝑃 (𝑞𝑧) = −1

𝑧
𝑃 (𝑧),

we have 𝑓(𝑞𝑧) = 𝑒𝑖𝛼𝑓(𝑧) and |𝑓(𝑞𝑧)| = |𝑓(𝑧)|, 𝑧 ∈ C*. Hence, 𝑓 ∈ |ℒ|𝑞 and 𝑓 ̸∈ ℒ𝑞.
Furthermore, 𝑓 ̸∈ ℒ𝑞 for each 𝑞. Indeed, suppose that there exists a non-zero 𝜎, |𝜎| ≠ 1 such

that 𝑓(𝜎𝑧) = 𝑓(𝑧) foreach 𝑧 ∈ C*. We observe that 𝑓(𝑒𝑖𝛼) = 0. So, 𝑓(𝜎𝑒𝑖𝛼) = 0 and since the
only zeroes of 𝑓 are 𝑞𝑘𝑒𝑖𝛼, 𝑘 ∈ Z, we obtain that there exists 𝑘0 ∈ Z such that 𝜎 = 𝑞𝑘0 . This
implies that 𝑓(𝜎𝑧) = 𝑓(𝑞𝑘0𝑧) = 𝑒𝑖𝑘0𝛼𝑓(𝑧) and the last value cannot be equal to 𝑓(𝑧) for any
𝑘0 ∈ Z due to the choice of 𝛼 in (2).

3. Representation of modulo-loxodromic functions

Let 𝑓 be a meromorphic in C* modulo-loxodromic function with a multiplicator 𝑞.
First, we suppose that 𝑓 is holomorphic in C*. Then 𝑓 is bounded in a neighbourhood of the

origin since |𝑓 | is determined by its values in 𝐴𝑞 = {𝑧 ∈ C : |𝑞| < |𝑧| 6 1}. Hence, the origin is
a removable singularity of 𝑓. We have that 𝑓 is holomorphic and bounded in C. Therefore, by
the Liouville theorem 𝑓 = 𝑐𝑜𝑛𝑠𝑡.

If 𝑓 is not holomorphic, then there exists at least one pole 𝑏 ∈ C* of 𝑓. Taking into
consideration the modulo-loxodromity of 𝑓 , we conclude that 𝑞𝑛𝑏, where 𝑛 ∈ Z are also the
poles of 𝑓. Applying similar arguments to 1/𝑓 , we obtain that 𝑓 is either constant or has at
least one zero 𝑎 ∈ C*. In the latter case 𝑞𝑛𝑎, where 𝑛 ∈ Z must also be the zeroes of 𝑓.

Thus, we have only two mutually excluding possibilities. Either function 𝑓 is constant or it
has an infinite number of zeroes and poles.

The function log |𝑓 | is loxodromic 𝛿-subharmonic function [7]. Applying [7, Thm. 3.3],
we conclude that the function 𝑓 has the same number of zeroes and poles (taken counting
multiplicities) in each annulus {𝑧 : |𝑞|𝑟 < |𝑧| 6 𝑟}, 𝑟 > 0.

Let 𝑎1, 𝑎2, . . . , 𝑎𝑚 and 𝑏1, 𝑏2, . . . , 𝑏𝑚 be the zeroes and poles of 𝑓 in {𝑧 : |𝑞| < |𝑧| 6 1},
respectively. Then all the zeroes of 𝑓 have the form 𝑎𝑘𝑞

𝑛, where 𝑛 ∈ Z, 𝑘 = 1, 2, . . . ,𝑚, while
all the poles of 𝑓 are given by 𝑏𝑘𝑞

𝑛, where 𝑛 ∈ Z, 𝑘 = 1, 2, . . . ,𝑚, and there exists 𝑝 ∈ Z such
that

|𝑎1 · · · 𝑎𝑚|
|𝑏1 · · · 𝑏𝑚|

= |𝑞|𝑝. (3)

A Nevanlinna type characteristic of a function meromorphic in {𝑧 : 1
𝑅0

< |𝑧| < 𝑅0}, where
1 < 𝑅0 6 +∞, was introduced in [11]. Namely,

𝑇0(𝑟, 𝑓) = 𝑚0(𝑟, 𝑓) +𝑁0(𝑟, 𝑓), 1 < 𝑟 < 𝑅0,

where

𝑚0(𝑟, 𝑓) = 𝑚(𝑟, 𝑓) +𝑚

(︂
1

𝑟
, 𝑓

)︂
− 2𝑚(1, 𝑓),

𝑚(𝑡, 𝑓) =
1

2𝜋

∫︁ 2𝜋

0

log+ |𝑓(𝑡𝑒𝑖𝜃)| 𝑑𝜃, 1

𝑅0

< 𝑡 < 𝑅0,
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and
𝑁0(𝑟, 𝑓) =

∫︁ 𝑟

1

𝑛0(𝑡, 𝑓)

𝑡
𝑑𝑡,

𝑛0(𝑡, 𝑓) is the number of poles of 𝑓 in the annulus 1/𝑡 < |𝑧| 6 𝑡 taken counting multiplicities.
The function 𝑇0(𝑟, 𝑓) is nonnegative, nondecreasing, continuous and convex with respect to

log 𝑟 on [1, 𝑅0) ([11]). By the definition we have 𝑇0(𝑟, 0) = 0.
Taking into consideration the above observations on zeroes and poles of 𝑓 and analysing the

proof of Theorem 1 in [12], we obtain that the statement of this Theorem 1 is valid for our
function 𝑓. That is,

𝑇0(𝑟, 𝑓) =
𝑚

log 1
|𝑞|

log2 𝑟 +𝑂(log 𝑟), 𝑟 > 1.

So, the function 𝑓 is of order 0 and applying the representation theorem for a meromorphic in
C* function of finite order ([13]), we get the following representation of 𝑓.

Theorem 1. Each modulo-loxodromic function 𝑓 has the representation

𝑓(𝑧) = 𝐶𝑧𝑝
𝑚∏︁
𝑘=1

+∞∏︀
𝑛=0

(︂
1− 𝑞𝑛𝑧

𝑎𝑘

)︂
+∞∏︀
𝑛=1

(︂
1− 𝑞𝑛𝑎𝑘

𝑧

)︂
+∞∏︀
𝑛=0

(︂
1− 𝑞𝑛𝑧

𝑏𝑘

)︂
+∞∏︀
𝑛=1

(︂
1− 𝑞𝑛𝑏𝑘

𝑧

)︂ , 𝑧 ∈ C* (4)

where 𝐶 is a constant and 𝑝 ∈ Z satisfies condition (3).

4. Zero and pole distribution

Let {𝑎𝑗}, {𝑏𝑗}, 𝑗 ∈ Z be a pair of sequences in C*, 𝑝 ∈ Z. Denote

M𝑝(𝑟) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟𝑝

∏︀
1<|𝑎𝑗 |6𝑟

𝑟
|𝑎𝑗 |∏︀

1<|𝑏𝑗 |6𝑟

𝑟
|𝑏𝑗 |

, 𝑟 > 1;

𝑟𝑝

∏︀
𝑟<|𝑎𝑗 |61

|𝑎𝑗 |
𝑟∏︀

𝑟<|𝑏𝑗 |61

|𝑏𝑗 |
𝑟

, 0 < 𝑟 6 1.

Theorem 2. The sequence of zeroes {𝑎𝑗} and the sequence of poles {𝑏𝑗} of a modulo-
loxodromic function satisfy the following conditions
(𝑖) the number of 𝑎𝑗 and 𝑏𝑗 in each annulus of the form {𝑧 : 𝑟 < |𝑧| < 2𝑟}, 𝑟 > 0 is bounded

by an absolute constant;
(𝑖𝑖) the difference between the numbers of 𝑎𝑗 and 𝑏𝑘 in each annulus {𝑧 : 𝑟1 < |𝑧| < 𝑟2},

0 < 𝑟1 < 𝑟2 < +∞ is bounded by an absolute constant;
(𝑖𝑖𝑖) there exists 𝐶1 > 0 such that

⃒⃒⃒
𝑎𝑗
𝑏𝑘

− 1
⃒⃒⃒
> 𝐶1 for all 𝑗, 𝑘 ∈ Z ;

(𝑖𝑣) the function M𝑝(𝑟), where 𝑝 ∈ Z satisfies condition (3), is continuous and bounded for
𝑟 > 0.

Proof. Let 𝑓 be a modulo-loxodromic function. As we have established, either function 𝑓
is constant or it has infinitely many zeroes and poles. The proof of the theorem in the former
case is trivial, so we can focus only on the latter one. Next we use the representation (4).

(𝑖) First we remark that there exists a unique 𝑛0 ∈ Z+ such that
1

|𝑞|𝑛0
6 2 <

1

|𝑞|𝑛0+1
. This

𝑛0 is equal to

[︃
log 2

log 1
|𝑞|

]︃
.
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Since each annulus
{︂
𝑧 :

𝑟

|𝑞|𝑘
< |𝑧| 6 𝑟

|𝑞|𝑘+1

}︂
, where 𝑘 ∈ Z, contains the same number of

zeroes of 𝑓, say 𝑚, and

(𝑟, 2𝑟] =

(︃
𝑛0−1⋃︁
𝑘=0

(︂
𝑟

|𝑞|𝑘
,

𝑟

|𝑞|𝑘+1

]︂)︃
∪
(︂

𝑟

|𝑞|𝑛0
, 2𝑟

]︂
it follows that the annulus {𝑧 : 𝑟 < |𝑧| 6 2𝑟} contains at least 𝑛0𝑚 and less than (𝑛0 + 1)𝑚
zeroes of 𝑓. The same is true about the poles of 𝑓.

(𝑖𝑖) In the same way as in (𝑖), we can find unique 𝑛1, 𝑛2 ∈ Z such that

|𝑞|𝑛1+1 < 𝑟1 6 |𝑞|𝑛1 < |𝑞|𝑛2 < 𝑟2 6 |𝑞|𝑛2−1.

Hence,

(𝑟1, 𝑟2) = (𝑟1, |𝑞|𝑛1 ] ∪

(︃
𝑛2−1⋃︁
𝑘=𝑛1

(|𝑞|𝑘, |𝑞|𝑘+1]

)︃
∪ (|𝑞|𝑛2 , 𝑟2).

Each annulus of the form {𝑧 : |𝑞|𝑘+1 < |𝑧| 6 |𝑞|𝑘}, where 𝑘 ∈ Z, contains the same amount
of zeroes and poles of 𝑓 taken counting multiplicities; we have denoted this number by 𝑚.
Therefore, the difference between the numbers of zeroes and poles of 𝑓 in the annulus {𝑧 : 𝑟1 <
|𝑧| < 𝑟2} is no greater than 2𝑚 because of the choice of 𝑛1, 𝑛2.

(𝑖𝑖𝑖) Let 𝑎1, 𝑎2, . . . , 𝑎𝑚 and 𝑏1, 𝑏2, . . . , 𝑏𝑚 be the zeroes and the poles of 𝑓 in {𝑧 : |𝑞| < |𝑧| 6 1},
respectively. Then all the zeroes of 𝑓 have the form 𝛼𝜇,𝑘 = 𝑎𝑘𝑞

𝜇, where 𝜇 ∈ Z, 𝑘 = 1, 2, . . . ,𝑚.
The same is true about the poles of 𝑓, namely 𝛽𝜈,𝑘 = 𝑏𝑘𝑞

𝜈 , where 𝜈 ∈ Z, 𝑘 = 1, 2, . . . ,𝑚. So,
𝛼𝜇,𝑗

𝛽𝜈,𝑘
=

𝑎𝑗
𝑏𝑘
𝑞𝑙, where 𝑙 ∈ Z.

We need to show that there exists 𝐶 > 0 such that the inequality⃒⃒⃒⃒
𝑎𝑗
𝑏𝑘
𝑞𝑙 − 1

⃒⃒⃒⃒
> 𝐶

holds for all 𝑗, 𝑘 ∈ {1, 2, . . . ,𝑚}, and 𝑙 ∈ Z.
Suppose that for each 𝜀 > 0 there exist 𝑗, 𝑘 ∈ {1, 2, . . . ,𝑚}, and 𝑙 ∈ Z such that⃒⃒⃒⃒

𝑎𝑗
𝑏𝑘
𝑞𝑙 − 1

⃒⃒⃒⃒
6 𝜀. (5)

Without loss of generality we can assume that |𝑙| 6 2. Indeed, taking into consideration the
location of 𝑎𝑗, 𝑏𝑘, we have ⃒⃒⃒⃒

𝑎𝑗
𝑏𝑘
𝑞𝑙
⃒⃒⃒⃒
6

1

|𝑞|
|𝑞|𝑙 6 |𝑞|, 𝑙 > 2.

In the same way we get ⃒⃒⃒⃒
𝑎𝑗
𝑏𝑘
𝑞𝑙
⃒⃒⃒⃒
> |𝑞||𝑞|𝑙 > 1

|𝑞|
, 𝑙 6 −2.

Thus, for all 𝑗, 𝑘 ∈ {1, 2, . . . ,𝑚}, and 𝑙 > 2⃒⃒⃒⃒
𝑎𝑗
𝑏𝑘
𝑞𝑙 − 1

⃒⃒⃒⃒
> 1− |𝑞|,

and for 𝑙 6 −2 ⃒⃒⃒⃒
𝑎𝑗
𝑏𝑘
𝑞𝑙 − 1

⃒⃒⃒⃒
>

1

|𝑞|
− 1.

Let now |𝑙| < 2. Choose

𝜀 =
1

2
min{|𝑎𝑗𝑞𝑙 − 𝑏𝑘| : 𝑗, 𝑘 ∈ {1, 2, . . . ,𝑚},−1 6 𝑙 6 1}.
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Then (5) implies

|𝑎𝑗𝑞𝑙 − 𝑏𝑘| 6 𝜀|𝑏𝑘| 6 𝜀 .

That is,

|𝑎𝑗𝑞𝑙 − 𝑏𝑘| 6
1

2
min{|𝑎𝑗𝑞𝑙 − 𝑏𝑘| : 𝑗, 𝑘 ∈ {1, 2, . . . ,𝑚},−1 6 𝑙 6 1}

which gives a contradiction.

(𝑖𝑣) We recall that 𝑓 satisfies representation (4). Clearly, we can assume that 𝐶 ̸= 0. Consider

the integral means 𝐼(𝑟) = 1
2𝜋

2𝜋∫︀
0

log |𝑓(𝑟𝑒𝑖𝜃)| 𝑑𝜃 , 𝑟 > 0.

Let 𝑧 = 𝑟𝑒𝑖𝜃. We have for 𝑟 > 1 [16, p. 8]

1

2𝜋

2𝜋∫︁
0

log

⃒⃒⃒⃒
1− 𝑧

𝑎𝑗

⃒⃒⃒⃒
𝑑𝜃 = log+

𝑟

|𝑎𝑗|
,

and, if |𝑎𝑗| 6 1,

1

2𝜋

2𝜋∫︁
0

log
⃒⃒⃒
1− 𝑎𝑗

𝑧

⃒⃒⃒
𝑑𝜃 = 0 .

The same is true for 𝑏𝑗.
Thus,

𝐼(𝑟) = 𝑝 log 𝑟 +
∑︁
|𝑎𝑗 |>1

log+
𝑟

|𝑎𝑗|
−
∑︁
|𝑏𝑗 |>1

log+
𝑟

|𝑏𝑗|
+ log |𝐶| , 𝑟 > 1 .

In the same way for 0 < 𝑟 6 1 we obtain

𝐼(𝑟) = 𝑝 log 𝑟 +
∑︁
|𝑎𝑗 |61

log+
|𝑎𝑗|
𝑟

−
∑︁
|𝑏𝑗 |61

log+
|𝑏𝑗|
𝑟

+ log |𝐶| .

Hence,

M𝑝(𝑟) =
1

|𝐶|
exp 𝐼(𝑟), 𝑟 > 0 . (6)

Since 𝐼(𝑟) is convex with respect to log 𝑟 and therefore, is continuous, 𝐼(𝑟) is bounded on
[|𝑞|, 1]. It follows from the definition of a modulo-loxodromic function that 𝐼(|𝑞|𝑘𝑟) = 𝐼(𝑟) for
each 𝑘 ∈ Z. Then, we conclude that 𝐼(𝑟) remains bounded for all 𝑟 > 0 that completes the
proof.

5. Julia exceptionality

Definition 2. A meromorphic in C* function 𝑓 is called Julia exceptional [3] if for some 𝑞,
0 < |𝑞| < 1, the family {𝑓𝑛(𝑧)}, 𝑛 ∈ Z, where 𝑓𝑛(𝑧) = 𝑓(𝑞𝑛𝑧), is normal [3] in C*.

The following theorem is a generalization of one “remarkably complete” result of A. Ostrowski
[2], [3] for meromorphic functions 𝑓 with two essential singularities. This theorem was originally
formulated without proof by A. Eremenko [14] and later was proved by L. Radchenko [15]. We
propose here its following version.
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Theorem A. I. Two sequences {𝑎𝑗}, {𝑏𝑗} in C* are sequences of zeroes and poles of a
Julia exceptional in C* function 𝑓 , respectively, if and only if they satisfy conditions (i) –
(iii) of Theorem 2 and
(𝑖𝑣) there exist 𝑝 ∈ Z and 𝐶2 > 0, 𝐶3 > 0 such that M𝑝(|𝑎𝑗|) 6 𝐶2 and M𝑝(|𝑏𝑗|) > 𝐶3 for

each 𝑗 ∈ Z .
II. If {𝑎𝑗}, {𝑏𝑗}, and 𝑝 satisfy (𝑖) - (𝑖𝑣), then the function

Π(𝑧) = 𝑧𝑝

∏︀
|𝑎𝑗 |61

(︁
1− 𝑎𝑗

𝑧

)︁ ∏︀
|𝑎𝑗 |>1

(︂
1− 𝑧

𝑎𝑗

)︂
∏︀

|𝑏𝑗 |61

(︂
1− 𝑏𝑗

𝑧

)︂ ∏︀
|𝑏𝑗 |>1

(︂
1− 𝑧

𝑏𝑗

)︂ ,

is Julia exceptional in C*, and vice versa, each non-rational Julia exceptional in C*

function 𝑓 satisfies the representation

𝑓(𝑧) = 𝐶 · Π(𝑧)

where {𝑎𝑗}, {𝑏𝑗}, 𝑝 satisfy (𝑖) - (𝑖𝑣), and 𝐶 is a constant.

As an immediate consequence of Theorem 2 and Theorem A [2], [3] we obtain the following
theorem.

Theorem 3. Each modulo-loxodromic function is Julia exceptional in C*.

Indeed, using the representation of modulo-loxodromic function given by Theorem 1, we
observe that conditions (𝑖)-(𝑖𝑖𝑖) in Theorem A coincide with those of Theorem 2 and condition
(𝑖𝑣) of Theorem A is implied immediately by condition (𝑖𝑣) of Theorem 2.

BIBLIOGRAPHY
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3. Montel P., Leçons sur les familles normales de fonctions analytiques et leurs applications,
Gauthier-Villars, Paris (1927)

4. Rausenberger O. Lehrbuch der Theorie der Periodischen Functionen Einer Variabeln Mit Einer
Endlichen Anzahl Wesentlicher Discontinuitätspunkte Nebst Einer Einleitung in die Allgemeine
Functionentheorie, Druck und Verlag von B.G.Teubner, Leipzig (1884)
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