УДК 517.538.2 + 517.984.26 + 517.547

О 2-ПОРОЖДЕННОСТИ СЛАБО ЛОКАЛИЗУЕМЫХ ПОДМОДУЛЕЙ В МОДУЛЕ ЦЕЛЫХ ФУНКЦИЙ ЭКСПОНЕНЦИАЛЬНОГО ТИПА И ПОЛИНОМИАЛЬНОГО РОСТА НА ВЕЩЕСТВЕННОЙ ОСИ

Н.Ф. АБУЗЯРОВА

Аннотация. В работе рассматривается топологический модуль целых функций $\mathcal{P}(a;b)$ – изоморфный образ при преобразовании Фурье-Лапласа пространства Шварца распределений с компактными носителями в конечном или бесконечном интервале $(a;b) \subset \mathbb{R}$. Доказывается, что каждый слабо локализуемый подмодуль в $\mathcal{P}(a;b)$ либо порожден двумя своими элементами, либо равен замыканию суммы двух подмодулей специального вида. Также приводятся двойственные результаты об инвариантных относительно оператора дифференцирования подпространствах пространства $C^{\infty}(a;b)$.

Ключевые слова: целые функции, субгармонические функции, преобразование Фурье-Лапласа, конечно порожденные подмодули, локальное описание подмодулей, инвариантные подпространства, спектральный синтез.

Mathematics Subject Classification: 30D15, 30H99, 42A38, 47E05

1. Введение

Пусть $[a_1;b_1] \in [a_2;b_2] \in \dots$ – последовательность отрезков, исчерпывающая конечный или бесконечный интервал (a;b) вещественной прямой, P_k – банахово пространство, состоящее из всех целых функций φ , для которых конечна норма

$$\|\varphi\|_k = \sup_{z \in \mathbb{C}} \frac{|\varphi(z)|}{(1+|z|)^k \exp(b_k y^+ - a_k y^-)}, \quad y^{\pm} = \max\{0, \pm y\}, \quad z = x + iy.$$
 (1.1)

Обозначим через $\mathcal{P}(a;b)$ индуктивный предел последовательности $\{P_k\}$. Каждое из вложений $P_k \subset P_{k+1}$ вполне непрерывно, следовательно, $\mathcal{P}(a;b)$ есть локально-выпуклое пространство типа (LN^*) (см. [1]). Известно (см., например, [2, §16.1]), что всякий элемент φ пространства $\mathcal{P}(a;b)$ является целой функцией вполне регулярного роста при порядке 1, индикаторная диаграмма которой есть отрезок мнимой оси $\mathbf{i}[c_{\varphi};d_{\varphi}] \subset \mathbf{i}(a;b)$.

Через $\mathcal{P}_0(a;b)$ будем обозначать линейное подпространство пространства $\mathcal{P}(a;b)$, состоящее из всех функций φ , которые быстро убывают на вещественной прямой:

$$|\varphi(x)| = o(|x|^n), \qquad n \in \mathbb{N}.$$

В пространстве $\mathcal{P}(a;b)$ операция умножения на независимую переменную z непрерывна, поэтому $\mathcal{P}(a;b)$ – топологический модуль над кольцом многочленов $\mathbb{C}[z]$. Для краткости всюду ниже, если не оговорено противное, будем пользоваться термином «подмодуль», имея в виду замкнутый подмодуль модуля $\mathcal{P}(a;b)$, то есть замкнутое подпространство, инвариантное относительно умножения на z.

N.F. ABUZYAROVA, ON 2-GENERATENESS OF WEAKLY LOCALIZABLE SUBMODULES IN THE MODULE OF ENTIRE FUNCTIONS OF EXPONENTIAL TYPE AND POLYNOMIAL GROWTH ON THE REAL AXIS.

[©] Абузярова Н.Ф. 2016.

Работа выполнена при поддержке гранта 01201456408 Минобрнауки РФ.

Поступила 31 мая 2016 г.

Обозначим $\mathcal{J}_{\varphi_1,...,\varphi_m}$ подмодуль, порожденный функциями $\varphi_1,...,\varphi_m \in \mathcal{P}(a;b)$ (иначе, m-порожденный):

$$\mathcal{J}_{\varphi_1,\dots,\varphi_m} = \overline{\{p_1\varphi_1 + \dots + p_m\varphi_m, \quad p_1,\dots,p_m \in \mathbb{C}[z]\}},$$
(1.2)

Функции $\varphi_1, \ldots, \varphi_m$ называются *образующими* подмодуля $\mathcal{J}_{\varphi_1, \ldots, \varphi_m}$. Подмодуль с одной образующей называется *главным*.

Ниже приводятся определения понятий, характеризующих свойства подмодулей и использующихся в вопросах локального описания (см. [3] - [6]).

Для подмодуля $\mathcal{J} \subset \mathcal{P}(a;b)$ положим $c_{\mathcal{J}} = \inf_{\varphi \in \mathcal{J}} c_{\varphi}, d_{\mathcal{J}} = \sup_{\varphi \in \mathcal{J}} d_{\varphi}$. Множество $[c_{\mathcal{J}}; d_{\mathcal{J}}]$

называется uнdикаторным отрезком подмодуля \mathcal{J} .

Дивизор функции $\varphi \in \mathcal{P}(a;b)$ для всех $\lambda \in \mathbb{C}$ определяется формулой

$$n_{\varphi}(\lambda) = \begin{cases} 0, & \text{если} \quad \varphi(\lambda) \neq 0, \\ m, & \text{если} \quad \lambda - \text{нуль} \quad \varphi \quad \text{кратности} \quad m, \end{cases}$$

а дивизор подмодуля $\mathcal{J} \subset \mathcal{P}(a;b)$ – формулой $n_{\mathcal{J}}(\lambda) = \min_{\varphi \in \mathcal{J}} n_{\varphi}(\lambda)$. Далее, определяем нулевое множество Λ_{φ} функции φ :

$$\Lambda_{\varphi} = \{ (\lambda_k; m_k) : n_{\varphi}(\lambda_k) = m_k > 0 \},$$

и нулевое множество $\Lambda_{\mathcal{J}}$ подмодуля \mathcal{J} :

$$\Lambda_{\mathcal{J}} = \{ (\lambda_k; m_k) : n_{\mathcal{J}}(\lambda_k) = m_k > 0 \}.$$

Подмодуль \mathcal{J} слабо локализуем, если он содержит все функции $\varphi \in \mathcal{P}(a;b)$, удовлетворяющие условиям: 1) $n_{\varphi}(z) \geq n_{\mathcal{J}}(z), z \in \mathbb{C}$; 2) индикаторная диаграмма функции φ содержится в множестве $\mathrm{i}[c_{\mathcal{J}};d_{\mathcal{J}}]$. В случае, если $c_{\mathcal{J}}=a$ и $d_{\mathcal{J}}=b$, слабая локализуемость \mathcal{J} означает, что этот подмодуль локализуемый (обильный).

Пусть $\varphi \in \mathcal{P}(a;b), c, d \in \overline{\mathbb{R}}$ и

$$a < c < c_{0} < d_{0} < d < b.$$

Обозначим $\mathcal{J}(\varphi,\langle c;d\rangle)$ подмодуль в $\mathcal{P}(a;b)$, состоящий из всех функций $\psi \in \mathcal{P}(a;b)$ с множеством нулей $\Lambda_{\psi} \supset \Lambda_{\varphi}$ и индикаторной диаграммой $\mathrm{i}[c_{\psi};d_{\psi}] \subset \mathrm{i}\langle c;d\rangle$ (здесь и всюду в дальнейшем символ « $\langle * \rangle$ обозначает скобку « $[* \rangle$ или « $(* \rangle$, в зависимости от того, какое из соотношений a=c или a<c имеет место, так же следует понимать скобку « $[* \rangle * \rangle$). Ясно, что подмодуль $\mathcal{J}(\varphi,\langle c;d\rangle)$ слабо локализуем. Для подмодуля $\mathcal{J}(\varphi,[c_{\varphi};d_{\varphi}])$ будем использовать более короткое обозначение $\mathcal{J}(\varphi)$.

Подмодуль \mathcal{J} называется устойчивым в точке $\lambda \in \mathbb{C}$, если выполнение условий $\varphi \in \mathcal{J}$ и $n_{\varphi}(\lambda) > n_{\mathcal{J}}(\lambda)$ влечет включение $\frac{\varphi}{z-\lambda} \in \mathcal{J}$. Подмодуль \mathcal{J} устойчив, если он устойчив в любой точке $\lambda \in \mathbb{C}$.

Легко видеть, что устойчивость подмодуля \mathcal{J} является необходимым условием его слабой локализуемости. Однако, не всякий устойчивый подмодуль в $\mathcal{P}(a;b)$ слабо локализуем. Действительно, из результатов работы [7, § 4] следует, что каждый главный подмодуль в $\mathcal{P}(a;b)$ устойчив. Это также можно проверить непосредственно, используя определение устойчивости и описание топологии в $\mathcal{P}(a;b)$. С другой стороны, пример, построенный в работе [8], а также теорема 3 работы [9], показывают, что в модуле $\mathcal{P}(a;b)$ не все главные подмодули слабо локализуемы. Таким образом, утверждение о том, что всякий устойчивый конечно порожденный подмодуль в $\mathcal{P}(a;b)$ слабо локализуем, не верно.

В данной работе мы доказываем, что обратное утверждение имеет место: каждый слабо локализуемый подмодуль $\mathcal{J}\subset\mathcal{P}(a;b)$ либо порожден двумя (быть может, совпадающими) своими элементами, либо равен замыканию суммы двух (быть может, совпадающих) подмодулей вида $\mathcal{J}(\varphi,\langle c;d\rangle)$. В [3, теоремы 4 и 5] нами были анонсированы менее общие утверждения.

Вопрос о 2-порожденности в широком смысле ранее исследовался для локализуемых (обильных) подмодулей в модуле целых функций конечного порядка, определяемом ограничениями на индикатор [10], [11], для локализуемых (обильных) подмодулей в абстрактных весовых модулях голоморфных функций [12], для подмодулей с конечным нулевым множеством в модуле $\mathcal{P}(a;b)$ [4]. Один из результатов работы [12] — это теорема о том, что локализуемые (обильные) подмодули модуля $\mathcal{P}(a;b)$ порождаются двумя подмодулями вида $\mathcal{J}(\varphi,(a;b))$. Отметим, что из абстрактной части статьи [12] можно вывести п. 1) теоремы 1 настоящей работы для частного случая, когда $c_{\mathcal{J}}=a$ или (и) $d_{\mathcal{J}}=b$. Другие утверждения о 2-порожденности слабо локализуемых подмодулей в $\mathcal{P}(a;b)$, доказываемые здесь: п. 2) теоремы 1, теорема 3 и п. 1) теоремы 1 в общей формулировке — не могут быть получены при помощи результатов работы [12].

Дальнейшее изложение ведется следующим образом: второй параграф содержит теоремы о 2-порожденности в широком смысле произвольного слабо локализуемого подмодуля $\mathcal J$ в $\mathcal P(a;b)$ (теоремы 1 и 3), в третьем параграфе из этих теорем выводятся двойственные утверждения о структуре инвариантных относительно оператора дифференцирования замкнутых подпространств пространства $C^\infty(a;b)$.

2. Структура слабо локализуемых подмодулей

Теорема 1. Пусть $\mathcal{J} \subset \mathcal{P}(a;b)$ – слабо локализуемый подмодуль.

1) Если \mathcal{J} содержит функции из $\mathcal{P}_0(a;b)$, то для любой функции $\varphi_1 \in \mathcal{J} \cap \mathcal{P}_0(a;b)$ существует бесконечно много функций $\varphi_2 \in \mathcal{J} \cap \mathcal{P}_0(a;b)$ со свойством:

$$\mathcal{J} = \overline{\mathcal{J}(\varphi_1, \langle c_{\mathcal{J}}; d_{\mathcal{J}} \rangle) + \mathcal{J}(\varphi_2, \langle c_{\mathcal{J}}; d_{\mathcal{J}} \rangle)}.$$
 (2.1)

2) Если $\mathcal{J} \cap \mathcal{P}_0(a;b) = \emptyset$, то существует функция $\varphi_0 \in \mathcal{J}$ такая, что

$$\mathcal{J} = \mathcal{J}_{\varphi_0} = \{ p\varphi_0, \quad p \in \mathbb{C}[z] \}. \tag{2.2}$$

Доказательство. 1) Первое из сформулированных утверждений доказывается по той же схеме, что и теорема 2 в работе [4], где были рассмотрены устойчивые подмодули с конечным множеством нулей.

Без ограничения общности можем считать, что $0t \in \Lambda_{\mathcal{J}}$ и $\varphi_1(0) = 1$. Пусть $\Lambda_{\varphi_1} = \{\lambda_j\}$, $|\lambda_1| \leq |\lambda_2| \leq \ldots$, каждый нуль выписан столько раз, какова его кратность.

Выберем и зафиксируем два числа $a', b' \in \mathbb{R}$, удовлетворяющие соотношениям

$$a \le a' < c_{\varphi_1} \le d_{\varphi_1} < b' \le b, \quad a' \le c_{\mathcal{J}}, \quad d_{\mathcal{J}} \le b',$$

где $c_{\varphi_1} = h_{\varphi_1}(-\pi/2), \ d_{\varphi_1} = h_{\varphi_1}(\pi/2), \ h_{\varphi_1}$ – индикатор функции φ_1 . Также выберем и зафиксируем какую-нибудь последовательность $\widetilde{\Gamma} = \{\widetilde{\gamma}_k\}, \ 0t \in \widetilde{\Gamma}$ столь близкую к Λ_{φ_1} , что для последовательностей Λ_{φ_1} и $\widetilde{\Gamma}$ выполнено условие

$$\sum_{j=1}^{\infty} \frac{|\lambda_j - \tilde{\gamma}_j|}{1 + |\operatorname{Im} \lambda_j| + |\operatorname{Im} \tilde{\gamma}_j|} < +\infty.$$
(2.3)

Положим

$$\widetilde{C} = \sum_{j=1}^{\infty} \frac{|\lambda_j - \widetilde{\gamma}_j|}{1 + |\operatorname{Im} \lambda_j|}, \quad \widetilde{A}_m = e^{2\widetilde{C}} \|s_1^{(m+1)}\|_{L^1(a';b')},$$

где $s_1 \in C_0^{\infty}(a';b')$ – прообраз при преобразовании Фурье-Лапласа \mathcal{F} функции φ_1 . Сходимость ряда в определении величины \widetilde{C} следует из условия (2.3) (см. доказательство теоремы 5.1.2 в [13]).

Рассмотрим произвольную последовательность $\Gamma = \{\gamma_k\}, \ 0t \in \Gamma,$ для которой

$$|\gamma_k - \lambda_k| \le |\tilde{\gamma}_k - \lambda_k|, \quad k = 1, 2, \dots$$
 (2.4)

Согласно предложению 3 и замечанию 1 из работы [4] функция φ_2 , определенная по функции φ_1 и последовательности Γ равенством

$$\varphi_2(z) = e^{-icz} \lim_{R \to \infty} \prod_{|\gamma_k| < R} \left(1 - \frac{z}{\gamma_k} \right), \quad \text{где} \quad c = \frac{c_{\varphi_1} + d_{\varphi_1}}{2}, \tag{2.5}$$

есть преобразование Фурье-Лапласа некоторой функции $s_2 \in C_0^\infty(a';b') \subset C_0^\infty(a;b)$, причем $\operatorname{ch} \operatorname{supp} s_2 = [c_{\varphi_1};d_{\varphi_1}]$ и

$$|s_2^{(m)}(t)| \le \tilde{A}_m, \quad t \in (a; b), \quad m = 0, 1, \dots$$
 (2.6)

Здесь ch supp s_2 – замыкание выпуклой оболочки носителя функции s_2 .

Пусть $\{r_k\}_{k=0}^{\infty}$ — возрастающая последовательность вещественных чисел, больших 2, такая, что

$$|\varphi_1(x)| \le |x|^{-k}, \quad x \in \mathbb{R}, \quad |x| \ge r_k. \tag{2.7}$$

Положим

$$R_k = \max\{r_k, \tilde{A}_{k+1}(b'-a')\}, \quad k = 0, 1, 2, \dots$$
(2.8)

Для функции φ_2 , в силу соотношения $\varphi_2 = \mathcal{F}(s_2), s_2 \in C_0^{\infty}(a';b')$, и оценок (2.6), имеем

$$|\varphi_2(x)| \le \frac{\tilde{A}_{k+1}(b'-a')}{|x|^{k+1}} \le \frac{1}{|x|^k}, \quad |x| \ge R_k, \quad k = 0, 1, \dots$$
 (2.9)

Заметим, что последние оценки справедливы для всех функций φ_2 , определенных формулой (2.5) по функции φ_1 и последовательности Γ , если только Γ удовлетворяет (2.4).

Последовательности Λ и Γ имеют одинаковую плотность, обозначим ее Δ_0 . Для произвольных фиксированных чисел $\Delta > \Delta_0$, $\delta > 0$ положим $R_j^* = \mu(\delta/\Delta) \max\{|\lambda_j|, |\gamma_j|\}$, где функция $\mu(\chi)$ – обратная к функции

$$\chi(\mu) = \frac{1}{\mu} \ln(1+\mu) + \ln\left(1+\frac{1}{\mu}\right). \tag{2.10}$$

Воспользуемся следующим утверждением, справедливым для функций $\varphi_1, \varphi_2 \in \mathcal{F}(C_0^{\infty}(a;b))$, удовлетворяющих условиям:

$$\varphi_1(0) = \varphi_2(0) = 1, \quad h_{\varphi_1}(\theta) = h_{\varphi_2}(\theta), \quad \theta \in [0; 2\pi).$$

Теорема А [4, теорема 1]. Предположим, что для некоторых чисел $\Delta > \Delta_0$, $\delta > 0$ и возрастающей последовательности $R_k \geq 2$, $k = 1, 2, \ldots$, такой, что

$$|\varphi(x)| \le \frac{1}{|x|^k}, \quad |\psi(x)| \le \frac{1}{|x|^k}, \quad x \in \mathbb{R}, \quad |x| \ge R_k, \quad k = 1, 2, \dots,$$

верно соотношение

$$\limsup_{k \to \infty} \frac{\ln \frac{1}{S_{k+1}}}{\max\{R_k, R_k^*\}} > \delta, \tag{2.11}$$

 $e \partial e$

$$S_k = \sum_{j>k} \left| \frac{1}{\lambda_j} - \frac{1}{\gamma_j} \right|.$$

Тогда подмодуль $\mathcal{J}_{\varphi_1,\varphi_2}$, порожеденный функциями φ_1 и φ_2 в модуле $\mathcal{P}(a;b)$, устойчив.

Фиксируем любую последовательность Γ , подчиненную, кроме (2.4), дополнительным требованиям: пересечение $\Gamma \cap \Lambda$ есть $\Lambda_{\mathcal{J}}$ и для последовательностей Λ и Γ выполнено соотношение (2.11). Так как \mathcal{J} – слабо локализуемый подмодуль, функция φ_2 , задаваемая формулой (2.5) по такой последовательности Γ , содержится в \mathcal{J} . Соотношения (2.7), (2.9) и (2.11) означают, что выполнены условия теоремы Λ с числами R_k , определенными формулой (2.8). Поэтому, согласно этой теореме, 2-порожденный подмодуль $\mathcal{J}_{\varphi_1,\varphi_2}$ устойчив или, что в нашем случае эквивалентно (см. [7, предложение 4.9]), тоэкдественный нуль

можно аппроксимировать в топологии $\mathcal{P}(a;b)$ функциями вида $(p\varphi_1-q\varphi_2)$, где p,q – многочлены u p(0) = q(0) = 1. Этот факт, в силу [7, предложение 4.8], является достаточным условием для устойчивости подмодуля

$$\widetilde{\mathcal{J}} := \overline{\mathcal{J}(\varphi_1, \langle c_{\mathcal{J}}; d_{\mathcal{J}} \rangle) + \mathcal{J}(\varphi_2, \langle c_{\mathcal{J}}; d_{\mathcal{J}} \rangle)}.$$

Устойчивый подмодуль $\widetilde{\mathcal{J}}$ содержит слабо локализуемый подмодуль $\mathcal{J}(\varphi_1)$. Теорема 1 из [3] утверждает, что тогда $\widetilde{\mathcal{J}}$ – слабо локализуемый подмодуль. Учитывая, что подмодули ${\cal J}$ и ${\cal J}$ имеют одинаковые индикаторные отрезки и нулевые множества, заключаем, что $\mathcal{J} = \widetilde{\mathcal{J}}$.

2) Нетрудно проверить, что если подмодуль ${\mathcal J}$ не содержит функций из подпространства $\mathcal{P}_0(a;b)$, то $[c_{\mathcal{J}};d_{\mathcal{J}}]\subset (a;b)$ и $2
ho_{\Lambda_{\mathcal{J}}}=d_{\mathcal{J}}-c_{\mathcal{J}}$. Кроме того, в этом случае для любой функции $\psi \in \mathcal{J}$ множество $\Lambda_{\psi} \setminus \Lambda_{\mathcal{J}}$ конечно. Действительно, если это не так, то, полагая

$$\omega(z) = \prod_{j=1}^{\infty} \left(1 - \frac{z}{\mu_j} \right),\,$$

где последовательность $\{\mu_j\}\subset \Lambda_\psi\setminus\Lambda_\mathcal{J}$ – «редкая», то есть $\lim_{j\to\infty}|\mu_{j+1}|/|\mu_j|=+\infty$, получим, что $\frac{\psi}{\omega}\in\mathcal{J}\cap\mathcal{P}_0(a;b).$ Из вышесказанного следует, что для некоторого $c\in\mathbb{R}$ функция

$$\varphi_0(z) = e^{icz} \lim_{R \to +\infty} \prod_{\lambda_j \in \Lambda_{\mathcal{I}}, |\lambda_j| < R} \left(1 - \frac{z}{\lambda_j} \right)$$

содержится в \mathcal{J} и порождает этот помодуль, точнее, выполняется соотношение (2.2).

В оставшейся части настоящего параграфа будет доказан следующий факт: если индикаторный отрезок слабо локализуемого подмодуля \mathcal{J} есть собственное подмножество интервала (a;b), то этот подмодуль либо главный, либо 2-порожденный в смысле (1.2).

Пусть функция $\Phi \in \mathcal{P}(a;b)$ такова, что

$$\mathcal{J}(\Phi) = \mathcal{J}_{\Phi} = \{ p\Phi, \quad p \in \mathbb{C}[z] \}. \tag{2.12}$$

Тогда \mathcal{J}_{Φ} – слабо локализуемый подмодуль и, согласно теореме 2 [9], $\Phi t \in \mathcal{P}_0(a;b)$. Как будет видно ниже, в доказательстве теоремы 3, функция с такими свойствами имеется в каждом слабо локализуемом подмодуле.

Рассмотрим произвольную последовательность $\{\mu_i\} \subset \Lambda_{\Phi} \setminus \{0\}$, для которой

$$\lim_{j \to \infty} \inf \frac{|\mu_{j+1}|}{|\mu_j|} = \alpha_0 > 1.$$
(2.13)

Определим функции

$$\omega(z) = \prod_{j=1}^{\infty} \left(1 - \frac{z}{\mu_j}\right), \qquad \varphi = \frac{\Phi}{\omega}.$$

Для $z\in\mathbb{C},\,M\subset\mathbb{C}$ символом $\mathrm{dist}(z,M)$ обозначаем расстояние от точки z до множества M.

Теорема 2. Функция $\varphi \in \mathcal{P}_0(a;b)$ и порождает слабо локализуемый главный подмо- ∂y ль \mathcal{J}_{φ} .

Для доказательства этой теоремы нам понадобятся три леммы.

Лемма 1. 1) Для каждого натурального числа n существует представление функции ω в виде произведения двух целых функций $\omega_{1,n}$ и $\omega_{2,n}$, таких, что при всех z, $\operatorname{dist}(z,\Lambda_{\omega}) \geq \delta > 0$, справедливо неравенство

$$\left| \ln |\omega_{1,n}(z)| - 2^{-n} \ln |\omega(z)| \right| \le A \ln (e + |z|),$$
 (2.14)

где A – положительная постоянная, зависящая только от функции ω и величиины δ , $\Lambda_{\omega} = \{\mu_i\}$ – нулевое множество функции ω .

2) Имеется подпоследовательность $\{\omega_{2,n_k}\varphi\}_{k=1}^{\infty}$, сходящаяся в топологии пространства $\mathcal{P}(a;b)$ к функции $\widetilde{\Phi}$, причем $\left(\Phi/\widetilde{\Phi}\right)$ – многочлен.

Доказательство. 1) Положим

$$\widetilde{\mathcal{M}} = \{ \mu_j \in \Lambda_\omega : |\operatorname{Im} \mu_j| < 1 \}, \quad \widehat{\mathcal{M}} = \Lambda_\omega \setminus \widetilde{\mathcal{M}},$$

$$\widetilde{\omega}(z) = \prod_{\mu_j \in \widetilde{\mathcal{M}}} \left(1 - \frac{z}{\mu_j} \right), \qquad \widehat{\omega}(z) = \prod_{\mu_j \in \widehat{\mathcal{M}}} \left(1 - \frac{z}{\mu_j} \right).$$

Ясно, что $\omega = \tilde{\omega}\hat{\omega}$.

Для получения представления $\tilde{\omega} = \tilde{\omega}_{1,n} \tilde{\omega}_{2,n}$ воспользуемся следующей теоремой.

Теорема В [15, теорема 2]. Пусть $\{z_k\}$, $k \in \mathbb{Z}$ – нули целой функции v, пронумерованные в порядке возрастания $\text{Re } z_k$, причем

$$\operatorname{Re} z_0 = \min_k \{ \operatorname{Re} z_k, \operatorname{Re} z_k \ge 0 \}.$$

Если все точки z_k лежат в полосе $|\operatorname{Im} z| < 1$, причем $|\operatorname{Re} z_k| > 1$, и в каждом квадрате

$$\Pi_j = \{z : |\text{Im } z| < 1, \ 2j - 1 \le \text{Re } z < 2j + 1\}, \quad j \in \mathbb{Z},$$

находится не более одной точки z_k , то функция v представима в виде произведения целых функций $v_1,\,v_2$ так, что

$$|\ln |v_1(z)| - \ln |v_2(z)|| \le C_1 \ln^+ |z| + C_2 \ln^+ \frac{1}{d(z)} + C_3,$$

где d(z) – расстояние от точки z до множества нулей функции v, а $C_i > 0$ – абсолютные постоянные (не зависящие от функции v).

Отбрасывая, если необходимо, конечное число нулей функции $\tilde{\omega}$, а затем перенумеровав оставшиеся нули в порядке возрастания их вещественных частей, видим, что последовательность $\widetilde{\mathcal{M}} = \{\tilde{\mu}_k\}, \ k \in \mathbb{Z}$, удовлетворяет условиям теоремы В. Согласно этой теореме, при всех z, $\operatorname{dist}(z,\widetilde{\mathcal{M}}) \geq \delta > 0$, функция

$$\tilde{\omega}_{1,n}(z) = \prod_{k \in \mathbb{Z}} \left(\left(1 - \frac{z}{\tilde{\mu}_{2^{n+1}k}} \right) \left(1 - \frac{z}{\tilde{\mu}_{2^{n+1}k+1}} \right) \right), \quad n \in \mathbb{N},$$
(2.15)

удовлетворяет соотношению

$$\left| \ln |\tilde{\omega}_{1,n}(z)| - 2^{-n} \ln |\tilde{\omega}(z)| \right| \le \tilde{A} \ln (e + |z|), \quad n \in \mathbb{N}, \tag{2.16}$$

где постоянная $\tilde{A} > 0$ зависит только от δ ; а выбор индексов $2^{n+1}k$, $2^{n+1}k+1$ в формуле (2.15) произведен согласно рассуждениям, проводимым при доказательстве теоремы В [15, теорема 2]. Аналогичное утверждение для функции $\hat{\omega}$ получим, используя еще один результат работы [15]. Для этого напомним необходимые обозначения. Пусть

$$P_k = \{z : 1 \le \text{Im } z \le 2^k + 1, 0 \le \text{Re } z \le 2^k\}, \quad k = 0, 1, 2, \dots$$

Тогда разность $P_k \setminus P_{k-1}$, $k=1,2,\ldots$, состоит из трех квадратов, конгруэнтных P_{k-1} . Символами P_k^m , $m=1,2,\ldots,12$, обозначены эти три квадрата, а также симметричные им относительно обеих осей и начала координат. Принадлежность граничных отрезков

и вершин определяется таким образом, чтобы квадраты P_k^m попарно не пересекались и покрывали все множество $\{z: |{\rm Im}\,z| \geq 1\}.$

Теорема C [15, теорема 3]. Пусть $\{z_k\}$, $k \in \mathbb{Z}$ – нули целой функции v, пронумерованные в порядке возрастания $|z_k|$. Предположим, что $|\operatorname{Im} z| \geq 1$, и в каждом квадрате P_k^m лежит не более одного нуля функции v. Тогда функция v представляется в виде произведения целых функций v_1 , v_2 так, что

$$|\ln |v_1(z)| - \ln |v_2(z)|| \le C_1 \ln^+ |z| + C_2 \ln^+ \frac{1}{d(z)} + C_3,$$

где d(z) – расстояние от точки z до множества нулей функции v, а C_i – абсолютные постоянные (не зависящие от функции v).

Фиксируем число $\alpha \in (1; \alpha_0)$. Отбрасывая, если необходимо, конечное число нулей $\hat{\mu}_k$ функции $\hat{\omega}$, а затем, перенумеровав оставшиеся нули в порядке возрастания $|\hat{\mu}_k|$, с учетом условия (2.13), будем иметь

$$|\hat{\mu}_{k+1}| > \alpha |\hat{\mu}_k|, \quad k = 1, 2, \dots$$

Положим

$$m = \left\lceil \log_{\alpha} \sqrt{5} \right\rceil + 1.$$

Нетрудно проверить, что все функции

$$\hat{\omega}_j(z) = \prod_{k=0}^{\infty} \left(1 - \frac{z}{\hat{\mu}_{mk+j}} \right), \quad j = 1, \dots, m,$$

удовлетворяют условиям теоремы С. Применив к каждой функции $\hat{\omega}_j$, $j=1,\ldots,m$, эту теорему n раз, получим представление

$$\hat{\omega}_j = \hat{\omega}_{j,1,n} \hat{\omega}_{j,2,n},$$

причем

$$\left| \ln |\hat{\omega}_{j,1,n}(z)| - 2^{-n} \ln |\hat{\omega}_{j}(z)| \right| \le \widehat{A} \ln (e + |z|), \quad \operatorname{dist}(z, \widehat{\mathcal{M}}) \ge \delta, \tag{2.17}$$

где постоянная $\widehat{A}>0$ зависит только от δ и ω . Полагая

$$\hat{\omega}_{1,n} = \hat{\omega}_{1,1,n} \dots \hat{\omega}_{m,1,n}, \quad \hat{\omega}_{2,n} = \frac{\hat{\omega}}{\hat{\omega}_{1,n}},$$

получим нужную факторизацию

$$\hat{\omega} = \hat{\omega}_{1,n} \hat{\omega}_{2,n}.$$

Из оценок (2.16), (2.17) видим, что для функций

$$\omega_{1,n} = \tilde{\omega}_{1,n}\hat{\omega}_{1,n}, \quad \omega_{2,n} = \frac{\omega}{\omega_{1,n}}$$

справедливо первое утверждение леммы.

2) Из соотношений $\omega = \omega_{1,n}\omega_{2,n}$ и (2.14) следует, что для всех натуральных n и всех $z \in \mathbb{C}$, $\mathrm{dist}(z,\Lambda_{\omega}) \geq \delta$, верны оценки

$$|\omega_{2,n}(z)\varphi(z)| \le (e+|z|)^{[A]+1}|\Phi(z)|.$$

В силу топологических свойств пространства $\mathcal{P}(a;b)$ последовательность $\{\omega_{2,n}\varphi\}_{n=1}^{\infty}$ относительно компактна в этом пространстве. И значит, существует подпоследовательность $\{\omega_{2,n_k}\varphi\}_{k=1}^{\infty}$, сходящаяся в топологии $\mathcal{P}(a;b)$ к некоторой функции $\widetilde{\Phi}$, причем индикатор этой функции совпадает с равными между собой индикаторами функций Φ и φ . Соответствующая подпоследовательность целых функций минимального типа при порядке 1

$$\omega_{1,n_k} = \frac{\Phi}{\omega_{2,n_k} \varphi}$$

сходится к целой функции (Φ/Φ) , которая имеет минимальный тип при порядке 1. Из оценок (2.14) предельным переходом получаем полиномиальную оценку сверху для $|\Phi/\widetilde{\Phi}|$ на вещественной прямой. Применяя следствие из теоремы Фрагмена-Линделефа [2, §6.1], заключаем, что (Φ/Φ) – многочлен.

Пусть $n(r)=\sum\limits_{|\mu_j|< r}1$ — считающая функция последовательности $\Lambda_\omega,\ N(r)=\int\limits_0^r \frac{n(\tau)}{\tau}\mathrm{d}\tau,$ $M(r)=\max\limits_{|z|=r}|\omega(z)|,\ m(r)=\min\limits_{|z|=r}|\omega(z)|.$ Из условия (2.13) на последовательность Λ_ω следует, что

$$n(r) = C_0 \ln(1+r), \quad r \ge 0,$$
 (2.18)

где C_0 — положительная постоянная. Из леммы 3.5.8 монографии [22], с учетом (2.18) и формулы Йенсена (см., например, [22, §1.2]) получаем двойное неравенство

$$N(r) \le M(r) \le N(r) + C_0 \ln(1+r). \tag{2.19}$$

Лемма 2. 1) При всех $z \in \mathbb{C}$ имеет место оценка сверху

$$\ln|\omega(z)| \le N(|z|) + C_0 \ln(1+|z|).$$
(2.20)

2) Для любых $\varepsilon > 0$ и $\delta > 0$ и всех $z \in \mathbb{C}$, $\operatorname{dist}(z, \Lambda_{\omega}) \geq \delta$, верна оценка снизу

$$\ln |\omega(z)| \ge (1 - \varepsilon)N(|z|) - C_1 \ln(1 + |z|) - C_{2,\varepsilon},$$
 (2.21)

где постоянная $C_{2,\varepsilon}>0$ зависит от Λ_{ω} , δ и ε , а постоянная $C_1>0$ – только от Λ_{ω} .

Доказательство. 1) Нужная оценка (2.20) следует из правого неравенства в (2.19).

2) Известно, что для целой функции, нулевое множество которой удовлетворяет условию (2.18), соотношение $\ln m(r) \sim \ln M(r)$ выполняется, когда $r \to \infty$ по множеству единичной относительной меры [22, теорема 3.6.1]. Исключительное множество значений r может быть покрыто счетным множеством непересекающихся, в силу (2.13), интервалов, центрированных с множеством $\{|\mu_i|\}$ (то есть каждый интервал содержит ровно одну точку $|\mu_i|$). Это множество интервалов имеет нулевую относительную длину. Не ограничивая общности рассуждений можем считать, что существует убывающая последовательность положительных чисел δ_i , $j=1,2,\ldots$, такая что для любого $\varepsilon>0$ справедливо неравенство

$$\ln m(r) \ge (1 - \varepsilon) \ln M(r), \quad r > r_{\varepsilon}, \quad rt \in \bigcup_{j=1}^{\infty} ((1 - \delta_j) |\mu_j|; (1 + \delta_j) |\mu_j|).$$

Из (2.13) и (2.18) нетрудно вывести, что

$$N(r) \le N((1 - \delta_j)r) + (C_0 \ln 2 + 1) \ln(1 + r) + \tilde{C}_{2,\varepsilon}, \quad r > 0,$$

где постоянная $\tilde{C}_{2,\varepsilon} > 0$ зависит только от Λ_{ω} , δ и ε .

Требуемая оценка снизу (2.21) получается стандартными методами из последних двух оценок и левого неравенства в (2.19).

Лемма 3. Для каждого натурального n функция $\omega_{2,n}\varphi$ содержится в подмодуле \mathcal{J}_{φ} . Доказательство. Для фиксированного $n \in \mathbb{N}$ имеем, в силу (2.14),

$$\ln |\omega_{2,n}(z)| \le (1 - 2^{-n}) \ln |\omega(z)| + A \ln (e + |z|), \quad \text{dist}(z, \Lambda_{\omega}) \ge \delta.$$
 (2.22)

С учетом (2.13) и (2.20), отсюда получаем оценку

$$\ln |\omega_{2,n}(z)| \le (1 - 2^{-n})N(|z|) + \tilde{A}\ln (e + |z|), \quad z \in \mathbb{C}.$$
(2.23)

Рассмотрим весовую функцию $\widetilde{V}(x) = (e + |x|)^{\tilde{A}+1} \exp\left((1 - 2^{-n})N(|x|)\right) \ge 1, x \in \mathbb{R}$. Эта функция четная, выпуклая по $\ln |x|$, для любого $k=0,1,\ldots$ верно соотношение

$$|x|^k = o(\widetilde{V}(x)), \quad |x| \to +\infty.$$

Для функции $\omega_{2,n}$ из оценки (2.23) следует, что

$$\frac{|\omega_{2,n}(x)|}{\widetilde{V}(x)} \to 0, \quad |x| \to +\infty.$$

Рассуждая точно также, как при доказательстве леммы 3 в работе [9], выводим, что существует последовательность многочленов $\{p_j\}$, сходящаяся к функции $\omega_{2,n}$ в весовой норме $\|\cdot\| = \sup_{x \in \mathbb{R}} \frac{|\cdot|}{V(x)}$, где $V(x) = (1+|x|)^2 \widetilde{V}(x)$.

Положим $v(x) = \ln V(x)$,

$$P_v(z) = \frac{|y|}{\pi} \int_{-\infty}^{\infty} \frac{v(\tau)}{(\tau - x)^2 + y^2} d\tau$$

— интеграл Пуассона от функции $v, z = x + \mathrm{i} y$. Из условия (2.13) нетрудно вывести, что функция v принадлежит классу медленно меняющихся канонических весов, введенных в монографии [19, §1.3]. Поэтому (см. [19, §1.4]) функция P_v гармонична в верхней и нижней полуплоскостях, непрерывна и субгармонична во всей комплексной плоскости, удовлетворяет оценке

$$P_v(z) \ge v(|z|), \quad z \in \mathbb{R},$$

и соотношению

$$\limsup_{z \to \infty} \frac{P_v(z)}{v(|z|)} = 1. \tag{2.24}$$

Так как $\mathcal{P}(a;b)$ — локально-выпуклое пространство типа (LN^*) , для того, чтобы последовательность $p_j\varphi$ была ограничена в нем, необходимо и достаточно, чтобы она была ограничена по одной из норм (1.1) (см. [1]). Принимая во внимание оценку (2.21), определение веса V, соотношение (2.24) и свойства функции N(r), вытекающие из условия (2.13), и используя теорему Фрагмена-Линделефа, устанавливаем, что

$$|p_j(z)\varphi(z)| \le (e+|z|)^{\text{const}} \exp(d_{\varphi}y^+ - c_{\varphi}y^-),$$

где d_{φ} (c_{φ}) – значение индикатора функции φ в точке $\pi/2$ (соответственно, в точке $-\pi/2$). Последняя оценка эквивалентна ограниченности последовательности $\{p_j\varphi\}$ по одной из норм (1.1).

Из этого факта, опять используя свойства локально-выпуклых пространств типа (LN^*) (см. [1]), выводим, что найдется подпоследовательность этой последовательности, сходящаяся в $\mathcal{P}(a;b)$ к функции $\omega_{2,n}\varphi$.

Доказательство теоремы 2.

Включение $\varphi \in \mathcal{P}_0(a;b)$ очевидно. Из п. 2) леммы 1 и леммы 3 следует, что

$$\Phi \in \mathcal{J}_{\omega}. \tag{2.25}$$

В силу (2.12) имеем $\mathcal{J}(\Phi) \subset \mathcal{J}_{\varphi}$. Как утверждается в теореме 1 работы [3], это соотношение, с учетом устойчивости подмодуля \mathcal{J}_{φ} , эквивалентно слабой локализуемости \mathcal{J}_{φ} .

Теорема 3. Пусть подмодуль $\mathcal J$ слабо локализуем $u\ [c_{\mathcal J};d_{\mathcal J}]\subset (a;b)$. Тогда либо $\mathcal J$ - главный подмодуль, либо $\mathcal J=\mathcal J_{\varphi_1,\varphi_2},\$ где $\varphi_1,\ \varphi_2\in\mathcal J\bigcap P_0(a;b).$

Доказательство. Если $\mathcal{J} \cap \mathcal{P}_0(a;b) = \emptyset$, то, как доказано в п. 2) теоремы 1, \mathcal{J} – главный подмодуль. Поэтому дальнейшие рассуждения будем вести в предположении, что $\mathcal{J} \cap \mathcal{P}_0(a;b) \neq \emptyset$.

Сначала покажем, что в подмодуле \mathcal{J} существует функция $\varphi_1 \in \mathcal{P}_0(a;b)$ со свойствами: $c_{\varphi_1} = c_{\mathcal{J}}, d_{\varphi_1} = d_{\mathcal{J}}$, главный подмодуль \mathcal{J}_{φ_1} слабо локализуем.

Для этого рассмотрим произвольную функцию $\tilde{\varphi} \in \mathcal{J} \cap \mathcal{P}_0(a;b)$ и положим

$$\varphi = \left(e^{\mathrm{i}(c_{\tilde{\varphi}} - c_{\mathcal{J}})z} + e^{\mathrm{i}(d_{\mathcal{J}} - d_{\tilde{\varphi}})z}\right)\tilde{\varphi}.$$

Ясно, что функция φ принадлежит множеству $\mathcal{J} \cap \mathcal{P}_0(a;b)$, и ее индикаторная диаграмма есть $\mathrm{i}[c_{\mathcal{J}};d_{\mathcal{J}}]$. Если главный подмодуль \mathcal{J}_{φ} слабо локализуем, то полагаем $\varphi_1=\varphi$. В противном случае рассмотрим наибольшую субгармоническую миноранту v(z) функции $(H(z)-\ln|\varphi(z)|)$, где $H(z)=d_{\mathcal{J}}(\operatorname{Im} z)^+-c_{\mathcal{J}}(\operatorname{Im} z)^-$.

Для функции v справедливо соотношение $vt \equiv -\infty$. Действительно, в силу включения $\varphi \in \mathcal{P}_0(a;b)$, для любого $k=0,1,2,\ldots$, имеем $M_k = \max_{x \in \mathbb{R}} |\varphi(x)x^k| < +\infty$, а также

$$\varphi(z) = \int_{a}^{b} s(t)e^{-itz}dt, \quad s \in C_0^{\infty}(a;b).$$

Класс $C_{(a;b)}(\{M_k\})$ (см., например, [21, §IV.A]) содержит ненулевую функцию s, и значит, не является квазианалитическим. Это эквивалентно, согласно критерию Карлемана, соотношению

$$\int_{-\infty}^{\infty} \frac{\ln T(r)}{1+r^2} \mathrm{d}r < +\infty,$$

где $T(r) = \sup_{k>0} \frac{r^k}{M_k}$ — функция следа последовательности $\{M_k\}$, (см., например, [21, §IV.A]).

Таким образом, $\ln T(e^t)$ – конечная функция, выпуклая по $t \in \mathbb{R}$. Следовательно, функция $u(z) = \ln T(|z|)t \equiv -\infty$ субгармонична в \mathbb{C} [23, теорема 2.1.2]. Из определения u вытекает оценка

$$u(x) + \ln|\varphi(x)| \le 0, \quad x \in \mathbb{R}. \tag{2.26}$$

Функция φ , как и все элементы пространства $\mathcal{P}(a;b)$, имеет вполне регулярный рост во всей плоскости, а функция u зависит только от |z|. Применяя теорему о сложении индикаторов [24, теорема 1], из (2.26) выводим, что u имеет минимальный тип при порядке 1. Из этого факта, оценки (2.26), теоремы Фрагмена-Линделефа для субгармонических функций [2, §7.3], следует оценка

$$u(z) + \ln |\varphi(z)| \le H(z), \quad z \in \mathbb{C},$$

а из нее – неравенство $u(z) \leq v(z), z \in \mathbb{C}$. И значит, $vt \equiv -\infty$.

Пусть ω — целая функция (минимального экспоненциального типа), удовлетворяющая соотношению

$$|\ln |\omega(z)| - v(z)| \le C \ln (1 + |z|), \quad zt \in E,$$
 (2.27)

с некоторой постоянной C>0, исключительное множество E может быть покрыто счетным объединением кружков с конечной суммой радиусов. Существование такой функции следует из теоремы 5 работы [14]. Положим $\Phi=\omega\varphi$. Ясно, что $\Phi\in\mathcal{J}$. Из того, что функция v- наибольшая субгармоническая миноранта функции $(H-\ln|\varphi|)$, и оценки (2.27) следует выполненение соотношений (2.12) для функции Φ . Выберем последовательность $\{\mu_i\}\subset\Lambda_\Phi\setminus\Lambda_\mathcal{J}$, удовлетворяющую условиям (2.13), $\mu_i\neq 0$. Положим

$$\varphi_1 = \frac{\Phi}{\prod_{j=1}^{\infty} \left(1 - \frac{z}{\mu_j}\right)}.$$

Для этой функции справедлива теорема 2, и значит, J_{φ_1} – слабо локализуемый подмодуль. Теперь рассуждаем так же, как при доказательстве п. 1) теоремы 1. Определим функцию φ_2 по формуле (2.5), где последовательность Γ удовлетворяет условию $\Gamma \bigcap \Lambda_{\varphi_1} = \Lambda_{\mathcal{J}}$ и столь близка к последовательности Λ_{φ_1} , что подмодуль $\mathcal{J}_{\varphi_1,\varphi_2}$ устойчив. Кроме того, этот устойчивый подмодуль содержит слабо локализуемый подмодуль $\mathcal{J}(\Phi)$. Теорема 1 из работы [3] утверждает, что тогда подмодуль $\mathcal{J}_{\varphi_1,\varphi_2}$ слабо локализуем. Индикаторный отрезок и нулевое множество подмодуля $\mathcal{J}_{\varphi_1,\varphi_2}$ такие же, как у исходного подмодуля \mathcal{J} . Следовательно, $\mathcal{J} = \mathcal{J}_{\varphi_1,\varphi_2}$.

3. Представление инвариантных подпространств, допускающих слабый спектральный синтез

Рассмотрим пространство Шварца $\mathcal{E}(a;b) = C^{\infty}(a;b)$, наделенное метризуемой топологией проективного предела банаховых пространств $C^k[a_k;b_k]$, где $[a_1;b_1] \in [a_2;b_2] \in \ldots$ какая-нибудь последовательность отрезков, исчерпывающая интервал (a;b). Известно, что $\mathcal{E}(a;b)$ – рефлексивное пространство Фреше. Обозначим через W – замкнутое и инвариантное относительно оператора дифференцирования $D = \frac{\mathrm{d}}{\mathrm{d}\,t}$ (короче, D-инвариантное) подпространство этого пространства. В дальнейшем, если не оговорено противное, рассматриваются только замкнутые подпространства в $\mathcal{E}(a;b)$.

Пусть $\operatorname{Exp} W$ — запас всех корневых элементов оператора D (экспоненциальных одночленов $t^j e^{-\mathrm{i}\lambda t}$), содержащихся в W. Для нетривиального (не совпадающего со всем пространством $\mathcal{E}(a;b)$) подпространства W множество $\operatorname{Exp} W$ не более, чем счетно.

Положим

$$W_I = \{ f \in \mathcal{E} : f^{(k)}(t) = 0, \ t \in I, \ k = 0, 1, 2, \dots \},$$
 (3.1)

где $I \subset (a;b)$ – относительно замкнутый непустой промежуток, и обозначим I_W минимальный относительно замкнутый в (a;b) непустой промежуток, удовлетворяющий условию $W_I \subset W$ (существование такого промежутка следует из теоремы 4.1 [16]).

Преобразование Фурье-Лапласа \mathcal{F} , действующее в сильном сопряженном пространстве $\mathcal{E}'(a;b)$ по правилу

$$\mathcal{F}(S)(z) = (S, e^{-itz}), \quad S \in (C^{\infty}(a; b))',$$

есть линейный топологический изоморфизм пространств $(C^{\infty}(a;b))'$ и $\mathcal{P}(a;b)$ [17, теорема 7.3.1]. Имеет место следующий

принцип двойственности между совокупностью $\{\mathcal{J}\}$ слабо локализуемых подмодулей модуля $\mathcal{P}(a;b)$ и совокупностью $\{W\}$ D-инвариантых подпространств пространства $\mathcal{E}(a;b)$ имеет место взаимно однозначное соответствие по правилу: $\mathcal{J} \longleftrightarrow W$ тогда и только тогда, когда $\mathcal{J} = \mathcal{F}(W^0)$, где замкнутое подпространство $W^0 \subset \mathcal{E}'(a;b)$ состоит из всех распределений $S \in \mathcal{E}'(a;b)$, аннулирующих W, при этом

$$\overline{I}_W = [c_{\mathcal{J}}; d_{\mathcal{J}}], \quad \text{Exp } W = \{t^j e^{-i\lambda_k t}, \ j = 0, \dots m_k - 1, \ (\lambda_k, m_k) \in \Lambda_{\mathcal{J}}\},$$

где $\Lambda_{\mathcal{J}}$ – множество нулей подмодуля \mathcal{J} ([3, принцип двойственности], [4, предложение 1]).

Известно (см. [16, теорема 2.1]), что для нетривиального D-инвариантного подпространства W спектр σ_W оператора $D:W\to W$ либо совпадает со всей комплексной плоскостью, либо дискретен; во втором случае $\sigma_W=\Lambda_{\mathcal{J}}$, согласно **принципу двойственности**.

Нетривиальное D-инвариантное подпространство допускает cлабый cпектральный cин-mез, если

$$W = \overline{W_{I_W} + \mathcal{L}(\operatorname{Exp} W)}, \qquad \mathcal{L}(\cdot) -$$
 линейная оболочка множества $(\cdot).$ (3.2)

Ясно, что D-инвариантное подпространство W, допускающее слабый спектральный синтез, является минимальным среди всех D-инвариантых подпространств \widetilde{W} , для которых

$$I_{\widetilde{W}} = I_W, \quad \operatorname{Exp} \widetilde{W} = \operatorname{Exp} W.$$

В силу **принципа двойственности**, аннуляторный подмодуль $\mathcal{J} = \mathcal{F}(W^0)$ такого подпространства является максимальным среди всех замкнутых подмодулей $\widetilde{\mathcal{J}} \subset \mathcal{P}(a;b)$, с нулевым множеством и индикаторным отрезком, удовлетворяющими условиям:

$$\Lambda_{\widetilde{\mathcal{J}}} = \Lambda_{\mathcal{J}}, \quad [c_{\widetilde{\mathcal{J}}}; d_{\widetilde{\mathcal{J}}}] = [c_{\mathcal{J}}; d_{\mathcal{J}}].$$

Следовательно, \mathcal{J} — слабо локализуемый подмодуль. Ясно, что верно и обратное: если аннуляторный подмодуль D-инвариантного подпространства слабо локализуем, то это подпространство допускает слабый спектральный синтез.

Напомним, что радиус полноты $\rho(\Lambda)$ последовательности кратных точек $\Lambda = \{(\lambda_j, m_j)\}$ определяется равным инфимуму радиусов (открытых) интервалов $I \subset \mathbb{R}$, для которых

система экспоненциальных одночленов $\{t^k e^{-i\lambda_j t}, k=0,\ldots,m_j-1, j\in\mathbb{N}\}$, не полна в пространствах $\mathcal{E}(I), C(I), L^p(I), 1\leq p<\infty$ (см. [18]).

Для произвольных подмножеств $A, B \subset \mathbb{R}$ обозначим через $A \div B$ их геометрическую разность, т.е. множество всех $x \in \mathbb{R}$, для которых $x + B \subset A$. Пусть $S \in \mathcal{E}'(a;b)$ и $h \in (a;b) \div \operatorname{ch} \operatorname{supp} S$, где $\operatorname{ch} \operatorname{supp} S$ – выпуклая оболочка $\operatorname{supp} S$. Определим функционал $S_h \in \mathcal{E}'(a;b)$ формулой

$$(S_h, f) = (S, f(t+h)), \quad f \in \mathcal{E}(a; b).$$

Для распределения $S \in \mathcal{E}'(a;b)$ и непустого относительно замкнутого в (a;b) промежутка $\langle c;d \rangle$, удовлетворяющего условию

$$ch \operatorname{supp} S \subseteq \langle c; d \rangle, \tag{3.3}$$

положим

$$W(S, \langle c; d \rangle) = \{ f \in \mathcal{E}(a; b) : (S * f)(h) = (S_h, f) = 0, \forall h \in \langle c; d \rangle \div \operatorname{ch} \operatorname{supp} S \}.$$

Ясно, что $W(S, \langle c; d \rangle)$ – D-инвариантное подпространство.

Лемма 4. *D*-инвариантное подпространство $W(S, \langle c; d \rangle)$ допускает слабый спектральный синтез, его аннуляторный подмодуль есть $\mathcal{J}(\varphi, \langle c; d \rangle)$, где $\varphi = \mathcal{F}(S)$.

Доказательство. Из рассуждений, приведеных после **принципа двойственности**, видно, что первое утверждение леммы следует из второго. Обозначим \mathcal{J}_1 аннуляторный подмодуль подпространства $W(S,\langle c;d\rangle)$. Согласно **принципу двойственности** имеем включение

$$\mathcal{J}_1 \subset \mathcal{J}(\varphi, \langle c; d \rangle).$$

Так как нулевое множество $\Lambda_{\mathcal{J}_1}$ подмодуля \mathcal{J}_1 совпадает с нулевым множеством Λ_{φ} функции φ , а индикаторный отрезок этого подмодуля равен [c;d], из (3.3) следует, что величина $\rho(\Lambda_{\mathcal{J}_1})$ меньше половины длины отрезка [c;d]. Пункт 3) теоремы 2 из работы [3] утверждает, что в этом случае подмодуль \mathcal{J}_1 будет слабо локализуемым, если только он устойчив.

Как уже отмечалось нами ранее [4, Введение], модуль $\mathcal{P}(a;b)$ является борнологическим и b-устойчивым пространством (последнее понятие введено в работе [5]). Поэтому он относится к классу топологических модулей, для которых в работе [7] (предложение 4.2 и замечание 1 в конце п.1 §4) доказано, что устойчивость подмодуля $\mathcal{J} \subset \mathcal{P}(a;b)$ в каждой точке $\lambda \in \mathbb{C}$ следует из его устойчивости в какой-нибудь одной точке. Таким образом, для доказательства равенства

$$\mathcal{J}_1 = \mathcal{J}(\varphi, \langle c; d \rangle)$$

(эквивалентного слабой локализуемости подмодуля \mathcal{J}_1) достаточно проверить устойчивость подмодуля \mathcal{J}_1 в какой-нибудь одной точке $\mu t \in \Lambda_{\varphi}$. Без ограничения общности рассуждений можем считать, что $\mu = 0$, $\varphi(0) = 1$.

Пусть $\psi \in \mathcal{J}_1$, $\psi(0) = 0$. Функция ψ есть предел в топологии пространства $\mathcal{P}(a;b)$ обобщенной последовательности функций вида $(a_1e^{\mathrm{i}h_1z}+\cdots+a_me^{\mathrm{i}h_mz})\varphi$, где $h_j \in \langle c;d \rangle \div [c_{\varphi};d_{\varphi}]$, $j=1,\ldots,m$; $\mathrm{i}[c_{\varphi};d_{\varphi}]$ – индикаторная диаграмма функции φ (по теореме Пэли-Винера-Шварца совпадающая с ch supp S). Так как, очевидно, $e^{\mathrm{i}h'z}\varphi \to e^{\mathrm{i}hz}\varphi$ при $h' \to h$ в топологии $\mathcal{P}(a;b)$, можем считать, что

$$h_j \in (c;d) \div [c_{\varphi};d_{\varphi}], \quad j=1,\ldots,m.$$
 (3.4)

Из определения топологии в $\mathcal{P}(a;b)$ нетрудно вывести, что обобщенная последовательность

$$\left(a_1 \frac{e^{ih_1 z} - 1}{z} + \dots + a_m \frac{e^{ih_m z} - 1}{z}\right) \varphi \tag{3.5}$$

сходится к функции $\frac{\psi}{z}$.

В силу включений (3.4) каждый элемент обобщенной последовательности (3.5) принадлежит локализуемому подмодулю $\mathcal{J}(\varphi,(c;d))$ модуля $\mathcal{P}(c;d)$. Этот подмодуль, в силу принципа двойственности и хорошо известного результата о спектральном синтезе в ядре

оператора свертки (см., например, [20, теорема 16.4.1]), совпадает с аннуляторным подмодулем $\mathcal{J}_2 \subset \mathcal{P}(c;d)$ *D*-инвариантного подпространства $W(S,(c;d)) \subset \mathcal{E}(c;d)$, где

$$W(S,(c;d)) = \{ f \in \mathcal{E}(c;d) : (S*f)(h) = (S_h, f) = 0, \forall h \in (c;d) \div \operatorname{ch} \operatorname{supp} S \}.$$

Из всего сказанного выше выводим, что каждая функция обобщенной последовательности (3.5) принадлежит подмодулю $\mathcal{J}_2 = \mathcal{J}(\varphi, (c; d))$, который, в свою очередь, содержится в \mathcal{J}_1 . И значит, для предельной функции $\frac{\psi}{z}$ обобщенной последовательности (3.5) также верно включение $\frac{\psi}{z} \in \mathcal{J}_1$, то есть подмодуль \mathcal{J}_1 устойчив в точке 0. Из этого факта следует, что справедливы оба утверждения доказываемой леммы.

Замечание 1. Заметим, что доказанная лемма верна при замене условия (3.3) на более слабое требование: длина отрезка ch supp S меньше, чем величина (d-c) (последняя может равняться и $+\infty$).

Теорема 4. Всякое D-инвариантное подпространство c дискретным спектром σ_W , удовлетворяющим условию $2\rho(\sigma_W) < |I_W|$, где $|I_W| \le +\infty$ – длина промежутка I_W , может быть представлено в виде совокупности решений двух (быть может, совпадающих) однородных уравнений свертки:

$$f \in W \iff \begin{cases} (S_1 * f)(h) = 0 & h \in I_W \div \operatorname{ch} \operatorname{supp} S_1, \\ (S_2 * f)(h) = 0, & h \in I_W \div \operatorname{ch} \operatorname{supp} S_2. \end{cases}$$
(3.6)

Доказательство. Следствие 2 из работы [3] утверждает, что D-инвариантное подпространство W, удовлетворяющее условиям доказываемой теоремы, допускает слабый спектральный синтез, и его аннуляторный подмодуль \mathcal{J} слабо локализуем. Легко видеть, что в этом подмодуле имеется функция φ_1 из $\mathcal{P}_0(a;b)$ с индикаторной диаграммой, компактно принадлежащей промежутку $\mathrm{i} I_W$. И значит, согласно п.1) теоремы 1 и принципу двойственности

$$\mathcal{J} = \overline{\mathcal{J}(\varphi_1, I_W) + \mathcal{J}(\varphi_2, I_W)},$$

где функция $\varphi_2 \in \mathcal{J} \cap \mathcal{P}_0(a;b)$ имеет ту же индикаторную диаграмму, что и функция φ_1 . Применяя лемму 4, с учетом рефлексивности пространства $\mathcal{E}(a;b)$, получим соотношение (3.6) с $S_1 = \mathcal{F}^{-1}(\varphi_1)$, $S_2 = \mathcal{F}^{-1}(\varphi_2)$.

Теорема 5. Если D-инвариантное подпространство W допускает слабый спектральный синтез и $\overline{I}_W \subset (a;b)$, то существуют распределения $S_1, S_2 \in W^0$ (возможно, $S_1 = S_2$) такие, что

$$f \in W \iff \begin{cases} (S_1, D^j f) = 0, & j = 0, 1, 2, \dots, \\ (S_2, D^j f) = 0, & j = 0, 1, 2, \dots \end{cases}$$
 (3.7)

Доказательство. Аннуляторный подмодуль $\mathcal{J} = \mathcal{F}(W^0)$ слабо локализуем и удовлетворяет условию теоремы 3. Следовательно, либо $\mathcal{J} = \mathcal{J}_{\varphi}$, либо $\mathcal{J} = \mathcal{J}_{\varphi_1,\varphi_2}$. Отсюда, принимая во внимание принцип двойственности и рефлексивность пространства $\mathcal{E}(a;b)$, заключаем, что имеет место (3.7) с $S_1 = \mathcal{F}^{-1}(\varphi_1)$, $S_2 = \mathcal{F}^{-1}(\varphi_2)$ (при этом $S_1 = S_2$, если \mathcal{J} – главный подмодуль).

СПИСОК ЛИТЕРАТУРЫ

- 1. Себастьян-и-Сильва Ж. O некоторых классах ЛВП, важных в приложениях // Математика. Сб. переводов инстранных статей. 1957. 1:1. С. 60–77.
- 2. B.Y. Levin (in collaboration with Yu. Lyubarskii, M. Sodin, V. Tkachenko). Lectures on entire functions (Rev. Edition). AMS. Providence. Rhode Island, 1996. 254 p.
- 3. Абузярова Н.Ф. Спектральный синтез в пространстве Шварца бесконечно дифференцируемых функций // Доклады РАН. 2014. Т. 457. № 5. С. 510–513.

- 4. Абузярова Н.Ф. Замкнутые подмодули в модуле целых функций экспоненциального типа и полиномиального роста на вещественной оси // Уфимский матем. журнал. 2014. Т. 6, № 4. С. 3–18.
- 5. Красичков-Терновский И.Ф. Локальное описание замкнутых идеалов и подмодулей аналитических функций одной переменной. I // Известия АН СССР, серия матем. 1979. Т. 43. № 1. С. 44–66.
- 6. Красичков-Терновский И.Ф. Инвариантные подпространства аналитических функций. І. Спектральный синтез на выпуклых областях // Матем. сборник. 1972. Т. 87 (129). № 4. С. 459–489.
- 7. Красичков-Терновский И.Ф. Локальное описание замкнутых идеалов и подмодулей аналитических функций одной переменной. II // Известия АН СССР, серия матем. 1979. Т. 43. № 2. С. 309–341.
- 8. A. Aleman, A. Baranov, Yu. Belov Subspaces of C^{∞} invariant under the differentiation // Journal of Functional Analysis. 2015. V. 268. Pp. 2421–2439.
- 9. Абузярова Н.Ф. Некоторые свойства главных подмодулей в модуле целых функций экспоненциального типа и полиномиального роста на вещественной оси // Уфимский матем. журнал. 2016. Т. 8, № 1. С. 3–14.
- 10. Абузярова Н.Ф. Об одном свойстве подпространств, допускающих спектральный синтез // Матем. сборник. 1999. Т. 190. № 4. С. 3–22.
- 11. Абузярова Н.Ф. Конечно порожденные подмодули в модуле целых функций, определяемом ограничениями на индикатор // Матем. заметки. 2002. Т. 71. № 1. С. 3–17.
- 12. Хабибуллин Б.Н. Замкнутые подмодули голоморфных функций с двумя порождающими // Функц. анализ и его приложения. 2004. Т. 38. Вып. 1. С. 65–80.
- 13. Седлецкий А.М. Аналитические преобразования Фурье и экспоненциальные аппроксимации. I // Совр.матем. Фунд. направления. 2003. Т. 5. С. 3–152.
- 14. Юлмухаметов Р.С. Annpoκсимация субгармонических функций // Anal. Math. 1985. V. 11. Pp. 257–282.
- 15. Юлмухаметов Р.С. Решение проблемы Л. Эренпрайса о факторизации // Матем. сб. 1999. Т. 190. № 4. С. 123–157.
- 16. A. Aleman, B. Korenblum *Derivation-Invariant Subspaces of* C^{∞} // Computation Methods and Function Theory. 2008. V. 8. \mathbb{N}_2 2. Pp. 493–512.
- 17. Хермандер Л. Анализ линейных дифференциальных операторов с частными производными. 1. Теория распределений и анализ Фурье. М.: Мир, 1986. 462 с.
- 18. A. Beurling, P. Malliavin On the closure of characters and the zeros of entire functions // Acta Math. 1967. V. 118. № 1-4. Pp. 79–93.
- 19. Абанин А.В. Ультра-дифференцируемые функции и ультра-распределения. М.: Наука, 2007. 222 с.
- 20. Хермандер Л. Анализ линейных дифференциальных операторов с частными производными. 2. Дифференциальные операторы с постоянными коэффициентами. М.: Мир, 1986. 455 с.
- 21. P. Koosis The logarithmic integral I. Cambridge Univ. Press. 1998. 606 pp.
- 22. R.P. Boas, Jr. Entire functions. Acad. Press. Publ. Inc. New-York. 1954. 276 pp.
- 23. Ронкин Л.И. *Введение в теорию целых функций многих переменных.* Москва: Наука. 1971. 430 с.
- 24. Фаворов С.Ю. *О сложении индикаторов целых и субгармонических функций многих переменных* // Матем. сб. 1978. Т.105(147). № 1. С. 128–140.

Наталья Фаирбаховна Абузярова, Башкирский государственный университет, ул. Заки Валиди, 32, 450074, г. Уфа, Россия E-mail: abnatf@gmail.com