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ON SPECTRAL AND PSEUDOSPECTRAL FUNCTIONS OF
FIRST-ORDER SYMMETRIC SYSTEMS

V.I. MOGILEVSKII

Abstract. We consider first-order symmetric system Jy'— B(t)y = A(t) f(t) on an interval
7 = [a, b) with the regular endpoint a. A distribution matrix-valued function 3(s), s € R, is
called a pseudospectral function of such a system if the corresponding Fourier transform is a
partial isometry with the minimally possible kernel. The main result is a parametrization of
all pseudospectral functions of a given system by means of a Nevanlinna boundary parameter
7. Similar parameterizations for regular systems have earlier been obtained by Arov and
Dym, Langer and Textorius, A. Sakhnovich.

Keywords: First-order symmetric system, spectral function, pseudospectral function,
Fourier transform, characteristic matrix

Mathematics Subject Classification: 34B08,34B40,341.10,47A06,47B25

1. INTRODUCTION

Let H and H be finite dimensional Hilbert spaces, let H := H & H @ H and let [H] be the
set of all linear operators in H. We study the first-order symmetric differential system

Jy — B(t)y = MA(t)y, teZ, AeC, (1)

where B(t) = B*(t) and A(t) > 0 are [H]-valued functions defined on an interval Z = [a,b),
b < oo, and integrable on each compact subinterval [a, 8] C Z and

0 0 -Iy ~ ~
J=(0 il; 0 |:HeHeH—>HoHSH. (2)
Iy 0 0

Let $ = L% (Z) be the Hilbert space of functions f : Z — H such that
JIAD (1), F(1)) df < o0

z

and let Yy(-,A) be the [HJ-valued solution of with Yp(a,\) = Ig. An [H]-valued dis-
tribution function »(-) is called a spectral function of system if the Fourier transform
Vs : 9 — L?(X;H) given by

mm@zﬂazémm@Mwmm f() e (3)

is an isometry. If () is a spectral function, then the inverse Fourier transform is defined for
each f € by
16 = [ Yatt.s) d=(s) o) (1
7

(the integrals in (3 and converge in the norm of L*(X;H) and ), respectively). If the
operator A(t) is invertible a.e. on Z, then spectral functions of system exist. Otherwise the
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Fourier transform may have a nontrivial kernel ker V5, and hence the set of spectral functions
may be empty [I, 2, B]. The natural generalization of a spectral function to this case is an
[H]-valued distribution function X(-) such that the Fourier transform V5 of the form is a
partial isometry. If 3(-) is such a function, then the inverse Fourier transform is valid for
each f € $ © ker V5. Therefore, the following problem seems to be interesting:

e To characterize [H]-valued distribution functions 3(-) such that the corresponding Fourier
transform Vs is a partial isometry with minimally possible kernel ker V5 and describe these
functions in terms of boundary conditions.

In the paper we solve this problem applying the extension theory of symmetric linear relations
to symmetric systems. As it is known, system generates the minimal (symmetric) linear
relation Ti;, and the maximal relation Th.x(= T,,) in $ (for more details see Sect. .
The domain dom T}, of relation Tj,., is the set of all absolutely continuous functions y € $
satisfying

Jy — B(t)y = A(t)f(t) (ae. on I) (5)

with some f(-) € $. Moreover, the multivalued part mul Ty, of T, is the set of all
f(-) € $ such that the solution y of with y(a) = 0 satisfies A(t)y(t) = 0 (a.e. on I)
and lin;((]y(t), 2(t)) =0, z € domTpax.

—

Recall that system is called regular if Z is a compact interval and quasi-regular if for any
A € C each solution y of belongs to §). For a quasi-regular (in particular regular) system the
integral in (3)) converges in the norm of §) and hence the Fourier transform f() of a function
f(+) € $ does not depend on a choice of a distribution function (). One can easily show that
for a quasi-regular system

-~

mul T ={f €9H: f(s) =0, s e R} (6)

and hence mul T},,;, coincides with the subspace ker U defined in [4, 13].
The following theorem obtained in the paper plays a crucial role in our considerations.

Theorem 1.1. Let X(-) be an [H]-valued distribution function such that the Fourier trans-
form Vs is a partial isometry from $ to L*(X;H). Then

mul 71,5, C ker Vs, (7)

For quasi-regular systems formula directly follows from @ Moreover, under the addi-
tional condition ||Vsf|| = ||f||, f € dom Ty, Theorem [1.1) can be derived from the results of
[2] (see Remark [3.7| below).

The inclusion ([7)) makes natural the following definition.

Definition 1.2. An [H]-valued distribution function ¥(-) is called a pseudospectral function
of system if the Fourier transform Vg is a partial isometry with the minimally possible
kernel ker Vs = mul T},i,.

We  call  system (1) absolutely  definite if  the  Lebesgue  measure
of the set {t € Z : A(t) is invertible} is positive. The main result of the paper is a parametriza-
tion of all pseudospectral and spectral functions of absolutely definite system (|1)) with deficiency
indices 1 (Thyin) of the minimal relation satisfying n_ (Tiin) < 74 (Tiin). Such a parametriza-
tion is given by the following theorem.

Theorem 1.3. Let system be absolutely definite and assume for simplicity that
Ny (Timin) = n—(Tiin). Then:

(1) There exist an auziliary finite-dimensional Hilbert space Hy, operator functions
Qo(N)(€ [H)), SO (€ [H ® H & Hy, H)) and a  Nevanlinna  operator  function
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M(X\)(€ [H® H®Hy)), A€ C\R, such that the identities

Qr(A) = Q) + SA)(Co(A) = CLM W) T'C1(M)S*(N), A€ C\R (8)
oL .
¥, (s) = 613110 61_1}530 - /_5 ImQ (0 +ic) do (9)
establish a bijective correspondence between all Nevanlinna pairs T = {Co(N),C1(N)},
Cij(N\) € [H® H e My, je{0,1}, satisfying the admissibility conditions
lim 5(Co(iy) — Ca(iy) M(iy)) ™ Ca(iy) = 0 (10)
lim LM (iy)(Coliy) — C(iy) M (i)~ Coliy) = 0 (11)

and all pseudospectral functions ¥,(-) of the system. Moreover, the above statement holds for
arbitrary (not necessarily admissible) Nevanlinna pairs T if and only if lim i]\/[(zy) =0 and
Y—00

lim y - Im(M (iy)h, h) = +o00, h #0.
Yy—00

(2) In the case mul T, = {0} (and only in this case) the set of spectral functions is not
empty and statement (1) holds for spectral functions.

Note that operator function M (\) in is defined in terms of the boundary values of re-
spective operator solutions of at the endpoints a and b, while Q4(\) and S()\) are defined
in terms of M()\). Observe also that similar to (§), () parametrization of [H @ H]-valued
pseudospectral functions corresponding to self-adjoint extensions of Ti,;, can be found in recent
works [5], [6].

Existence of pseudospectral functions follows also from the results of |2 [7]. In these papers
all pseudospectral functions of regular system are parametrized in the form close to , @
Note that the proof of the results of [2] is not complete (for more details see Remark [3.23).

Recall that system (I]) is called a Hamiltonian system if H = {0}. [H]-valued pseudospectral
functions Xy (-) of a Hamiltonian system corresponding to a certain "truncated” Fourier trans-
form are studied in [4} I, B]. In the case H = C existence of a scalar function ¥(-) is proved
in [I]. A description of all pseudospectral functions X (-) of a regular Hamiltonian system is
obtained in [4, B]. Such a description is given in terms of a linear-fractional transform of a
Nevanlinna operator pair, which plays a role of a parameter.

Our approach is based on concepts of a boundary triplet for a symmetric relation and the
corresponding Weyl functions (see [8, O, [10, 11], 12, 13| 14] and references therein). In the
framework of this approach the operator M(\) in is the Weyl function of an appropriate
boundary triplet for Ty,... Moreover, conditions and are implied by results on II-
admissibility from [IT] [6].

In conclusion note that spectral functions of very general boundary problems were studied
in the recent papers [15, [16].

2. PRELIMINARIES

2.1. Notations. The following notations will be used throughout the paper: $, H denote
Hilbert spaces; [Hi, Ha| is the set of all bounded linear operators defined on the Hilbert space
‘H; with values in the Hilbert space Ha; [H] := [H, H]; P is the orthoprojection in $) onto the
subspace £ C $; C, (C_) is the upper (lower) half-plane of the complex plane.

Recall that a closed linear relation from Hg to H; is a closed linear subspace in Ho®Hy. The
set of all closed linear relations from Hy to H; (in H) will be denoted by C(HO,H ) (C(H)).
A closed linear operator T' from Hy to 4 is identified with its graph gr T € C(Ho, H,).

For a linear relation T € C (Ho, H1) we denote by dom T, ran T', ker T" and mul 7" the domain,
range, kernel and the multivalued part of 7' respectively. Recall that mul7T" ia a subspace in
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‘H, defined by
mul7 = {hl € Hl : {O,hl} € T}

Clearly, T € 5(7-[0,7-[1) is an operator if and only if mul7T = {0} The inverse and adjoint
linear relations of 7" are the relations T~ € C(Hy, Ho) and T* € C(Hy, Ho) defined by

T L= {{hl,hg} € H, @Ho : {ho,hl} c T}

T = {{k’l, k’()} EHLPHy: (k’o, ho) — (k’l, hl) =0, {h(), hl} S T}

Recall also that an operator function ®(-) : C\ R — [#] is called a Nevanlinna function if it is
holomorphic and satisfies Im A - Im®()\) > 0 and ®*(\) = ®(\), A € C\ R,
2.2. Symmetric relations and generalized resolvents. Recall that a linear relation
A €C(H) is called symmetric (self-adjoint) if A C A* (resp. A = A*). For each symmet-
ric relation A € C($) the following decompositions hold

H=9HoDmul A, A:ger@n/nﬁA,

where mul A = {0} @ mul A and A is a closed symmetric not necessarily densely defined
operator in $) (the operator part of A). Moreover, A = A* if and only if Ay = Aj}.

Let A = A* € C(9), let B be the Borel o-algebra of R and let Ey(-) : B — [$)o] be the
orthogonal spectral measure of Ag. Then the spectral measure E4(-) : B — [$)] of A is defined
as EA(B) = E()(B)me, B e B.

Definition 2.1. Let A = A* € Cf (5) and let i) be a subspace in 56 Relation A is called
$-minimal if span{$, (A — \)"1H: A € C\R} = §.

Definition 2.2. The relations 7j € C(Y)J) j € {1,2}, are said to be unltarlly equivalent (by
means of a unitary operator U € [$1, 9,]) if T, = UT} with U = U & U € [$2, H2)].

Let A € C($) be a symmetric relation. Recall the following definitions and results.

Definition 2.3. A relation A = A* in a Hilbert space HOH satistying A C A is called an
exit space self-adjoint extension of A. Moreover, such an extension A is called minimal if it is
$H-minimal.

In what follows we denote by Self (A) the set of all minimal exit space self- adJomt extensions
of A. Moreover, we denote by Self(A) the set of all extensions A = A* € C($) of A (such
an extension is called canonical). As is known, for each A one has Self( ) # 0. Moreover,
Self (A) # 0 if and only if A has equal deficiency indices, in which case Self(A) C Self (A).

Definition 2.4. Exit space extensions A; = ;[* eC(®,), je {1 2}, of A are called equiv-

alent (Wlth respect to ) if there exists a unitary operator V' € [531 o9, 552 © 9| such that A1
and A, are unitarily equivalent by means of U = Iy & V.

Definition 2.5. The operator functions R(:) : C\ R — [$] and F(-) : R — [$)] are called
a generalized resolvent and a spectral function of A respectively if there exists an exit space
extension A of A (in a certain Hilbert space 53 D $) such that

R\ =Py(A—XN)""19H, AeC\R (12)
F(t) = PsE((—o0,t)) [ , teR. (13)
Here P; is the orthoprojection in $) onto § and E(-) is the spectral measure of A.

In the case A € Self(A) identity defines the canonical resolvent R(A) = (A — A)~L of A.
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Proposition 2.6. Fach generalized resolvent R(\) of A is generated by some (minimal) ex-

tension A € ée/lf(A). Moreover, the extensions Ay, Ay € E‘/ya/f(A) inducing the same generalized
resolvent R(-) are equivalent.

In the sequel we suppose that a generalized resolvent R(-) and a spectral function F(-)

are generated by an extension A E Self(A). Moreover, we identify equivalent extensions.
Then by Proposition 1dent1ty glves a bijective correspondence between generalized

resolvents R(A) and extensions A € Self (A), so that each A € Self (A) is uniquely defined by
the corresponding generalized resolvent (spectral function ([13)).
It follows from and that the generalized resolvent R(-) and the spectral function

F(-) generated by an extension A € Self(A) are related by

R(A):/@, A eR.

rRt—A
Moreover, setting 5%0 = 5 o mul A one gets from that
F(oo)(:=s — tginooF(t)) = P;,Pgo [ 9. (14)

2.3. The spaces £*(3;H) and L*(3;H). Let H be a finite dimensional Hilbert space. A
non-decreasing operator function ¥(-) : R — [H] is called a distribution function if it is left
continuous and satisfies 3(0) = 0.

Theorem 2.7. [17, ch. 3.15|, [I8] Let X(:) : R — [H] be a distribution function. Then:

(1) There exist a scalar measure o on Borel sets of R and a function ¥ : R — [H] (uniquely
defined by 0' up to o- ae) such that ¥(s) > 0 o-a.e. on R, o([a,f)) < oo and
X(B) — = [ (s s) for any finite interval [, 5) C R.

[a.3)
(2) The set 52(2 H) of all Borel-measurable functions f(-) : R — H satisfying

1o = [ (@16, 16) = [ (W6)(6). 76 dols) < o0
15 a semi-Hilbert space with the semi-scalar product
(f,9)e2mmy = /R(dE(S)f(S)yg(S)) = /R(‘IJ(S)J”(S),Q(S))H do(s), f g€ L2 (ZH).

Moreover, different measures o from statement (1) give rise to the same space L*(X;H).

Definition 2.8. [I7, 18] The Hilbert space L*(X;H) is a Hilbert space of all equivalence
classes in £?(X;H) with respect to the seminorm || - || z2(s3)-

In the following we denote by 7y, the quotient map from £2(3;H) onto L*(3; H). Moreover,
we denote by £3 (3;H) the set of all functions g € £2(3;H) with the compact support and
we put L2 (3 H) == me L3 (3 H).

With a distribution function 3(-) one associates the multiplication operator A = Ay in
L*(3;H) defined by

dom Ay = {f € L*(3:H) : sf(s) € L2(3;H) for some (and hence for all) f() € f}

Asf =mx(sf(s)), fedomAs, f(-)€f. (15)
As is known, A}y, = Ay and the spectral measure Ey; of Ay is given by
Ex(B)f = ms(xs()f(), BeB, [el’(ZH), f()e ], (16)

where xp(+) is the indicator of the Borel set B.
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Let K, K’ and H be finite dimensional Hilbert spaces and let X(s)(€ [H]) be a distribution
function. For Borel functions Y (s)(€ [H, K]) and g(s)(€ H) we let

[ Y(©ass)gts) = [ Y¥s)gs) dols) (€ K) a7)
R R

where o and ¥(-) are defined in Theorem (1).

2.4. The classes R, (Ho, H1) and R(). Let Ho be a Hilbert space, let H; be a subspace

in Ho and let 7 = {7, 7_} be a collection of holomorphic functions 7,.(-) : C+ = C(Ho, H1). In

the paper we systematically deal with collections 7 = {7, 7_} of the special class R, (Ho, H1)-
Definition and detailed characterization of this class can be found in our paper [6] (see also

[19, 20, 5], where the notation R(#o,H1) were used instead of R (Ho, H1)). If dimH; < oo,
then according to [6] the collection 7 = {7, 7_} € R, (Ho, H1) admits the representation

) = {(CoN), 1) Hob, A€Cys 7 (A) = {(Do(A), Di(\)iHa}, AT (18)
by means of two pairs of holomorphic operator functions

(Co(N),C1(N) s Ho @ H1 — Ho, A€ Cy, and (Do(N),D1(N) : Ho®H1 — Hy, NeC_
(more precisely, by equivalence classes of such pairs). Identities mean that

T+(A) = {{ho, b1} € Ho @ H1: Co(AN)ho + C1(AN)h1 =0}, AeC,
T,(A) = {{ho, hl} € Ho S5 Hl : Do()\)ho + Dl()\)hl = 0}, Are C_.

In [6] the class R (Ho, H1) was characterized both in terms of C(#o, H1)-valued functions 7 (-)
and in terms of operator functions C;(-) and D;(-), j € {0,1}, from (18).

If Hy = Ho =: H, then the class R(H) := R (H,H) coincides with the well-known class of

Nevanlinna C(#)-valued functions 7(-) (see, for instance, [II]). In this case the collection (18]
turns into the Nevanlinna pair

7(A) = {(Co(N), C1(N): H}, A e C\R, (19)
with Co(A), C1(A\) € [H]. Recall also that the subclass R°(#) C R(H) is defined as the set of

all 7(-) € R(H) such that 7(\) = 6(= 6*), A\ € C\ R. This implies that 7(-) € R°(H) if and
only if

7(A) = {(Co, C1); H}, A e C\R, (20)
with some operators Cy, Cy € [H] satisfying Im(C1Cg) = 0 and 0 € p(Cy £ iCy) (for more
details see e.g. [5, Remark 2.5]).

2.5. Boundary triplets and Weyl functions. Here we recall definitions of a boundary
triplet and the corresponding Weyl function of a symmetric relation following [8), [, [13] 12 10,
14, 21, 6]

Let A be a closed symmetric linear relation in the Hilbert space $), let 91\ (A) = ker (A* — \)
(A€C) be a defect subspace of A, let Mu(A)={{f,A\f}: f€M(A)} and
let ny(A) ;== dim 9\ (A) < 0o, A € Cy, be deficiency indices of A.

Next, assume that H, is a Hilbert space, H; is a subspace in Hy and Hs := Hy© H1, so that
Ho = H1 & Ha. Denote by P; the orthoprojection in Hy onto H;, j € {1,2}.

Definition 2.9. A collection I, = {H¢ & H1,T0, 1}, where I'; : A* — H,;, j € {0,1}, are
linear mappings, is called a boundary triplet for A*, if the mapping I' : f — {Iof, '\ f}, f € A*,
from A* into Hoy @ H,; is surjective and the following Green’s identity holds

(f9)—(f,9)= (Flﬁ Log)m, — (FOJ?; [19)2, + i(Pzroﬁ PoT'09) .
holds for all f = {f, '}, §={g,g'} € A".
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According to [21] a boundary triplet I, = {Ho & H1,T0, 1} for A* exists if and only if
n_(A) <ni(A), in which case dimH; = n_(A) and dim Hy = n, (A).
Proposition 2.10. [21] Let 11, = {Ho @ H1,T, 1} be a boundary triplet for A*. Then
the identities
Ty P9 (A) = Mo (W) [ 914(4), AeCy
(Ty +iPTo) | Ma(A) = M_(N)PTo | M(4), AeC-

well define the (holomorphic) operator functions My (-) : Ci — [Ho,Hi] and
M_(-) : C_ — [H1, Ho| satisfying M (X) = M_(\), A e C_.

Definition 2.11. [2I] The operator functions M, (-) defined in Proposition are called
the Weyl functions corresponding to the boundary triplet II,.

Theorem 2.12. [2I] Let A be a closed symmetric linear relation in $,
let Iy = {Ho @ H1,T0,T1} be a boundary triplet for A* and let M, (-) be the corresponding
Weyl function. If 7 = {1y, 7_} € E.}_(HO,HI) is a collection of holomorphic pairs , then
for every g € $ and A € C\ R the abstract boundary value problem

{f,A\f+g}ed (21)

CoMLo{ LA + g} = CLNT{ [, Af +g} =0, AeCy (22)

DO()‘)FO{fa )‘f +g} - Dl()‘)rl{fa )\f +g} = Oa reCo (23)

has a unique solution f = f(g,\) and the identity R(\)g := f(g,\) defines a generalized

resolvent R(\) = R,;(\) of A. Moreover, 0 € p(14(N\) + M+()\)) and the following Krein-
Naimark formula for resolvents is valid:

Rr(N) = (Ao = )7 =9 (N7 (A) + Mo (V) 792 (N), A eCy (24)

Conversely, for each generalized resolvent R(\) of A there exists a unique T € }N%+(Hg, H1) such
that R(\) = R,(\) and, consequently, identity is valid.

Remark 2.13. 1t follows from Theorem that the boundary value problem (21)—([23) as
well as formula for resolvents give a parametrization of all generalized resolvents

RO\ =R,(\) =Ps(A" =N 1H, AeC\R, (25)

and, consequently, all extensions A=A € S?)E“(A) of A by means of an abstract boundary
parameter 7 € R, (Ho, H1).

Definition 2.14. An extension A € Self(A) (A € Self(A)) is referred to the class Selfy(A)
(resp. Selfg(A)) if mul A = mul A.

Theorem 2.15. Let under the assumptwns of Theorem r={r,7_} € R+(’H0,7-l1) be

a collection of holomorphic pairs and let A™ € Self( ) be the corresponding extension of
A (see Remark[2.15). Then:
(1) Identities

0, (A) = Pi(Co(A) = CLA) ML (V)" Ci(A), A e Cy (26)
©-(A) = ML (A\)(Co(A) — CLNM,(A) ' Co(A) [ Hi, AeCy (27)
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define holomorphic [Hi]-valued functions ®.(-) and </IST() on C satisfying Im®,(A) > 0 and
Im®.(\) >0, A € C, . Hence there exist strong limits

By i=s— lim L P(Coliy) — Crliy) My (iy) ™ Ci (iy) (28)
B, i=s— Hm M (i) (Coliy) — Ci(iy) M (iy))~ Co(iy) | Ha (29)

(2) The inclusion A7 € SelfO(A) holds if and only if B, = B, =0

Proof. Statement (1) for ®,(\) was proved in [6] Theorem 4.8|.
Next assume that

Co(A) = (Co1(A), Co2(N)) : Ha & Ha = Ho,  Do(A) = (Dor(A), Do2(A)) : Hi @ Ho — Ha
My(A\) = (M), Ny (\) - Hi @ Ho — Hy, M_(N) = (M), N-(N)" : Hy — H, D Ho
are the block-matrix representations of Cy(\), Do(A) and My (\). Moreover,let
Co(A) = (CL(N), Coz(N) : Hy @ Ha — Ho:  C1(A) = —Cor(N), A e Cy
Mo(A) = (=M \), =M AN, (N) : Hy @ Ho — Ha, ANEC,
Then according to [6], the identities
() = A(Co(N) = CNM W) IEN), A€ Ty &,(N) =B[(N), AeC. (30)
define a Nevanlinna function ®, (- ) C\R — [#4] (i.e., a holomorphic function ®,(-) such that
Im\ - Im®,(A) > 0 and ®*(\) = ®,(}), A € C\ R). The immediate checking shows that
(Po = My (V)™ = =M (NP = M (NN (NP + B

and, consequently, Pj(P, — M, ()\))™' = ]\/ZJF(/\) (here M, ()) is considered as the operator in
Ho). This and imply that for each A € C,

O, (N) = =P, (C1(N) Py + Cos(A) Py + Con (N P (Py — My (A) ™) ™ Con(A) =
—Pi(Py — My (V) ((C1(\) Py + Coa(N Pa) (Po — My (N) + Con(\)P) ™ Con(A) =
M (A)(Coa(A\) Py — C1(A) M4 (X) 4+ Cor(\) Py) ' Cor(A) =
M (A)(Co(X) — CLN) M (X)) Co(A) | Ha.

Thus the restriction of </IST() on C; admits representation (27)), which yields statement (1) for
B(\).
It was shown in [6] that the second identity in can be written as
&)T(A) i= M(N\)(Dor(A) — Di(A)M(X) — iDoa(A)N_(A)) " Dpi(N), A€ C_
Therefore, by (29) one has
B, =s— lim L&, (iy)=s— hm —q)( y) =

y——+oo W y——
s — yli}r_noo %M(iy)(Dm (iy) — D1(iy)M (iyy) — i Doy (iy) N_(iyy)) " Doy (iy).
Now statement (2) follows from [0, Theorem 4.9]. O

Remark 2.16. (1) If Hy = Hy := H, then the boundary triplet in the sense of Definition
turns into the boundary triplet II = {H, [z, 1} for A* in the sense of [12, O]. In this
case ny(A) = n_(A)(= dim#H) and My(-) turn into the Weyl function M(:) : C\ R — [H]
introduced in [10] [14]. Moreover, in this case M () is a Nevanlinna operator function.

In the sequel a boundary triplet IT = {#H,[s,I'1} in the sense of [12], @] will be called an
ordinary boundary triplet for A*.
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(2) Let ny(A) = n_(A), let IT = {H,T,I'1} be an ordinary boundary triplet for A* and
let M(-) be the corresponding Weyl function. Then an abstract boundary parameter 7 in

Theorem is a Nevanlinna operator pair 7 € R(H) of the form and identities and

become

By = s = lim (Co(iy) — Cu(iy) M(iy)) ™ Ca(iy) (31)
B = s — lim M (iy)(Co(iy) — Ca(iy) M (i) ™' Coiy). (32)

Note that for this case Theorem was proved in [IT], 22].

3. PSEUDOSPECTRAL AND SPECTRAL FUNCTIONS OF SYMMETRIC SYSTEMS
3.1. Symmetric systems. Let H and H be finite dimensional Hilbert spaces, let
Hy=H®H, H=HoH=HeoHoH (33)

and let J € [H] be operator . A first order symmetric system of differential equations on an
interval Z = [a,b), —00 < a < b < oo, (with the regular endpoint a) is of the form

Jy'(t) — Bt)y(t) = MA(t)y, teZ, \eC, (34)

where B(-) and A(-) are the [H]-valued functions on Z integrable on each compact interval
la, ] C Z and such that B(t) = B*(t) and A(t) > 0 (a.e. on 7).

An absolutely continuous function y : Z — H is a solution of if identity holds a.e.
on Z. An operator function Y (-,\) : Z — [K,H] is an operator solution of equation (34) if
y(t) = Y (t,\)h is a solution of this equation for every h € K (here K is a Hilbert space with
dim K < o).

The following lemma will be useful in the sequel.

Lemma 3.1. Let K be a finite dimensional Hilbert space, let Y(-,-) : Z x R — [IC,H] be an
operator function such that Y (-, s) is a solution of (34 . and Y (a,-) is a continuous function on
R and let 3(-) : R — [K] be a distribution function. Then for each function g € L} (3;K) the
identity

f(t) :/Y(t,s) dx(s)g(s), teZ (35)
defines an absolutely continuous functlfon f() such that
) = —J/R(B(t) + sA(t)Y (t,s)dX(s)g(s) (a.e.on T). (36)
Proof. In accordance with (| u identity (35 . means
/Yts o(s)do(s), teT, (37)
where ¥ and o are defined in Theorem 2.7} (1). Since Y (¢, s) satisfies
Y(t,s) =Y (a,s)—J [ )(B(u) + sA(u))Y (u, s)du, teT, (38)
ajt

it follows that Y(+,-) is a continuous function on Z x R. Moreover, one can easily prove that

f |W(s)g(s)|| do(s) < co. Therefore, the integral in exists and
/ 1(B(u) + sA(u))Y (u, 5)¥(s)g(s)|| dudo(s) < oo (39)

[a,t)xR
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It follows from (39)) and the Fubini theorem that

/R (/[a’th(U) + sA(u))Y (u, s)¥(s)g(s) du) do(s) = (40)

/ ( / (B(u) + sAW)Y (u, )T (s)g(s) da(s)) du.
[a,t) R
Now combining with and taking into account, one gets

fy=c—-J / ( /R (B(u) + sA(w))Y (u, s)¥(s)g(s) da(s)) du,

[a,t)

where C' = [Y(a, s)¥(s)g(s) do(s). Hence holds. O
R

Denote by £3(Z) the semi-Hilbert space of Borel measurable functions f(-) : Z — H such that
J(A@)f(t), f(t))mdt < oo and let § := L3 (Z) be the Hilbert space of all equivalence classes in
T

L3 (Z) |17, Chapter 13.5]. Denote also by 7a the quotient map from £%(Z) onto L% (Z).
For each system the identities

Tmax = {{y, f} € (LA(T))? : y is absolutely continuous and
Jy' (t) — B(t)y(t) = A(t) f(t) a.e. on T}

and Tax = (A @ TA) Tmax define the linear relations Ty in L3 (Z) and Tyax in ). Moreover,
the identity

[y, z]p := ltigl(Jy(t), 2(t)), v,z € dom Tmax. (41)

well defines the skew-Hermitian bilinear form [-, -], on dom Tp.. By using this form one defines
the relations 7, in £4(Z) and Ty, in §) via

To = {{y, f} € Tmax : y(a) =0 and [y, z], =0 for every z € dom Tpax}

and Tiin = (ma ® 7a)7T,. It turns out that T, is a closed symmetric linear relation in $ with
finite deficiency indices ny(Tmm) and 7%, = Thmax (see [23] for regular and [I), 24, 25| 26] for
general systems). The relations Ty, and Ty are called the minimal and maximal relations
respectively.

The following assertion is immediate from definitions of Ty,;, and Tiax.

Assertion 3.2. (1) The multivalued part mul Thy;, of the minimal relation Ty, is the set of
all f € LA(Z) such that for some (and hence for all) f € f the solution y of the equation

Jy' = Bty = A f(1), tel

with y(a) = 0 satisfies A(t)y(t) =0 (a.e on Z) and |y, z], =0, z € dom Tpax-
(2) The identity mul Try;, = mul Tyay holds if and only if for each function y € dom Ty the
identity A(t)y(t) =0 (a.e. on T) yields y(a) =0 and [y, 2], = 0, z € dom Tpax.

3.2. ¢-pseudospectral and spectral functions. Denote by §), the set of all f € $ with
the following property: there exists 3 Fel such that for some (and hence for all) function f € f
the identity A(t)f(t) = 0 holds a.e. on (87,b). Moreover, denote by Yo(-,A) the [H]-valued

operator solution of satisfying Yy(a, \) = Iy. With each fve ), we associate the function

]?() : R — H given by
Fls) = / Vet AW S0 dt, f() e f (42)

By using the well-known properties of the solution Yy(-, A), one can easily prove that f(-) is a
continuous (and even holomorphic) function on R.
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Recall that an operator V € [$)1, 9] is called a partial isometry if ||V f|| = ||f|| for all
feNn ckerV.

Definition 3.3. A distribution function X(-) : R — [H] will be called a g-pseudospectral
function of the system if f e L2(3; H) for all f € $);, and the operator V; f := msf, f €5,
admits a continuation to a partial isometry V = Vy € [§; L*(X; H).

The operator V' = V5 will be called the Fourier transform corresponding to 3(-).

Clearly, if ¥(+) is a g-pseudospectral function, then for each f(-) € L£4(Z) there exists a
unique g(= Vamaf) € L?(32; H) such that for each function g(-) € g one has

=0.

limHg(') B £2(3;H)

Brb

Y () AW (1) |

[a,8)

Proposition 3.4. Let X(-) be a g-pseudospectral function and let V = Vi, be the correspond-
ing Fourier transform. Then for each g € L3 (3;H) the function

loc

f5(t) = / Yolt,s) dS(s)g(s), () €3

belongs to LA(Z) and V*g = waf;5(-). Therefore,

V= ([ Y. i) TE L), o) €

where the integral converges in the seminorm of L% (Z).

Proof. According to Lemma f5(+) is a continuous H-valued function on Z and by

f5(t) = / Ya(t, s)¥(s)g(s)do(s), g() €. (43)

where o and U are defined in Theorem 2.7} (1).
Let f.(-) € LA(Z) be a function such that wa f.(-) = V*g. Moreover, let h € H, let § C Z be
a compact interval and let f(t) = ys(t)h(€ LX(Z)). We show that

[ awssud = [ s0.508 0 (44)

T

In view of one has

Ju@.awspema - |

T

( [@ws.v s>w<s>g<s>>Hdo<s>) i (45)

Since Yy(+,-) is a continuous function on Z x R, it follows that

/ I(A®@)f(E), Yo(t, s)¥(s)g(s))u| dtdo(s) < co.

IxR
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Therefore, by the Fubini theorem one has

[ ([ 050350 996)90adots)) e =
/R (/I(A(t)f(t),Yo(t, $)W(s)g(s))m dt) do(s) =
[ ([ e onon. o) dots) -
/R<‘I’<S)/I%*(t’ s)A(E) f (1) dt,g(3)>H do(s) = (Vs f.d) s —
(raf V'3 = [ (£, A0 L)t

z
Combining these relations with one gets identity .

It follows from that A(t)f3(t) = A(t)f.(t) (a.e. on Z). Hence f3(-) € LA(Z) and
Tafz(-) = maf() = Vg O

Let V5 be the Fourier transform corresponding to the g-pseudospectral function () and let
9, =9Hker Vs, Ly =VeH(=Ve$)) and Ly = L*(X;H) & Ly. Then

H=kerVx @9,  L*(S;H)=Lo® Ly. (46)
Assume also that
)
=~/ / 1 = / 1 1 =~/
Hy=9oLly, H=krlhoH,aly =H Ly =ker Vs @9 (47)

and let V' € [9), L2(3; H)] be a unitary operator of the form
V= (Ve | 9, Ia) : 9 ® Liy — L*(S;H), (48)

where 1 is an embedding operator from Lg to L*(3;H). Since $ C §, one may consider T

as a linear relation in $).

Lemma 3.5. Let X(-) be a g-pseudospectral fugctz’on of the system and let V' be a

unitary operator . Moreover, let (Tmin)% € C(9) be a linear relation adjoint to Ty in $
and let A = Ay, be the multiplication operator in L*(3;H). Then the identities

f=Wyg  Tof =(V')Ag, gedomA (49)
define a self-adjoint operator To in 5’0 such that Ty C (Tmin)%.
Proof. 1t is easily seen that (Tmin)% = Trax ® (Lg)?. Moreover, in view of one has

(V)G =VZg+ Pig, § € L* (N H).
Therefore, can be written as
F=V8g+Png,  Tof =VEAG+PiAG, §€domA,
Thus to prove the inclusion Ty C (Tmin)% it is sufficient to show that {V&g, ViEAG} € Thax for
all g € domA.

Let g € domA, g(-) € g and let E(-) = FEx(-) be the spectral measure of A. Then
by and for each compact interval § C R one has E(d)g = mn(xs(-)g(:)) and
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AE(0)g = ms(sxs(s)g(s)). Therefore, according to Proposition VEE(9)g = may(-) and
VEAE(0)g = maf(+), where

y(t) = / Yo(t, $)dS(s)xa(s)gs), (1) = / SYo(t, 5)dS(s)vs()g(5).

It follows from Lemma [3.1| that y(-) is absolutely continuous and

y(t) =~ / (B(t) + sA(0)Ya(t, 5) dE(s)xs(s)g(s) (accon T).

Therefore,
Jy'(t) — B(t)y(t) = A(15)/R8Y0(1h s) dX(s)xs(s)g(s) = A(t)f(t) (a.e.on T)

and, consequently, {y, f} € Tmax. Hence {VGE(8)g, VGAE(0)g}H = {may(), 7af(-)}) € Tmax
and passage to the limit when 6 — R yields the required inclusion {V&g, V&AG} € Thax. O

Theorem 3.6. For each q-pseudospectral function X(-) of the system the corresponding
Fourier transform Vy satisfies

mul 71, C ker Vs, (50)
(for mul Ty see Assertion[3.9, (1)).

Proof. Let Ty = ﬁ;‘ be the operator in 56 defined in Lemma and let (To)%, be the linear
relation adjoint to Ty in §' . Then (fo)%, = Ty @® (ker V&;)2 and the inclusion Ty C (Tmin);% yields

Tonin C T ® (ker Va)2. (51)

Let n € mul Ty,. Then {0,n} € T and by {0,n} € To @ (ker V)2, Therefore, there
exist f € dom Ty and g, ¢’ € ker Vi, such that

f+g=0, Tof+4=n
Since f € 5’0, g € ker Vx and 56 L ker Vs (see (7)), it follows that f = g = 0. Therefore,
Tof = 0 and hence n = ¢’ € ker V. This yields the inclusion (50)). ]

Remark 3.7. According to [2, Lemma 5|, the identity
@.f = / Vit s)AW St dt, T e dom Ty, 5 €R (52)
z

defines a directing mapping ® of Ty, in the sense of [2]. By using this fact and Theorem 1 from
[2] one can prove the inclusion for g-pseudospectral functions X(+) satisfying the additional

condition ||V fl = [|]], J € dom Ty

Definition 3.8. A ¢-pseudospectral function ¥(-) of the system will be called a pseu-
dospectral function if the corresponding Fourier transform Vi, satisfies ker Vs, = mul T,

Definition 3.9. A distribution function %(-) : R — [H] will be called a spectral function of
the system (34)) if for every f € §; the inclusion f € £2(3;H) holds and the Parseval identity

||ﬂ|52(E;H) = ||J?||5 is valid (for fsee (142)).

It follows from Theorem that a pseudospectral function is a g-pseudospectral function %(-)
with the minimally possible ker V5. Moreover, the same theorem yields the following assertion.

Assertion 3.10. A distribution function 3(-) : R — [H] is a spectral function of the system
if and only if it is a pseudospectral function with ker Vs(= mul Tyy) = {0} (that is, with
the isometry Vs,).
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In the following we put g := H © mul T}, so that
$H = mul T, © $Ho. (53)
Moreover, for a pseudospectral function ¥(-) we denote by Vy = Vi 5 the isometry from £, to
L?(X; H) given by
Vor == Vs | $o. (54)
Clearly, V5 admits the representation

Vs = (0, Vo) : mul Toyin, @ Ho — L*(3; H) (55)

3.3. Pseudospectral functions and extensions of the minimal relation. Recall that
system ((34]) is called definite if for some (and hence for all) A € C there exists only the trivial
solution y = 0 of this system satisfying A(¢)y(¢t) = 0 a.e. in Z. We also introduce the following
definition.

Definition 3.11. System will be called absolutely definite if the Lebesgue measure of
the set {t € Z: A(t) is invertible} is positive.

Remark 3.12. (1) Clearly, each absolutely definite system is definite. Moreover, one can
easily construct definite, but not absolutely definite system (even with B(t) = 0 and
continuous A(t)).

(2) It is known (see e.g. [24]) that the maximal relation Ty, induced by the definite sym-

metric system possesses the following property: for any {7, f} € Thayx there exists a unique
absolutely continuous function y € £4(Z) such that y € ¢ and {y, f} € Tmax for any f € f.
Below we associate such a function y with each pair {7, f} € Thax-

Similarly to [5l, Proposition 6.9] one proves the following proposition.

Proposition 3.13. Let X(-) be a g-pseudospectral function of the definite system and let
Lo be a subspace in L*(3;H) given by Loy = Vs$. Then the multiplication operator As is
Lo-minimal (in the sense of Definition .

For a Hilbert space 5 D $H we put 5%0 = 5 © mul Thin, so that
9 = mul Tpin S Ho. (56)

It is clear that $, C 530 (for o see (H3))).

Let T € Selfo( Tinin) be a linear relation in a Hilbert space 55 D 9 and let f) be decomposed
as in 1} (for the class Selfo see Definition E In the sequel we denote by TO the operator
part of T. Since mulT = mul Ty, it follows that T is a self-adjoint operator in 0. Let Eo()
be the orthogonal spectral measure of Ty and let Fy(-) : R — [§o] be a distribution function
given by

Fy(t) = PooyEo((—00,t)) | $0, tER, (57)
where ﬁﬁo is the orthoprojector in f)o onto Ho. It is clear that a spectral function F(-) of Tinin
generated by T is of the form

F(t) = diag (Fy(t), 0) : $Ho & mul Trpin — Ho ® mul Tiyiy. (58)

Proposition 3.14. Let system be definite. Then for each pseudospectral function X(+)

of this system there exists a unique (up to the equivalence) exit space extension T e Selfo(Tinin)
such that the corresponding spectral function F () of T satisfies

~ -~

(F(8) = F(a))f, s = / (d2(s)f(s), [(s), fe$Hm, —w<a<B<oo (59

CHE))
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Moreover, if T is a linear relation in a Hilbert space 5 D §), then there exists a unitary operator
V € [90, L*(3; H)] such that V' | $o = Vo and the operators Ty and As, are unitarily equivalent
by means of V.

Proof. For a given pseudospectral function ¥(-) we put Ly = Vg$o and Ly = L*(3;H) © Ly,
so that L?(3;H) = Ly @ Ly. Assume also that

90 =N O L, O = mul Ty @ H @ L = mul Ty & Ho (60)

and let V € [50, L?(3; H)] be a unitary operator given by
V= (Vox, Ip2) : 90 @ Ly — L*(S; H). (61)
Since ker Vs = mul Ty, it follows that $ = $o, 5’)0 = ﬁg and V' = V V (see , ~and

1) Therefore, by Lemma identities 1) with V' = V define a self-adjoint operator T} in
550 Moreover, in view of . the operators To and A = Ay, are unitarily equivalent by means
of V. Hence the spectral measure Ey(-) of Ty satisfies

Eq([o, 8)) = V' Ex([o, B))V, —00 <a << oo, (62)

Observe also that Vﬁo Vs$ = Ly and by Proposition operator Ay is Lo-minimal.
Therefore, the operator TO is Ho-minimal.

It follows from the second identity in that T := ({0} ® mulTh) & Tp is a self-
adjoint linear relation in 5 with the operator part TO and mul7T = mul Tmin- Moreover,
{0} ® mul Typin C Thnin € (T, mm)* and by Lemma 51T, C Tmm);. Hence T C (Tmm); and,

consequently, T, min C T Observe also that relation 7 is $H-minimal, since operator Tj is $o-
minimal. Hence T € Selfo (Thnin)-
Next we assume that F(+) is a spectral function of T}y, generated by T and let Fy(-) be given

by . By using and one can easily show that
Fy(B) — Fola) = Py, Eo([a, B)) | $H9 = VosPs([a, B))Voz, —0o<a<f<oo.
Therefore, by and one has
F(B) — F(a) =V&FEs(lo, 8))Vs, —0<a<f<oo,
Whifh is equivalent to (59)). Finally, uniqueness of T directly follows from (59 and $)-minimality
of T O

The following corollary is immediate from Proposition |3.14!

Corollary 3.15. Let 3(-) be a pseudospectral function of the definite system . Then
Vo is a unitary operator from $o onto L*(X;H) if and only if ny( mm) = n_(Twm) and

the corresponding extension T from Proposition |3.14) is canonical, that is T e Selfo(Tmin)- If
these conditions are satisfied, then operators Ty (the operator part of T') and As, are unitarily
equivalent by means of Vi 5.

Remark 3.16. Applying |2l Theorem 1] to the directing mapping one can give another
proof of Proposition [3.14

The following theorem is well known (see e.g. |27, 28, 29]).

Theorem 3.17. For each generalized resolvent R(\) of Tyin there exists a unique operator
function Q(-) : C\ R — [H] such that for each f € LA(Z) and A € C\ R

RA)f = ma (/IYo(-,A)(Q(A) + g sgn(t — @) )Y (L, M)A f (1) dt) . fef. (63)
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Moreover, Q)(+) is a Nevanlinna operator function.

Definition 3.18. [27, 29] The operator function €(-) is called the characteristic matrix of
the symmetric system corresponding to the generalized resolvent R(\).

Remark 3.19. For a much more general situation formula is obtained in [30, 31].

Since (+) is a Nevanlinna function, it follows that the identity (the Stieltjes formula)

1 50
Yao(s) = lim lim —/ Im Q(o + ic) do. (64)

0=>+0e—+07 J_5

defines a distribution [HJ-valued function ¥q(-). This function is called a spectral function of

Theorem 3.20. Assume that system (34) is absolutely definite. LetT € Selfo( Tnin), let F()
and R(-) be the spectral function and the genemlzzed resolvent of T, respectively generated by

T, let Q) be the characteristic matriz corresponding to R(-) and let Xqo(-) be the spectral
function of Q(-). Then X(-) = Xq(-) is a unique pseudospectral function of the system (34)
such that holds.

Proof. (1) Assume that T is a linear relations in the Hilbert space HOH. By using and
the Stieltjes-Livsic inversion formula one proves identity for 3(-) = Xq(+) in the same way
as Theorem 4 in [29].

Next assume that § and § are decomposed as in (H3) and . respectlvely Since
mul T = mul Ty, it follows from and (14) that for any f € $, one has f € L£2(3; H)

and ||f\|£2 em = ||P 0f||ﬁ < HfH;j Hence the operator Vif = msf, f € $p, admits a
continuation to an operator V € [$), L*(3; H)| satisfying
IV Fllzem = 1Ps, flls:  f € 9. (65)

It follows from , and the inclusion £y C i)o that V f 0, f € mul T, and
||Vf||L2 (SH) = ||f||ﬁ = ||f||;,, f € $). Thus V is a partial isometry with ker V = mul Ty,
and, consequently, ¥(-) = Xq(-) is a pseudospectral function of the system ([34)) such that (59)
holds.

(2) Next we show that each pseudospectral function X(-) satisfying coincides with 3q(+).
So, let 3(-) be such a function, let Vy be the corresponding Fourier transform and let Eys, be
spectral measure ([16)). Then by for each finite interval § = [, ) C R one has

F(B) = Fla) = Ve Ex()Va (66)
and Proposition [3.4] yields
() - Flanf =ns [Vl )i=07(0). s=fascR Fem (oD

Substituting (42)) into ( and then using the Fubini theorem one can easily show that

(@) - Fla)f = ( [ Kostwd@r@an), s=fas) <R Fesn fef. @9

Ksx(t,u) = /5Y0(t,s)d§](s)Y0*(u, s), tiuel. (69)

Let Ks s, (t,u) be given by with X(s) = 3q(s) and let Ks(t,u) = Ksx(t,u) — Ksx, (t, u),
t,u € Z. It follows from Theorem [2.7] that there exist a scalar measure o on B and functions
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U, ¥ : R — [H] such that

2(8) = Sla) = [ W(s)do(s) and Tal8) = Tal) = [Wals)dol) (70
for any finite 0 = [o, 8). Let W(s) = ¥(s) — Wq(s). Then in view of one has
Ks(t,u) = / Yo(t,s)U ()Y (u,s)do(s), t,uel, §=][a,f)CR (71)
Since Yq(+) also satisfies , identity holds with Ky, in place of Ksy. Hence
A (/K(; )f(u )du):O, §=la,B) CR, feLAT), naf € N (72)
Denote by F' (F') the set of all finite intervals § = [a, 8) C R (resp. ¢’ = [o/, ') C ) with

rational endpoints. Moreover, let {e;}7 be a basis in H. It follows from . that for any
d € F, §' € F' and e; there exists a Borel set B = B(4,0’,e;) C T such that ;1(Z\ B) =0 and

A(t)Ks(t,u)A(u)ejdu =0, teB. (73)

(here py is the Lebesgue measure on 7). For each 6 € F put

Rt u) = A1) Ks(t, ) Au) = / A(6)Ya(t, $)F(s)Y; (u, 5)A(w) do(s) (74)

and let By = {{t,u} € T xT : Ks(t,u) = 0}, By = (| Bs. It follows from that
SeF
p2(Z x T\ Bs) =0, 6 € F, and hence puy(Z x Z \ By) = 0 (here ps is the Lebesgue measure on

ZxTI). Let Xa = {t € Z:A(t) isinvertible}. Since system (34]) is absolutely definite, it
follows that pi(Xa) > 0. Hence us(Xa x Xa) > 0 and, consequently, (Xa x Xa) N By # 0.
Therefore, there exist to and ug in I such that the operators A(tg) and A(ug) are invertible and
the identity

Ks(to, uo) = / A(to)Yo(to, s)U ()Y (ug, $)A(ug) do(s) = 0

holds for all § € F'. Hence A(to)Yo(to, s $)W(s)Yg (g, 8)A(ug) = 0 (0-a.e. on R) and invertibility
of Yy(to,s) and Yy (uo,s) yields ¥(s) = 0 (c-a.e. on R). Thus, U(s) = Uq(s) and by (70| .
X(s) = 3qg(s).

Now combining Proposition [3.14] Theorem [3.20| and Corollary we arrive at the following
theorem.

Theorem 3.21. Let system be absolutely definite. Then:

(1) Identities and (64) give a bijective correspondence $(-) = X (-) between all exten-
sions T € Selfo( mln) and all pseudospectral functions X(-). More precisely, let T e Selfo( Thnin),
let R(-) = Rz(-) be the generalized resolvent of T, induced by T, let Q(-) = Q= #(+) be the
characteristic matriz corresponding to Rz(-) and let X7(-) be the spectml functz’on of Qz(-).
Then ¥5(+) is a pseudospectral function of system . And vice versa, forfsaﬁch pseudospectral
function X(-) of system there exists a unique (up to equivalence) T e Selfo(Tiin) such that
2() = $5(0) i i

(2) If T € Selfo( Twin) and X(-) = X5(-), then operators Ty (the operator part of T) and As
are unitarily equivalent and hence they have the same spectral properties. In particular this
implies that the spectral multiplicity of Ty does not exceed dim H.

(3) Vox is a unitary operator from $)o onto L2(3;H) if and only if ny (Tiin) = n— (Tiin) and
X(-) = X5 with T € Selfo(Timin). In this case the operators Ty and Ay are unitarily equivalent
by means of Vos-
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Next, combining the results of this subsection with Assertion [3.10] one gets the following
theorem.

Theorem 3.22. The set of spectral functions of system 18 not empty if and only if
mul 71, = {0}. If this condition is satisfied, then the sets of spectral and pseudospectral func-

t@'ons of system coincide and hence Proposition Theorems |3. 20 m ‘ 3.21 and Corollary

are valid for spectml funct@ons (instead of pseudospectml ones). Moreover, in this case
statements of Proposition and Theorem E 1| hold with T and Vs in place of T(] and Vo »

respectively.

Remark 3.23. For a not necessarily absolutely definite system Theorem could be easily
obtained from Theorem 1 in [2] applied to directing mapping (52|). For this purpose it would be
needed one of the statements of the mentioned Theorem 1, Wthh is not proved in [2] (namely,

uniqueness of a spectral function V' of (S;®) for a given extension S = §* of S, where the
notations are taken from [2]). In fact, we do not know whether Theorem is valid for not
absolutely definite systems.

4. PARAMETRIZATION OF PSEUDOSPECTRAL AND SPECTRAL FUNCTIONS

Proposition 4.1. [5] Let system be definite and let n_(Tyin) < Ny (Tin). Then: (1)
There exist a finite dimensional Hilbert space Hy, a subspace Hy, C Hy and a surjective linear
mapping

Iy = (F()b, /F\b, Flb)T : dom Tmax — ﬁb © ﬁ b Hyp (75)
such that for all y, z € dom Ty the following identity is valid
v, 2]p = Loy, T'1u2) — Ty, Povz) + i( Pyt Loy, Pyt Tovz) + i(Tyy, Ty2) (76)

(here HE = Hy, © Hy).
(2) If Ty is a surjective linear mapping satisfying , then a collection
H+ = {Ho @Hl,Fo,Fl} with

Ho=HOH®OH,=Hy®Hy, Hi=HOHGH,=H,®MH (77)
Lo{. f} = {=w(a), i(Gla) — Tyy), Tay} € H & H & H, (78)
Li{7. f} = {wola ) -( 9(a) + Tvy), ~Twy} € H® H®H, (79)

is a boundary triplet for Thax (in and (79) y € dom Thax S a function corresponding to

{7, I} € Toax in accordance with Remark (2)).
If in addition no (Tin) = n—(Twin), then

Hy=Hp, Ho=Hi=H=Hy&H (80)

and 11y turns into an ordinary boundary triplet Il = {H,To,T'1} for Thax with H defined by the
second identity in .

The boundary triplet I, constructed in Proposition is called a decomposing boundary
triplet for T}ax.

Below we suppose that the following assumptions are satisfied:
(A1) System (34) is absolutely definite and n_ (Thin) < 1o (Thin)
(A2) Hb and Hy(C Hb) are finite dimensional Hilbert spaces and I', is a surjective linear
mapping ([75)) satisfying (76)).
(A3) H, and ‘H; are finite dimensional Hilbert spaces
(A4) 11, = {Ho®H1, Lo, 1} is the decomposing boundary triplet (78), for Thnax and M (+)
is the Weyl function of 11, in the sense of Definition [2.11]
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Definition 4.2. A boundary parameter 7 is a collection 7 = {7,,7_} € R, (Ho, H1) of the
form ([18]).

In the case of equal deficiency indices ny (Tinin) = n—(Tmin) identities hold and a bound-

ary parameter is an operator pair 7 € R(H) defined by (19). If in addition 7 € EO(H), then
a boundary parameter will be called self-adjoint. In this case 7 admits the representation as a
self-adjoint operator pair (20)).

It follows from Theorem that for each boundary parameter 7 = {7, 7_} defined by
there exist the limits B, and B, of the form and (29).

Definition 4.3. A boundary parameter 7 will be called admissible if B, = l§T =0.
The following proposition is immediate from the results of [6].

Proposition 4.4. (i) If lim iMJr(zy) | H1 =0, then the boundary parameter T is admissi-
Yy—00

ble if and only if B, = 0.
ii) Every boundary parameter is admissible if and only if mul Ty, = mul Ty (see Assertion
(2)) or equivalently, if and only if lim iMJr(iy) [ Hy =0 and
y—>00

iy (Im( M4 (iy) ho, ho)uy + 3| Pohol|?) = 400, ho € Ho, ho # 0, (81)

where Py is the orthoprojector in Hy onto Hy = Ho © H.

In the following theorem we describe all pseudospectral functions of the system in terms
of the boundary parameter 7.

Theorem 4.5. Let the assumptions (A1)-(A4) be satisfied. Moreover, let

mo(A)  May(N)

M_,_()\) = <M3+()\) M4+(/\)) cHy®Hy > HydHyy, AeCy (82)

0 1

be the block-matriz representation of the Weyl function M, (-) and let

1
—5PuyH 0

_1
Q(\) = ( mo(A) 2IH’H0) . Hy®H — Hy® H, AeC\R (83)
W—/ T

sy = (M) =8P MO e @ g e w aec
_PHQ,H 0 —— —— *

Ho

)2H0@H—>H0@Hb, /\EC+,
— a
1

S2(A)

<m0()\) + %Pﬁ _[H7HO
My (V) 0

where Py, g € [Ho, H] is the orthoprojector in Hy onto H, Iy p, € [H, Hy| is the embedding
operator of H into Hy and Py € [Hy)| is the orthoprojector in Hy onto H (see [33))). Then the
identity

Q(A) = Qo(A) + St A (Co(N) = CL)ML (V)T CL(A)S2(N), A € Ty (84)

together with the Stieltjes inversion formula @ establishes a bijective correspondence between all
admissible boundary parameters T = {1.,7_} defined by and all pseudospectral functions
(1) = ,() of the system ([B4). Moreover, statement of the theorem is valid for arbitrary
(not necessarily admissible) boundary parameters 7 if and only if ?}HEO $M+(zy) [ H1 =0 and

identity is satisfied.
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Proof. Application of Theorem to the decomposing boundary triplet 11, for T}, shows

that the boundary problem — with operators I'y and I'y of the form and
gives a parametrization R(A) = R,(A) of all generalized resolvents of T}, by means of a

boundary parameter 7. Denote by TVT(E éa/f(Tmin)) the extension of T, generating R.(-) and
by Q.(-)(= Q4 (-)) the characteristic matrix corresponding to R,(-). Clearly, the identities

T =T7 and Q(-) = Q,(-) give a parametrization of all extensions 7' € Self(7,,,) and all
characteristic matrices €2(-) by means of a boundary parameter 7. Moreover, representation
of Q,(-) was obtained in [32, Theorem 4.6]. Observe also that according to Theorem
= Selfo(Tmin) if and only if 7 is admissible. Combining these facts with Theorem
arrive at the first statement of the theorem. The second statement is implied by the first one
and Proposition [4.4] O

Remark 4.6. The entries of the matrix in can be defined in terms of boundary values
of respective operator solutions of at the endpoints a and b (for more details see [5,
Proposition 4.5|).

Assume now that T, has equal deficiency indices ny (Timin) = n—(Tmin). Then identities
and take a simpler form and (32), where M (-) is the Weyl function of an (ordinary)
decomposing boundary triplet II for T}, ..

Theorem 4.7. Let in addition to the assumptions of Theorem [{.5 the identity
Ny (Tin) = 1 (Twin) holds. Moreover, let

mo(A)  Ma(N)
M(N) = cHy®Hy > HydHy,, A€C\R
) (Mg(x) Mi(n)) P f_ﬁ Lo fj_é \
be the block-matriz representation of the Weyl function M(-), let Qo(X) be given by (83) and let

sy = (MW = s P MY e, s meH AeC\R
_PHO,H 0 \_?{,_/ T

Then the identity
Q.(0) = Q) + SA)Co(N) — LMW' GNS (R), AeC\R  (85)

together with the Stieltjes formula @D establishes a bijective correspondence between all admis-
sible boundary parameters T of the form and all pseudospectral functions X(-) = X.(-) of
system ([34). Moreover, Vo s (€ [$0, L*(X;H)]) is a unitary operator if and only if (-) = . (-)
with a self-adjoint (admissible) boundary parameter T.

The above statements are valid for arbitrary (not necessarily admissible) boundary parameters
7 if and only if

yh_{go wM(iy) I Hi =0 and yh_}rgoy - Im(M(iy)h,h) = 400, heH, h#0.
Proof. According to [32, Theorem 4.9] in the case Ny (Tmin) = n—(Tmin) identity admits
representation (85]). Combining of this fact with Theorem [4.5|and Theorem [3.21] (3) yields the

required statements. O

The following corollary is immediate from Theorem [3.22]

Corollary 4.8. Ifmul T\, = {0}, then Theorems[{.5 and[{.7] are valid for spectral functions
() (instead of pseudospectral ones).
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