УДК 517.53

ДВУСТОРОННЯЯ ОЦЕНКА К-ПОРЯДКА РЯДА ДИРИХЛЕ В ПОЛУПОЛОСЕ

Н.Н. АИТКУЖИНА, А.М. ГАЙСИН

Аннотация. Изучаются ряды Дирихле, сходящиеся лишь в полуплоскости, последовательность показателей которых допускает расширение до некоторой "правильной" последовательности. Установлены неулучшаемые оценки k-порядка суммы ряда Дирихле в полуполосе, ширина которой зависит от специальной плотности распределения показателей.

Ключевые слова: k-порядок ряда Дирихле в полуполосе, целые функции заданного роста на вещественной оси.

Mathematics Subject Classification: 30D10

Пусть $\Lambda = \{\lambda_n\} \ (0 < \lambda_n \uparrow \infty)$ —последовательность, удовлетворяющая условию

$$\overline{\lim_{n \to \infty}} \frac{\ln n}{\lambda_n} = H < \infty. \tag{1}$$

При изучении целых функций

$$F(s) = \sum_{n=1}^{\infty} a_n e^{\lambda_n s} \quad (s = \sigma + it), \tag{2}$$

определённых всюду сходящимися рядами Дирихле, в своё время Риттом было введено понятие R—порядка. Приведём определение этой величины.

$$\rho_R = \overline{\lim_{\sigma \to +\infty}} \, \frac{\ln \ln M(\sigma)}{\sigma},$$

где $M(\sigma)=\sup_{|t|<\infty}|F(\sigma+it)|$. Отметим, что в силу условия (1) ряд сходится во всей

плоскости абсолютно. Известно, что $\ln M(\sigma)$ —возрастающая выпуклая функция от σ , $\lim_{\sigma\to+\infty}\ln M(\sigma)=+\infty.$

Рассмотрим полосу $S(a,t_0)=\{s=\sigma+it:|t-t_0|\leq a\}$. Положим $M_s(\sigma)=\max_{|t-t_0|\leq a}|F(\sigma+it)|$. Величина

$$\rho_s = \overline{\lim}_{\sigma \to +\infty} \frac{\ln^+ \ln M_s(\sigma)}{\sigma} \quad (a^+ = \max(a, 0))$$

называется R—порядком функции F в полосе $S(a, t_0)$.

N.N. AITKUZHINA, A.M. GAISIN, K-ORDER ESTIMATE FOR DIRICHLET SERIES IN A HALF-STRIP.

[©] АИТКУЖИНА Н.Н., ГАЙСИН А.М. 2014.

Работа выполнена при поддержке РФФИ (гранты 14-01-00720, 14-01-97037), Программы фундаментальных исследований Отделения математики РАН "Современные проблемы теоретической математики": проект "Комплексный анализ и функциональные уравнения".)

Поступила 24 сентября 2014 г.

Пусть

$$\overline{\lim}_{n \to \infty} \frac{n}{\lambda_n} = D < \infty, \qquad D^* = \overline{\lim}_{\lambda \to +\infty} \frac{1}{\lambda} \int_0^{\lambda} D(x) dx,$$

где $D(x)=\frac{n(x)}{x},\ n(x)=\sum_{\lambda_n\leq x}1$ (D—верхняя плотность, D^* —усреднённая верхняя плотность

последовательности Λ). Известно, что $D^* \leq D \leq eD^*$ [2]. В [2] доказано, что если

$$\underline{\lim_{n\to\infty}}(\lambda_{n+1}-\lambda_n)=h>0,$$

то R—порядок ρ_s функции F в полосе $S(a,t_0)$ при $a>\pi D^*$ равен R—порядку ρ_R во всей плоскости. Наиболее общий результат о связи между величинами ρ_R и ρ_s установлен $A.\Phi.$ Леонтьевым [3].

Аналогичные вопросы в случае, когда H=0, а область сходимости ряда (2)—полуплоскость $\Pi_0=\{s=\sigma+it:\sigma<0\}$, исследованы А.М. Гайсиным в [4].

При H=0, если ряд (2) сходится в полуплоскости Π_0 , то он сходится в Π_0 и абсолютно. Тогда сумма ряда F аналитична в данной полуплоскости. Класс всех аналитических функций, представимых рядами Дирихле (2), сходящимися лишь в полуплоскости Π_0 , обозначим через $D_0(\Lambda)$.

Пусть $S(a,t_0)=\{s=\sigma+it: |t-t_0|\leq a,\sigma<0\}$ —полуполоса. Величины

$$\rho_R = \overline{\lim_{\sigma \to 0-}} \frac{\ln^+ \ln M(\sigma)}{|\sigma|^{-1}}, \qquad \rho_s = \overline{\lim_{\sigma \to 0-}} \frac{\ln^+ \ln M_s(\sigma)}{|\sigma|^{-1}}$$

называются порядками по Ритту функции F в полуплоскости Π_0 и полуполосе $S(a, t_0)$ [4]. В дальнейшем ρ_R и ρ_s будем называть порядками в полуплоскости и полуполосе. Если это необходимо, вместо ρ_R и ρ_s будем писать $\rho_R(F)$ и $\rho_s(F)$.

В [4] показано, что если

$$\lim_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \ln n = 0,$$

то порядок ρ_R любой функции $F \in D_0(\Lambda)$ равен

$$\rho_R = \overline{\lim_{n \to \infty}} \frac{\ln \lambda_n}{\lambda_n} \ln^+ |a_n|. \tag{3}$$

Пусть последовательность Λ имеет конечную верхнюю плотность D. Тогда

$$L(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\lambda_n^2}\right) \quad (z = x + iy)$$

—целая функция экспоненциального типа. Пусть $h(\varphi)$ —индикатриса роста функции L(z). Тогда $\tau = h(\frac{+\pi}{2}) \le \pi D^*$ [2]. Очевидно, τ —тип функции L(z). Пусть

$$|L(x)| \le e^{g(x)} (x \ge 0), \qquad \lim_{x \to +\infty} \frac{g(x) \ln x}{x} = 0,$$
 (4)

где g – некоторая неотрицательная на $\mathbb{R}_+ = [0, \infty)$ функция. В этом случае $h(0) = h(\pi) = 0$. Следовательно, сопряжённая диаграмма функции L(z) есть отрезок $I = [-\tau i, \tau i]$, $h(\varphi) = \tau |\sin \varphi|$.

В [4] доказана следующая

Теорема І. Пусть функция L(z) удовлетворяет условиям (4) и имеет тип τ (0 $\leq \tau < \infty$). Положим q = q(L), где

$$q(L) = \overline{\lim}_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \ln \left| \frac{1}{L'(\lambda_n)} \right|. \tag{5}$$

Тогда порядок ρ_s в полуполосе $S(a,t_0)$ при $a>\tau$ и порядок ρ_R любой функции $F\in D_0(\Lambda)$ в полуплоскости Π_0 удовлетворяют оценкам

$$\rho_s \le \rho_R \le \rho_s + q. \tag{6}$$

Для полуполосы $S(a,t_0)$ при $a<\tau$ правая оценка в (6), вообще говоря, не верна [4]. Ясно, что левая оценка в (6) точна. Действительно, если $t_0=0$, а коэффициенты $a_n>0$, то $M(\sigma)=M_s(\sigma)$, и $\rho_R=\rho_s$. В [4] показано, что если Λ —последовательность всех нулей функции типа синуса, то существует функция $F\in D_0(\Lambda)$, для которой $\rho_R=\rho_s+q$ при $a>\tau$. В общей ситуации правая оценка (6) не точна, более того, пара условий (4) может и не выполняться. Однако может существовать целая функция экспоненциального типа Q с простыми нулями в точках последовательности Λ , для которой условия (4) будут выполнены, причём $q(Q)=q^*$, где

$$q^* = \overline{\lim}_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \int_0^1 \frac{n(\lambda_n; t)}{t} dt,$$

q(Q)—величина, определяемая точно так же, что и q(L) в (5), а $n(\lambda_n;t)$ — число точек $\lambda_k \neq \lambda_n$ из отрезка $\{x: |x-\lambda_n| \leq t\}$. Построению таких целых функций Q с заданным нулевым подмножеством Λ и требуемой асимптотикой на вещественной оси посвящена статья [5]. Оказывается, в терминах специальной плотности G(R) распределения точек последовательности Λ можно указать достаточно общие, но простые и наглядные условия, при выполнении которых справедлива оценка

$$\rho_R \le \rho_s + q^*$$

 $(\rho_s$ —порядок в полуполосе $S(a,t_0)$ ширины больше, чем $2\pi G(R)$), не улучшаемая в классе $D_0(\Lambda)$ [6]. Цель статьи – обобщить и уточнить результаты работ [6], [4] на случай k-порядков.

§1. Необходимые сведения. Леммы

10. Специальные плотности распределения последовательности Λ . Пусть $\Lambda = \{\lambda_n\} \ (0 < \lambda_n \uparrow \infty)$ — последовательность, имеющая конечную верхнюю плотность, L — класс положительных, непрерывных и неограниченно возрастающих на $[0,\infty)$ функций. Через K обозначим подкласс функций h из L, таких, что h(0) = 0, h(t) = o(t) при $t \to \infty, \frac{h(t)}{t} \downarrow$ при $t \uparrow (\frac{h(t)}{t}$ монотонно убывает при t > 0). В частности, если $h \in K$, то $h(2t) \leq 2h(t) \ (t > 0), \ h(t) \leq h(1)t$ при $t \geq 1$.

K- плотностью последовательности Λ называется величина

$$G(K) = \inf_{h \in K} \overline{\lim}_{t \to \infty} \frac{\mu_{\Lambda}(\omega(t))}{h(t)},\tag{7}$$

где $\omega(t)=[t,t+h(t))$ — полуинтервал, $\mu_{\Lambda}(\omega(t))$ — число точек из Λ , попавших в полуинтервал $\omega(t)$.

Пусть $\Omega = \{\omega\}$ — семейство полуинтервалов вида $\omega = [a,b)$. Через $|\omega|$ будем обозначать длину ω . Всякая последовательность $\Lambda = \{\lambda_n\}$ $(0 < \lambda_n \uparrow \infty)$ порождает целочисленную считающую меру μ_{Λ} :

$$\mu_{\Lambda}(\omega) = \sum_{\lambda_n \in \omega} 1, \quad \omega \in \Omega.$$

Пусть μ_{Γ} — считающая мера, порождённая последовательностью $\Gamma = \{\mu_n\} \ (0 < \mu_n \uparrow \infty)$. Тогда включение $\Lambda \subset \Gamma$ означает, что $\mu_{\Lambda}(\omega) \leq \mu_{\Gamma}(\omega)$ для любого $\omega \in \Omega$. В этом случае говорят, что мера μ_{Γ} мажорирует меру μ_{Λ} .

Через D(K) обозначим точную нижнюю грань тех чисел b $(0 \le b < \infty)$, для каждого из которых существует мера μ_{Γ} , мажорирующая μ_{Λ} , такая, что для некоторой функции $h \in K$

$$|M(t) - bt| \le h(t) \qquad (t \ge 0). \tag{8}$$

Здесь $\Lambda = \{\lambda_n\}, \ \Gamma = \{\mu_n\}, \ M(t) = \sum_{\substack{\mu_n \leq t \\ n \leq T}} 1.$

ЛЕММА 1 [6]. Величины D(K) и G(K) совпадают: D(K) = G(K).

 2^{0} . Существование целых функций с правильным поведением на вещественной оси. Пусть L и K — классы функций, введённые выше,

$$S = \left\{ h \in K : \ d(h) = \overline{\lim}_{x \to \infty} \frac{h(x) \ln h(x)}{x \ln \frac{x}{h(x)}} < \infty \right\}.$$

Теорема II [6]. Пусть $\Lambda = \{\lambda_n\}$ $(0 < \lambda_n \uparrow \infty)$ — последовательность, имеющая конечную S — плотность G(S). Тогда для любого b > G(S) существует последовательность $\Gamma = \{\mu_n\}$ $(0 < \mu_n \uparrow \infty)$, содержащая Λ и имеющая плотность b, такая, что целая функция экспоненциального типа πb

$$Q(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\mu_n^2} \right) \quad (z = x + iy)$$
 (9)

обладает свойствами:

- 1) $Q(\lambda_n) = 0, \ Q'(\lambda_n) \neq 0$ для любого $\lambda_n \in \Lambda$;
- 2) существует $H \in S$, такая, что:

$$\ln|Q(x)| \le AH(x)\ln^+\frac{x}{H(x)} + B;$$
(10)

3) если $\Lambda(x) = \sum_{\lambda_n \le x} 1$, u

$$\Lambda(x+\rho) - \Lambda(x) \le a\rho + b + \frac{\varphi(x)}{\ln^+ \rho + 1} \quad (\rho \ge 0)$$
(11)

 $(\varphi - \text{любая неотрицательная, неубывающая функция, определённая на луче } [0, \infty), 1 \le \varphi(x) \le \alpha x \ln^+ x + \beta), то существует последовательность <math>\{r_n\}, 0 < r_n \uparrow \infty, r_{n+1} - r_n = O(H(r_n))$ при $n \to \infty$, такая, что для $x = r_n \quad (n \ge 1)$

$$\ln|Q(x)| \ge -CH(x)\ln^{+}\frac{x}{H(x)} - 2\varphi(x) - D; \tag{12}$$

4) ecnu

$$\Delta = \overline{\lim}_{n \to \infty} \frac{1}{\lambda_n} \int_{0}^{1} \frac{n(\lambda_n; t)}{t} dt < \infty,$$

то при условии (11)

$$\left| \ln \left| \frac{1}{Q'(\lambda_n)} \right| - \int_0^1 \frac{n(\lambda_n; t)}{t} dt \right| \le EH(\lambda_n) \ln^+ \frac{\lambda_n}{H(\lambda_n)} + 2\varphi(\lambda_n) + F \ln \lambda_n + L \quad (n \ge 1),$$
(13)

где $n(\lambda_n;t)$ — число точек $\lambda_k \neq \lambda_n$ из отрезка $\{x: |x-\lambda_n| \leq t\}$.

Здесь все постоянные положительны, конечны.

Отметим, что условие $\Delta < \infty$ не является следствием оценки (11), если даже функция φ ограничена. Действительно, пусть $\sup_{x \to 0} \varphi(x) < \infty, \ 0 \le \rho \le 1$. Тогда из (11) следует, что

 $\Lambda(x+\rho)-\Lambda(x)\leq C<\infty \quad (x\geq 0).$ Следовательно, если $h_n=\min_{k\neq n}|\lambda_k-\lambda_n|$, то

$$\ln^+ \frac{1}{h_n} \le \int_0^1 \frac{n(\lambda_n; t)}{t} dt \le 2C \ln^+ \frac{1}{h_n}.$$

Так что в этом случае $\Delta < \infty$ тогда и только тогда, когда

$$\overline{\lim}_{n\to\infty} \frac{1}{\lambda_n} \ln^+ \frac{1}{h_n} < \infty.$$

Если же функция φ не ограничена, при условии (11) возможна ситуация

$$\sup_{x>0} [\Lambda(x+1) - \Lambda(x)] = \infty.$$

Теперь докажем несколько лемм технического характера. Для этого введем следующие обозначения: $\ln_0 t = t$, $\exp_0 t = t$, $\ln_k t = \underbrace{\ln \ln \ldots \ln}_k t$, $\exp_k t = \underbrace{\exp \exp \ldots \exp}_k t$ $(k \ge 1)$.

Рассмотрим ряд

$$\sum_{n=1}^{\infty} e^{-\varepsilon \frac{\lambda_n}{\ln_m \lambda_n}}, \ \lambda_n \uparrow \infty, \ \varepsilon > 0, \ m \ge 1.$$
 (14)

Лемма 2. Ряд (14) сходится для любого $\varepsilon > 0$ тогда и только тогда, когда

$$\lim_{n \to \infty} \frac{\ln n \ln_m \lambda_n}{\lambda_n} = 0.$$

Доказательство. 1^0 . *Необходимость*. Пусть ряд (14) сходится для любого $\varepsilon > 0$. Так как общий член ряда монотонно убывает при $n \ge n_0$, то, как известно,

$$\lim_{n \to \infty} n e^{-\varepsilon \frac{\lambda_n}{\ln_m \lambda_n}} = 0.$$

Следовательно, для любого $\varepsilon>0$ найдется номер $N(\varepsilon)$ такой, что при всех $n\geq N(\varepsilon)$ будет справедлива оценка

$$ne^{-\varepsilon \frac{\lambda_n}{\ln_m \lambda_n}} < 1.$$

Значит при $n \geq N(\varepsilon)$

$$\ln n < \varepsilon \frac{\lambda_n}{\ln_m \lambda_n},$$

откуда и все следует.

 2^{0} . Достаточность. Пусть теперь

$$\lim_{n \to \infty} \frac{\ln n \ln_m \lambda_n}{\lambda_n} = 0.$$

Тогда для любого $\varepsilon > 0$ найдется номер $N(\varepsilon)$ такой, что при $n \geq N(\varepsilon)$

$$\frac{\ln n \ln_m \lambda_n}{\lambda_n} \leqslant \frac{\varepsilon}{2}.$$

Ho тогда для всех $n \geq N(\varepsilon)$

$$e^{-\varepsilon \frac{\lambda_n}{\ln_m \lambda_n}} \leqslant \left(\frac{1}{n}\right)^2.$$

Следовательно, ряд (14) сходится для любого $\varepsilon > 0$. Лемма доказана.

Рассмотрим теперь функцию

$$\varphi_m(t) = q \frac{t}{\ln_m t} - t\sigma \quad (m \ge 1, q, \sigma > 0).$$

Эта функция определена при $t>\exp_{m-1}(0)$ за исключением точки $p_0=\exp_m(0)$, в которой логарифм в знаменателе обращается в нуль.

Пусть t_0 – решение уравнения

$$\frac{q}{\ln_m t_0} = \sigma \ (0 < \sigma \leqslant 1),$$

а $\max_{t>p} \varphi_m(t) = \varphi(t_\ni)$, где $p = \exp_m q$. Так как $\frac{q}{\ln_m p} = 1$, то $p \leqslant t_\ni \leqslant t_0$. Значит, $\varphi_m(t_{\ni}) \leqslant q \frac{t_{\ni}}{\ln_m t_{\ni}} \leqslant t_{\ni} \leqslant t_0 = \exp_m\left(\frac{q}{\sigma}\right).$ Следовательно,

$$\max_{t>p} \varphi_m(t) \leqslant \exp_m\left(\frac{q}{\sigma}\right).$$

Таким образом, доказана

Лемма 3. Для функции $\varphi_m(t)$ при $0 < \sigma \leqslant 1$ справедлива оценка

$$\max_{t \ge p} \varphi_m(t) \leqslant \exp_m\left(\frac{q}{\sigma}\right), \quad p = \exp_m q.$$

Пусть Q — целая функция экспоненциального типа (9), а γ — функция, ассоциированная с ней по Борелю. Справедлива следующая

Лемма 4. Для того чтобы существовала неотрицательная на $[a, \infty)$ мажоранта gфункции $\ln |Q(x)|$, удовлетворяющая условию

$$\lim_{x \to \infty} \frac{g(x) \ln_{k-1} x}{x} = 0 \ (k \ge 2), \tag{15}$$

необходимо и достаточно, чтобы

$$\overline{\lim_{\delta \to 0_{+}}} \, \delta \ln_{k} |\gamma(t)| \leqslant 0 \quad (k \ge 2), \quad \delta = |Ret|. \tag{16}$$

 1^0 . Необходимость. Для любого $\varepsilon>0$ при $x\geq x_0\geq 1$ имеем

$$|Q(x)| \le \exp\left(\varepsilon \frac{x}{\ln_{k-1} x}\right).$$

Следовательно, полагая $\delta = |Ret|$, получаем

$$|\gamma(t)| \leqslant \int_{0}^{\infty} |Q(x)|e^{-\delta x} dx \leqslant A + B \int_{x_0}^{\infty} \exp\left(\varepsilon \frac{x}{\ln_{k-1} x} - \delta x\right) dx.$$

Отсюда

$$|\gamma(t)| \leqslant A + B \exp\left[\max_{x \ge x_0} \left(\varepsilon \frac{x}{\ln_{k-1} x} + 2\ln x - \delta x\right)\right].$$
 (17)

Но

$$\exp\left[\max_{x\geq x_0} \left(\varepsilon \frac{x}{\ln_{k-1} x} + 2\ln x - \delta x\right)\right] \leqslant$$

$$\leqslant B_1(\varepsilon) \exp\left[\max_{x\geq x_0} \left(2\varepsilon \frac{x}{\ln_{k-1} x} - \delta x\right)\right].$$

Применяя лемму 3 к выражению в квадратных скобках, из (17) в итоге получаем

$$|\gamma(t)| \leqslant C(\varepsilon) \exp_k \left(\frac{2\varepsilon}{\delta}\right) \quad (0 < \delta \leqslant 1).$$

Таким образом, условие (16) действительно имеет место.

 2^{0} . Достаточность. Последовательность всех нулей функции Q имеет плотность b. Следовательно, тип функции Q равен πb (сопряжённая диаграмма Q есть отрезок $[-\pi bi,\pi bi]$). Далее, функция Q — чётная. Для x>0 имеем

$$Q(x) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \gamma(t)e^{xt}dt, \tag{18}$$

где Γ_{δ} — граница прямоугольника со сторонами, лежащими на прямых $Ret=^+_ \delta$ $(0<\delta\leq 1,\ Im\ t=^+_-\ (\pi b+1).$ Учитывая (16), из (18) получаем, что для любого $\varepsilon>0$ при $0<\delta\leq \delta_0(\varepsilon)$

$$|Q(x)| \le C_{\varepsilon} \exp_{[k-1]} \left[e^{\varepsilon \delta^{-1}} + \delta x \right] \quad (0 < C_{\varepsilon} < \infty).$$
 (19)

Оценка (19) верна при любом $\delta \in (0, \delta_0(\varepsilon)]$. Имея это в виду, положим

$$\delta^{-1} = \varepsilon^{-1} \ln_{k-1} x^{\alpha}, \quad \alpha = \alpha(x) = 1 - \frac{\ln(\ln_{k-1} x)^2}{\ln x}.$$

Видим, что $\alpha(x) \to 1$ при $x \to \infty$, а при $\delta \to 0_+$

$$x^{\alpha} = \frac{x}{\ln_{k-1}^{2} x} \to \infty.$$

Подставляя выбранное значение для δ^{-1} в (19), при $x \geq x_0(\varepsilon)$ получаем, что

$$\ln|Q(x)| \leqslant \ln C_{\varepsilon} + \frac{x}{\ln_{k-1}^2 x} + \frac{\varepsilon x}{\ln_{k-1}^{\alpha}}.$$
 (20)

Проверяется, что при $x \to \infty$

$$\ln_{k-1} x^{\alpha} = (1 + o(1)) \ln_{k-1} x \ (k > 2).$$

Учитывая это, из (20) окончательно имеем

$$\ln |Q(x)| \le 2\varepsilon \frac{x}{\ln_{k-1} x}, \quad x \ge x_1(\varepsilon).$$

Это и означает, что

$$\ln |Q(x)| \leqslant g(x) \quad (x \ge 0)$$

для некоторой неотрицательной (и неубывающей) функции g, удовлетворяющей условию (15).

Лемма доказана.

§2. Формула для вычисления k-порядка суммы ряда Дирихле в полуплокости Величину

$$\rho_k = \overline{\lim}_{\sigma \to 0_-} \frac{\ln_k M(\sigma)}{|\sigma|^{-1}} \quad (k \ge 2)$$
(21)

будем называть k-порядком функции $F \in D_0(\Lambda)$ в полуплоскости $\Pi_0 = \{s: \sigma = Res < 0\}$. Здесь $M(\sigma) = \sup_{|t| < \infty} |F(\sigma + it)|$. Имеет смысл рассматривать только те функции $F \in D_0(\Lambda)$,

для которых $\sup_{\sigma<0} M(\sigma)=\infty$. Из определения k-порядка (21) видно, что $\rho_2=\rho_R$, где ρ_R- R-порядок в полуплоскости Π_0 [4].

Верна следующая

Теорема 1. Условие

$$\lim_{n \to \infty} \frac{\ln n \ln_{k-1} \lambda_n}{\lambda_n} = 0 \quad (k \ge 2). \tag{22}$$

является необходимым и достаточным для того, чтобы для k-порядка (21) любой функции $F \in D_0(\Lambda)$ была справедлива формула

$$\rho_k = \overline{\lim}_{n \to \infty} \frac{\ln |a_n|}{\lambda_n} \ln_{k-1} \lambda_n \quad (k \ge 2; \ 0 \le \rho_R \le \infty). \tag{23}$$

Замечание. Пусть степенной ряд

$$g(z) = \sum_{n=1}^{\infty} a_n z^{p_n} \quad (p_n \in N)$$
(24)

сходится в круге $\{z: |z| < 1\}$, причем

$$M_g(r) = \max_{|z|=r} |g(z)| \to \infty, \ r \to \infty.$$

Положим

$$r_k = \overline{\lim}_{r \uparrow \infty} \frac{\ln_k M_g(r)}{(1-r)^{-1}} \quad (0 \leqslant r < 1).$$

Так как $1 - r = (1 + o(1)) |\ln r|$ при $r \uparrow 1$, то

$$r_k = \overline{\lim}_{r \uparrow \infty} \frac{\ln_k M_g(r)}{|\ln r|^{-1}} \tag{25}$$

Сделаем замену $z = e^{s}$. Тогда

$$f(s) = g(e^s) = \sum_{n=1}^{\infty} a_n e^{p_n s} \quad (s = \sigma + it).$$
 (26)

Ясно, что ряд Дирихле-Тейлора (26) абсолютно сходится в полуплоскости Π_0 . Так как $r=e^{\sigma}$, то $M_g(r)=M(\sigma)$, и $r_k=\rho_k$, где ρ_k-k -порядок ряда (26) (это видно из (25) и определения ρ_k . Сформулируем теперь следствие, вытекающее из теоремы 1.

Следствие. Для того чтобы для k-порядка r_k любой функции g вида (24) была верна формула

$$r_k = \overline{\lim}_{n \to \infty} \frac{\ln |a_n|}{p_n} \ln_{k-1} p_n \quad (k \ge 2),$$

необходимо и достаточно, чтобы

$$\lim_{n \to \infty} \frac{\ln n \ln_{k-1} p_n}{p_n} = 0 \quad (k \ge 2).$$

Докажем теорему 1.

 1^0 . ДОСТАТОЧНОСТЬ. Пусть k-порядок ρ_k функции F конечен. Докажем, что тогда $\alpha\leqslant\rho_k$, где

$$\alpha \equiv \overline{\lim}_{n \to \infty} \frac{\ln |a_n|}{\lambda_n} \ln_{k-1} \lambda_n \quad (k \ge 2).$$

Действительно, из определения k-порядка получаем, что для любого $\varepsilon > 0$ найдется $\delta = \delta(\varepsilon)$ такое, что при $\delta < \sigma < 0$ будет справедливо неравенство

$$\ln M(\sigma) \leqslant \exp_{k-1} \left(\frac{\rho_k + \varepsilon}{|\sigma|} \right). \tag{27}$$

Для $\sigma < 0$ имеем $|a_n| \leqslant M(\sigma)e^{\lambda_n|\sigma|}$ $(n \ge 1)$. Отсюда, учитывая (27), при $\delta < \sigma < 0$ получим

$$\ln |a_n| \le \exp_{k-1} \left(\frac{\rho_k + \varepsilon}{|\sigma|} \right) + \lambda_n |\sigma|.$$

Если положить $t = |\sigma|^{-1}$, то

$$\ln |a_n| \leq \exp_{k-1}(\rho_k + \varepsilon)t + \frac{\lambda_n}{t}.$$

Положим $t=t_*$, где

$$t_* = \frac{1}{\rho_k + \varepsilon} \ln_{k-1} \lambda_n^{\alpha_n}, \quad \alpha_n = 1 - \frac{\ln(\ln_{k-1} \lambda_n)^2}{\lambda_n}.$$

Видно, что $\alpha_n \to 1$ при $n \to \infty$, а $\lambda_n^{\alpha_n} = \frac{\lambda_n}{\ln_{k-1}^2 \lambda_n}$. Так что $t_* = t_*(n) \to \infty$ при $n \to \infty$ и

$$\ln |a_n| \le \exp_{k-1} (\rho_k + \varepsilon) t_*) + \frac{\lambda_n}{t_*} \quad (n \ge N = N(\varepsilon)).$$

Отсюда, в свою очередь, для всех $n \ge N$

$$\ln|a_n| \leqslant \frac{\lambda_n}{\ln_{k-1}^2 \lambda_n} + \frac{\lambda_n(\rho_k + \varepsilon)}{\ln_{k-1} \lambda_n^{\alpha_n}} \quad (k \ge 2).$$
 (28)

Поскольку (это проверяется непосредственно) при $n \to \infty$

$$\ln_{k-1} \lambda_n^{\alpha_n} = (1 + o(1)) \ln_{k-1} \lambda_n \quad (k \ge 2),$$

то при $n \ge N_1 \ge N$ из (28) получаем оценку

$$\frac{\ln|a_n|}{\lambda_n}\ln_{k-1}\lambda_n < \rho_k + 3\varepsilon \quad (k \ge 2).$$

Так как $\varepsilon > 0$ – любое, отсюда следует, что $\alpha \leqslant \rho_k$.

Предположим теперь, что $\alpha < \infty$. Докажем, что тогда $\rho_k \leqslant \alpha$. По определению величины α , для любого $\varepsilon > 0$ найдется номер $N = N(\varepsilon)$, такой, что при $n \geq N$

$$\frac{\ln|a_n|}{\lambda_n}\ln_{k-1}\lambda_n < \alpha + \varepsilon \ (k \ge 2).$$

Пусть $k_0=\min\{n:\ \lambda_n>p_0=\exp_{k-2}(0)\ (k\ge 2)\}.$ Выберем $A(\varepsilon)$ так, чтобы при любом $n\ge k_0$ выполнялось неравенство

$$|a_n| < A(\varepsilon) \exp\left[\frac{(\alpha + \varepsilon)\lambda_n}{\ln_{k-1}\lambda_n}\right] \quad (k \ge 2).$$

Тогда

$$|F(s)| \le \sum_{n=1}^{\infty} |a_n| e^{\lambda_n \sigma} \le B + A(\varepsilon) \sum_{n=k_0}^{\infty} \exp\left(q \frac{\lambda_n}{\ln_{k-1} \lambda_n} - \lambda_n |\sigma|\right) \le C$$

$$\leqslant B + A(\varepsilon) \max_{t \ge \lambda_{k_0}} \exp\left(q_1 \frac{t}{\ln_{k-1} t} - t\sigma\right) \sum_{n=k_0}^{\infty} \exp\left(-\varepsilon \frac{\lambda_n}{\ln_{k-1} \lambda_n}\right),$$

где $q=\alpha+\varepsilon,\ q_1=\alpha+2\varepsilon,\ \sigma=Res<0.$ Имея в виду условие (22), воспользуемся леммой 2. Тогда

$$\sum_{n=k_0}^{\infty} \exp\left(-\varepsilon \frac{\lambda_n}{\ln_{k-1} \lambda_n}\right) = A_1(\varepsilon) < \infty.$$
 (29)

Оценим теперь функцию

$$\varphi(t) = q_1 \frac{t}{\ln_{k-1} t} - t\sigma.$$

Из леммы 3 следует, что

$$\max_{t \ge \lambda_{k_0}} \varphi(t) \le \exp_{k-1} \left(\frac{q_1}{\sigma} \right), \quad 0 < |\sigma| \le 1.$$
 (30)

Таким образом, учитывая (29) и (30), имеем

$$|F(s)| \le B + A_2(\varepsilon) \exp_k\left(\frac{q_1}{\sigma}\right), \quad 0 < |\sigma| \le 1.$$

Следовательно, при $-1 \leqslant \sigma_0 < \sigma < 0$

$$|F(s)| \le \exp_k\left(\frac{q_2}{\sigma}\right), \quad q_2 = \alpha + 3\varepsilon.$$

Отсюда следует, что для любого $\varepsilon > 0$

$$\frac{\ln_k M(\sigma)}{|\sigma|^{-1}} \leqslant q_2, \quad -1 \leqslant \sigma_0 < \sigma < 0.$$

Это означает, что $\rho_k \leqslant \alpha$. Таким образом, $\alpha = \rho_k$. Отсюда следует, что $\alpha = \infty$ тогда и только тогда, когда $\rho_k = \infty$. Таким образом, достаточность доказана.

 2^0 . Необходимость. Покажем теперь, что условие (22) является и необходимым для того, чтобы для k-порядка любой функции $F \in D_0(\Lambda)$ была справедлива формула (23). Действительно, пусть условие (22) не выполнено, то есть

$$\overline{\lim_{n \to \infty}} \frac{\ln n \ln_{k-1} \lambda_n}{\lambda_n} > 0 \quad (k \ge 2).$$

Тогда найдется подпоследовательность $\{n_m\}$, такая, что для любого $m \ge 1$

$$\frac{\ln n_m \ln_{k-1} \lambda_{n_m}}{\lambda_{n_m}} \ge \beta > 0. \tag{31}$$

Теперь положим $a_n = e \ (n \ge 1)$ и оценим k-порядок функции F, определенной рядом

$$F(s) = e \sum_{n=1}^{\infty} e^{\lambda_n s} \quad (s = \sigma + it).$$
 (32)

Мы предполагаем, что выполнено условие

$$\lim_{n \to \infty} \frac{\ln n}{\lambda_n} = 0. \tag{33}$$

Ряд (32) сходится (в силу условия (33) и абсолютно) в полуплоскости Π_0 . Вычисляя k-порядок по формуле (23), имеем $\rho_k = 0$. Убедимся, что на самом деле k-порядок функции F больше нуля. Действительно, поскольку коэффициенты $a_n > 0$, то $M(\sigma) = F(\sigma)$ ($\sigma < 0$). Следовательно, для любого натурального N имеем

$$M(\sigma) \ge e \sum_{k=\left[\frac{N}{2}\right]}^{N} e^{-\lambda_k |\sigma|} \ge e \frac{N}{2} e^{-\lambda_N |\sigma|} \ge N e^{-\lambda_N |\sigma|} = \exp(\ln N - \lambda_N |\sigma|). \tag{34}$$

Запишем условие (31) в виде

$$\lambda_{n_m} \leqslant \frac{1}{\beta} \ln n_m \ln_{k-1} \lambda_{n_m} \quad (\beta > 0)$$
 (35)

и положим в (34) $N = n_m$. Тогда для любого $m \ge 1$ имеем

$$M(\sigma) \ge \exp(\ln n_m - \lambda_{n_m} |\sigma|) \ge \exp(\ln n_m - \frac{|\sigma|}{\beta} \ln n_m \ln_{k-1} \lambda_{n_m}).$$
 (36)

Далее, из (35) видно, что $\ln \lambda_{n_m} \leqslant 2 \ln \ln n_m$ при $m \ge m_0$. Отсюда следует, что $\ln_{k-1} \lambda_{n_m} \leqslant 2 \ln_k n_m$ при $m \ge m_1 \ge m_0$. Учитывая это, из (36) получаем оценку

$$M(\sigma) \ge \exp(\ln n_m - \frac{2|\sigma|}{\beta} \ln n_m \ln_k n_m) \quad (m \ge m_1). \tag{37}$$

В (34) $|\sigma| > 0$ — любое. Положим $\sigma = \sigma_m$, где σ_m — решение уравнения

$$\ln_k n_m = \frac{\beta}{4|\sigma|} \ (m \ge m_1).$$

Тогда из (37) получаем

$$M(\sigma) \ge \exp\left\{\frac{1}{2}\exp_{k-1}\frac{\beta}{4|\sigma|}\right\}, \quad \sigma = \sigma_m.$$

Отсюда

$$\ln M(\sigma) \ge \frac{1}{2} \exp_{k-1} \frac{\beta}{4|\sigma|}, \quad \sigma = \sigma_m \quad (m \ge m_1),$$

И

$$\ln \ln M(\sigma) \ge \ln \left(\frac{1}{2} \exp_{k-1} \frac{\beta}{4|\sigma|} \right) \ge \frac{1}{2} \exp_{k-2} \frac{\beta}{4|\sigma|}, \quad \sigma = \sigma_m \quad (m \ge m_2).$$

Продолжая аналогичные оценки, окончательно получим, что

$$\ln_k M(\sigma) \ge \frac{\beta}{8|\sigma}, \ \sigma = \sigma_m \ (m \ge m_k).$$

Это означает, что $\rho_k \geq \frac{\beta}{8}$.

Необходимость доказана.

§3. Двусторонняя оценка для k-порядка через k-порядок в полуполосе

Перед тем, как сформулировать теорему, введем в рассмотрение следующие классы функций:

$$L_k = \{ h \in L : \ h(x) \ln_{k-1} x = o(x), \quad x \to \infty \} \ (k \ge 2),$$

$$R_k = \{ h \in S : \ h(x) \ln \frac{x}{h(x)} = o\left(\frac{x}{\ln_{k-1} x}\right), \quad x \to \infty \} \ (k \ge 2).$$

Теорема 2. Пусть $\Lambda = \{\lambda_n\} \ (0 < \lambda_n \uparrow \infty) - nocлeдoвательность, удовлетворяющая условиям:$

1)
$$\Lambda(x+\rho) - \Lambda(x) \le c\rho + d + \frac{\varphi(x)}{\ln^+ \rho + 1} \quad (\rho \ge 0), \tag{38}$$

где $\Lambda(x) = \sum_{\lambda_n \leq x} 1, \ \varphi$ — некоторая функция из $L_k \ (k \geq 2);$

2)
$$q_k^* = \overline{\lim}_{n \to \infty} \frac{\ln_{k-1} \lambda_n}{\lambda_n} \int_0^1 \frac{n(\lambda_n; t)}{t} dt < \infty \quad (k \ge 2),$$
 (39)

 $ede_n(\lambda_n;t)$ — число точек $\lambda_k \neq \lambda_n$ из отрезка $\{x: |x-\lambda_n| \leq t\}$.

Если R — плотность последовательности Λ равна G(R), то k-порядок ρ_s любой функции $F \in D_0(\Lambda)$ в полуполосе $S(a,t_0)$ при $a > \pi G(R_k)$ и порядок ρ_R этой функции в полуполоскости Π_0 удовлетворяют оценкам

$$\rho_s \le \rho_k \le \rho_s + q_k^* \quad (k \ge 2). \tag{40}$$

Доказательство. Так как $\varphi \in L_k$, из оценки (38) и определения R_k — плотности следует, что $G(R_k) < \infty$. Действительно, если $p_0 = \exp_{k-2}(0)$, $(k \ge 2)$, $h(x) = \frac{x}{\ln(x+1)\ln_{k-1}(x+p_0+1)}$ $(x \ge 0)$, то, как легко проверить, $h \in R_k$, и

$$\overline{\lim}_{t \to \infty} \frac{\mu_{\Lambda}(\omega(t))}{h(t)} \le c,$$

где c — постоянная из условия (38), $\omega(t) = [t, t + h(t))$. Следовательно, $G(R_k) \le c < \infty$.

Воспользуемся теоремой II. Тогда для любого $b, G(R_k) < b < \frac{a}{\pi}$, существует последовательность $\Gamma = \{\mu_n\} \ (0 < \mu_n \uparrow \infty)$, содержащая Λ и имеющая плотность b, такая, что целая функция экспоненциального типа πb

$$Q(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\mu_n^2} \right) \quad (z = x + iy)$$
 (41)

обладает свойствами:

- 1) $Q(\lambda_n) = 0$, $Q'(\lambda_n) \neq 0$ $(n \ge 1)$;
- 2) $\ln |Q(x)| \le g(x)$ $(x \ge 0), \quad g \in L_k;$ 3) $q_k(Q) = q_k^*$, где q_k^* величина, определённая формулой (39), а

$$q_k(Q) = \overline{\lim}_{n \to \infty} \frac{\ln_{k-1} \lambda_n}{\lambda_n} \ln \left| \frac{1}{Q'(\lambda_n)} \right| \quad (k \ge 2).$$

Отметим, что оценка 2) и равенство 3) вытекают из оценок (10) и (11) с учётом того, что в случае R_k — плотности в оценках (10), (11) $H \in R_k$, а $\varphi \in L_k$.

Введём в рассмотрение интерполирующую функцию А.Ф. Леонтьева [3]

$$\omega(\mu, \alpha, F) = e^{-\alpha\mu} \frac{1}{2\pi i} \int_{C} \gamma(t) \left(\int_{0}^{t} F(t + \alpha - \eta) e^{\mu\eta} d\eta \right) dt,$$

где $F \in D_0(\Lambda)$, γ — функция, ассоциированная по Борелю с целой функцией Q вида (41), C — замкнутый контур, охватывающий отрезок $I = [-\pi bi, \pi bi]$ — сопряжённую диаграмму $Q,\, \alpha$ — произвольный комплексный параметр, $Re \,\, \alpha < 0.$ Ясно, что $(t+\alpha-\eta) \in C_{\alpha}$, где C_{α} — смещение C на вектор α . В качестве C возьмём границу прямоугольника

$$P = \{t : |Re\ t| \le h(0 < h \le 1), \quad |Im\ t| \le a\}, \qquad \pi G(R) < \pi b < a.$$

Докажем, что $\rho_k \leq \rho_s + q_k^*$ (оценка $\rho_s \leq \rho_k$ очевидна). Имеем

$$|\omega(\lambda_n, \alpha, F)| \le \frac{2}{\pi} (1+a)^2 |e^{-\alpha \lambda_n}| \max_{\eta \in P} |e^{\lambda_n \eta}| \max_{t \in C} |\gamma(t)| \max_{u \in P_\alpha} |F(u)|.$$

Положим $\alpha = \sigma - h + it_0$ ($\sigma < 0$). Применяя лемму 4 и учитывая то, что на горизонтальных участках контура $|\gamma(t)| \leq M$, для любого $\delta > 0$ при $h < h_0(\delta)$ получаем, что

$$|\omega(\lambda_n, \alpha, F)| \le e^{(|\sigma| + 2h)\lambda_n} \exp_k(\frac{\delta}{h}) \max_{u \in P_\alpha} |F(u)|. \tag{42}$$

Здесь P_{α} — сдвиг прямоугольника P на вектор α .

Считаем, что $\rho_k < \infty$. Тогда $\rho_s < \infty$. Из определения k-порядка ρ_s в полуполосе $S(a,t_0)$ следует, что для любого $\varepsilon > 0$ при $0 < |\sigma| < \sigma_0(\varepsilon)$

$$M_s(\sigma) \leqslant \exp_k[(\rho_s + \varepsilon)|\sigma|^{-1}].$$

Отсюда при $0 < |\sigma| < \sigma_0(\varepsilon)$

$$\max_{u \in P_s} |F(u)| \le \exp_k[(\rho_s + \varepsilon)|\sigma|^{-1}]. \tag{43}$$

Полагая $h = \gamma |\sigma| \, (0 < \gamma < \infty)$ и учитывая (43), из (42) получаем, что

$$|\omega(\lambda_n, \alpha, F)| \le e^{(1+2\gamma)\lambda_n|\sigma|} \exp\left[\exp_k(\frac{\delta}{\gamma|\sigma|}) + \exp_k(\frac{\rho}{|\sigma|})\right],\tag{44}$$

где $\rho = \rho_s + \varepsilon, 0 < |\sigma| < \sigma_1(\delta, \varepsilon), \gamma > 0.$

Пусть $\delta = \varepsilon^2, \gamma = \varepsilon$. Тогда, пользуясь формулами для коэффициентов [3]

$$a_n = \frac{\omega(\lambda_n, \alpha, F)}{Q'(\lambda_n)} \quad (n \ge 1)$$

и учитывая (44), имеем

$$|a_n| \le \left| \frac{1}{Q'(\lambda_n)} \right| \exp\left[(1 + 2\varepsilon)\lambda_n t^{-1} + \exp_{k-1}(\rho_1 t) \right],$$

где $t=|\sigma|^{-1}, t>t_0(\varepsilon), \, \rho_1=\rho+\varepsilon$. Это неравенство верно, в частности, при $(n\geq n_0(\varepsilon))$ для

$$t = \frac{1}{\rho_1} \ln_{k-1}^{\alpha_n} \lambda_n, \quad \alpha_n = 1 - \frac{\ln \ln^2 \lambda_n}{\ln \lambda_n}.$$

Для таких t имеем (см. (28)):

$$|a_n| \le \left| \frac{1}{Q'(\lambda_n)} \right| \exp \left[\frac{(1+2\varepsilon)\rho_1 \lambda_n}{\ln^{\alpha_n} \lambda_n} + \frac{\lambda_n}{\ln^2_{k-1} \lambda_n} \right] (n \ge n_0(\varepsilon)).$$

Поскольку $\ln_{k-1}^{\alpha_n} \lambda_n = (1+o(1)) \ln_{k-1} \lambda_n$ при $n \to \infty$, то, применяя формулу (23) для вычисления порядка ρ_k в полуплоскости, отсюда получаем, что $\rho_k \le q_k(Q) + (1+2\varepsilon)(\rho_s + \varepsilon)$. Поскольку $q_k(Q) = q_k^*$, $\varepsilon > 0$ — любое, то $\rho_k \le \rho_s + q_k^*$, и тем самым, теорема доказана.

Замечание. В доказанной теореме вместо $S(a,t_0)$ можно брать криволинейную полуполосу K, описываемую вертикальным отрезком длины 2a при движении его центра вдоль кривой, которая лежит в полуплоскости Π_0 и имеет общую точку с мнимой осью. И в этом случае оценки (40) имеют место.

Левая оценка в (40) точна. Точность правой оценки при k=2 доказана в [6]. Вопросу о точности этой оценки в общем случае будет посвящена отдельная статья.

Авторы выражают благодарность участникам Уфимского городского семинара имени А.Ф. Леонтьева по теории функций за внимание к работе и полезное обсуждение.

СПИСОК ЛИТЕРАТУРЫ

- 1. J.F. Ritt On certain points in the theory of Dirichlet series // Amer. J. of Math. 1928. V. 50, N_{2} 1. P. 73–86.
- 2. Мандельбройт С. Примыкающие ряды. Регуляризация последовательностей. Применения. М.: ИЛ, 1955.
- 3. Леонтьев А.Ф. Ряды экспонент. М.: Наука, 1976.
- 4. Гайсин А.М. *Оценка роста функции, представленной рядом Дирихле, в полуполосе* // Матем. сб. 1982. Т. 117(159), № 3. С. 412–424.
- 5. Гайсин А.М., Сергеева Д.И. *Целые функции с заданной последовательностью нулей, имеющие правильное поведение на вещественной оси. І.* // Сиб. матем. журн. 2007. Т. 48, № 5. С. 996— 1008
- 6. Гайсин А.М., Сергеева Д.И. *Оценка ряда Дирихле в полуполосе в случае нерегулярного распределения показателей.* II// Сиб. матем. журн. 2008. Т. 49, № 2. С. 280–298.

Наркес Нурмухаметовна Анткужина,

Башкирский государственный университет,

ул. З. Валиди, 32,

450074, г. Уфа, Россия

E-mail: Yusupovan@rambler.ru

Ахтяр Магазович Гайсин,

Институт математики с ВЦ УНЦ РАН,

ул. Чернышевского, 112,

450008, г. Уфа, Россия

Башкирский государственный университет,

ул. З. Валиди, 32,

450074, г. Уфа, Россия

E-mail: Gaisinam@mail.ru