УДК 517.98

О ЧИСЛЕ РЕШЕНИЙ В ЗАДАЧАХ СО СПЕКТРАЛЬНЫМ ПАРАМЕТРОМ ДЛЯ УРАВНЕНИЙ С РАЗРЫВНЫМИ ОПЕРАТОРАМИ

Д.К. ПОТАПОВ

Аннотация. В вещественном рефлексивном банаховом пространстве рассматривается проблема существования решений задачи со спектральным параметром для уравнений с разрывными операторами. Вариационным методом получены теоремы о числе решений для исследуемых задач. В качестве приложения рассмотрены основные краевые задачи для уравнений эллиптического типа со спектральным параметром и разрывными нелинейностями.

Ключевые слова: спектральный параметр, разрывный оператор, вариационный метод, число решений.

Mathematics Subject Classification: 47J10, 47J30, 35P30, 35J60, 35J20.

Введение. Постановка задачи

Общая постановка задач на собственные значения для нелинейных уравнений была дана в работе [1]. В работах [1], [2] нелинейные задачи со спектральным параметром изучались топологическими методами, в работах [3], [4] — в полуупорядоченных пространствах, в работах [5], [6] — вариационным методом. Во всех перечисленных работах структура множества собственных значений операторного уравнения исследовалась для непрерывных отображений. В данной работе рассматриваются нелинейные спектральные задачи в общей операторной постановке без предположения о непрерывности оператора. В дальнейшем потребуются следующие определения.

Пусть E – вещественное рефлексивное банахово пространство, E^* – сопряженное с E пространство. Через (z,x) обозначается значение функционала $z \in E^*$ на элементе $x \in E$.

Определение 1. Линейный оператор $A: E \to E^*$ называется *самосопряженным*, если (Ax, h) = (Ah, x) для любых $x, h \in E$.

Определение 2. Отображение $T:E\to E^*$ называется компактным на E, если оно ограниченные множества из E переводит в предкомпактные в $E^*.$

Определение 3. Отображение $T: E \to E^*$ называется монотонным на E, если $(Tx-Ty,x-y)\geq 0$ для любых $x,y\in E$. Отображение $T: E\to E^*$ называется антимонотонным, если отображение -T монотонно.

Определение 4. Отображение $T: E \to E^*$ называется *ограниченным* на E, если существует постоянная M>0 такая, что $||Tx|| \leq M$ для любого $x \in E$.

В данной работе рассматривается уравнение вида

$$Au = \lambda Tu \tag{1}$$

D.K. Potapov, On a number of solutions in problems with spectral parameter for equations with discontinuous operators.

[©] Потапов Д.К. 2013.

Поступила 04 февраля 2012 г.

с параметром $\lambda > 0$. Здесь A — линейный самосопряженный оператор из E в E^* , $T: E \to E^*$ — разрывное, компактное или антимонотонное отображение, ограниченное на E.

Работы [7], [8] были посвящены существованию луча положительных собственных значений для таких уравнений с разрывными операторами. При достаточно больших λ в этих работах доказаны теоремы о существовании ненулевых решений уравнения (1). В работах [9], [10] получены оценки величины бифуркационного параметра и норм оператора в спектральных задачах для уравнений с разрывными операторами вида (1). Наличие нулевого решения уравнения (1) при любом λ обеспечивается априорным предположением T(0) = 0. В данной работе рассмотрим вопрос о числе решений уравнения (1).

1. Общие результаты

Как и ранее [7]–[10], уравнение (1) изучается вариационным методом. Для применимости вариационного подхода к изучению уравнения (1) относительно оператора T дополнительно предполагается, что он квазипотенциальный.

Определение 5. Отображение $T: E \to E^*$ называется κ вазипотенциальным, если существует функционал $f: E \to \mathbf{R}$, для которого верно равенство $f(x+h)-f(x)=\int\limits_0^1 (T(x+th),h)\,dt$ для любых $x,h\in E$ (интеграл понимается в смысле Лебега). При этом f называют κ вазипотенциалом оператора T.

Свяжем с уравнением (1) функционал $f^{\lambda}(u) = \frac{1}{2}(Au, u) - \lambda f(u)$, где f – квазипотенциал оператора T. В работе [11] указаны достаточные условия (ограничения на точки разрыва оператора $F_{\lambda}u = Au - \lambda Tu$), при выполнении которых точки минимума функционала f^{λ} являются решениями уравнения (1). А именно, надо предполагать, что точки разрыва оператора F_{λ} регулярные.

Определение 6. Элемент $x \in E$ называется точкой разрыва оператора $T: E \to E^*$, если найдется $h \in E$, для которого либо $\lim_{t\to 0} (T(x+th),h)$ не существует, либо $\lim_{t\to 0} (T(x+th),h) \neq (Tx,h)$.

Определение 7. Элемент $x\in E$ называется регулярной точкой для оператора $T:E\to E^*,$ если для некоторого $h\in E$ $\varlimsup_{t\to +0}(T(x+th),h)<0.$

Согласно результатам работ [7], [8] справедлива нижеследующая теорема.

Теорема 1. Предположим, что

- 1) A линейный самосопряженный оператор, действующий из вещественного рефлексивного банахова пространства E в сопряженное пространство E^* , пространство E представляется в виде прямой суммы замкнутых подпространств E_1 и E_2 , $E_1 = \ker A$, причем существует постоянная $\alpha > 0$ такая, что $(Au, u) \ge \alpha ||u||^2$ для любого $u \in E_2$;
- 2) отображение T компактное или антимонотонное, квазипотенциальное (с квазипотенциалом f) и ограниченное на E, f(0) = 0 и для некоторого $u_0 \in E$ значение $f(u_0) > 0$; если $E_1 \neq \{0\}$, то дополнительно предполагается, что $\lim_{u \in E_1, ||u|| \to +\infty} f(u) = -\infty$;
- 3) если отображение T компактное, то дополнительно предполагается, что $\lim_{t\to +0} (T(u+th)-Tu,h)\geq 0$ для всех $u,h\in E;$
- 4) если отображение T антимонотонное, то дополнительно предполагается, что любая точка разрыва оператора T при $\lambda > \lambda_0 > 0$ регулярная для $F_{\lambda}u = Au \lambda Tu$ (λ_0 величина, начиная c которой задача на собственные значения разрешима).

Тогда для любого $\lambda > \lambda_0$ уравнение (1) имеет по крайней мере одно ненулевое решение.

Отметим, что если в условиях теоремы 1 дополнительно потребовать T(0)=0, то для компактного отображения T уравнение (1) будет иметь по крайней мере два решения (нулевое и ненулевое) для любого $\lambda > \lambda_0$, а если отображение T – антимонотонное, то

уравнение (1) имеет только тривиальное решение, поскольку в этом случае ненулевые решения будут невозможны.

Центральным понятием современной вариационной теории является условие Palais-Smale ((PS)-условие), а ее основанием – деформационная лемма. Базируясь на понятии обобщенного градиента Кларка для локально липшицевых функций, (PS)-условие и деформационная лемма были модифицированы К.С. Chang [12].

Определение 8. Функция $f: E \to \mathbf{R}$ называется локально липшицевой, если для любого $x \in E$ найдутся окрестность U точки x и постоянная L > 0 такие, что $|f(u) - f(v)| \leq L||u - v||$ для любых $u, v \in U$.

Определение 9. Обобщенной производной по направлению l локально липшицевой функции f в точке x называется $f^{\circ}(x,l) = \overline{\lim_{z \to x, t \to +0}} \frac{f(z+tl)-f(z)}{t}$, а обобщенной производной f в точке x множество $\partial f(x) = \{y \in E^* : f^{\circ}(x,l) \geq (y,l) \ \forall l \in E\}$.

Определение 10. Локально липшицева функция $f: E \to \mathbf{R}$ удовлетворяет (PS)-условию, если любая последовательность $(x_n) \subset E$, для которой множество значений $(f(x_n))$ ограничено и $m(x_n) = \inf_{x^* \in \partial f(x_n)} ||x^*|| \to 0$ при $n \to \infty$, содержит сходящуюся подпоследовательность, где $\partial f(x)$ – обобщенный градиент Кларка для f в точке x.

Основным результатом данной работы является следующая теорема.

Теорема 2. Пусть E – вещественное гильбертово пространство плотно и компактно вложенное в вещественное рефлексивное банахово пространство E_3 , $A:E\to E$ – линейный самосопряженный и ограниченный оператор, нуль является изолированной точкой его спектра, причем ядро и отрицательное подпространство оператора A конечномерны и выполнены условия 2)-3) теоремы 1 для отображения $T:E_3\to E_3^*$, T(0)=0. Тогда существует $\lambda_*>0$ такое, что для любого $\lambda>\lambda_*$ уравнение (1) имеет по крайней мере три решения.

Доказательство теоремы 2. Известно [13], что если E – гильбертово пространство, то условие 1) теоремы 1 выполняется, если нуль – изолированная точка спектра неотрицательного оператора A. В этом случае существует постоянная $\alpha>0$ такая, что $(Au,u)\geq\alpha||u||^2$ $\forall~u\in E_2$ $(E_1=\ker A,~E_2=E_1^\perp)$. В силу этого и условий теоремы 2 по теореме 1 найдется $\lambda_0>0$ такое, что для любого $\lambda>\lambda_0$ уравнение (1) имеет по крайней мере одно ненулевое решение, т. е. и для некоторой константы $\lambda_*>0$ для каждого $\lambda>\lambda_*$ найдется элемент $u_\lambda\in E,~u_\lambda\neq 0$ такой, что $f^\lambda(u_\lambda)=\inf_{v\in E}f^\lambda(v)<0$, как это следует из утверждения теоремы 2 из работы [7]. Покажем, что при $\lambda>\lambda_*$ уравнение (1) имеет по крайней мере еще одно нетривиальное решение v_λ , которое может быть найдено с помощью теоремы о горном перевале [12], если $f^\lambda(v_\lambda)>0$. Для выполнения условий теоремы о горном перевале [12] достаточно показать, что функция f^λ удовлетворяет (PS)-условию для любого $\lambda>0$. Для этого достаточно доказать, что функция f^λ локально липшицева на E (все остальные условия теоремы 4.5 из [12] идентичны условиям доказываемой теоремы 2). Это действительно так, поскольку A – линейный ограниченный оператор, а функция f удовлетворяет условию Липшица на E_3 , так как для произвольных $u,v\in E_3$ имеем

$$|f(u) - f(v)| = |\int_{0}^{1} (T(v + t(u - v)), u - v)dt| \le$$

$$\int_{0}^{1} |(T(v + t(u - v)), u - v)| dt \leqslant M ||u - v||_{E_{3}},$$

поскольку отображение T, ограниченное на E_3 , M>0 – константа из неравенства $||Tx||\leqslant M\ \forall x\in E_3$. Поэтому, по теореме 4.5 из [12], функционал f^λ удовлетворяет (PS)-условию для каждого $\lambda>0$. Значит, функционал f^λ удовлетворяет условиям теоремы о горном перевале [12], следовательно, он имеет критическую точку $v_\lambda\in E$ (решение уравнения (1)) такую, что $f^\lambda(v_\lambda)=\inf_{\gamma\in\Gamma}\sup_{t\in[0,1]}f^\lambda(\gamma(t))\geq \max\{f^\lambda(0),f^\lambda(u_\lambda)\}=0$ (посколь-

ку $f^{\lambda}(0) = 0$, $f^{\lambda}(u_{\lambda}) < 0$), где $\Gamma = \{ \gamma \in \mathbf{C}([0,1], E) : \gamma(0) = 0, \gamma(1) = u_{\lambda} \}$. Более того, аналогично [7], [14] можно показать, что $f^{\lambda}(u) > \varepsilon > 0$ для ||u|| = r > 0 и $||u_{\lambda}|| > r$. Следовательно, существует $v_{\lambda} \in E$ такое, что $f^{\lambda}(v_{\lambda}) > 0$. Таким образом, для любого $\lambda > \lambda_*$ существует второе нетривиальное решение v_{λ} , а уравнение (1) для любого $\lambda > \lambda_*$ имеет по крайней мере три решения (нулевое, $u_{\lambda} \neq 0$, $v_{\lambda} \neq 0$). Отметим, что решения u_{λ} и v_{λ} различны, поскольку $f^{\lambda}(u_{\lambda}) < 0$, а $f^{\lambda}(v_{\lambda}) > 0$. Теорема 2 доказана.

2. Приложения

В качестве приложения полученных результатов рассмотрим вопрос существования решений задачи

$$Lu(x) \equiv -\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_i})_{x_j} + c(x)u(x) = \lambda g(x, u(x)), \quad x \in \Omega,$$
(2)

$$Bu|_{\Gamma} = 0, (3)$$

где λ — положительный параметр. Здесь L — равномерно эллиптический формально самосопряженный дифференциальный оператор в ограниченной области $\Omega \subset \mathbf{R}^n$ с границей Γ класса $\mathbf{C}_{2,\alpha}$ ($0 < \alpha \leqslant 1$) с коэффициентами $a_{ij} \in \mathbf{C}_{1,\alpha}(\overline{\Omega}), c \in \mathbf{C}_{0,\alpha}(\overline{\Omega});$ функция $g: \Omega \times \mathbf{R} \to \mathbf{R}$ суперпозиционно измерима [15], и для почти всех $x \in \Omega$ сечение $g(x,\cdot)$ имеет на \mathbf{R} разрывы только первого рода, $g(x,u) \in [g_-(x,u),g_+(x,u)] \ \forall \ u \in \mathbf{R},$ $g_-(x,u) = \lim_{\eta \to u} g(x,\eta), \ g_+(x,u) = \overline{\lim_{\eta \to u}} g(x,\eta);$ граничное условие (3) имеет вид: либо условие Дирихле $u(x)|_{\Gamma} = 0$, либо условие Неймана $\frac{\partial u}{\partial \mathbf{n}_L}(x)|_{\Gamma} = 0$ с конормальной производной

 $\frac{\partial u}{\partial \mathbf{n}_L}(x) \equiv \sum_{i,j=1}^n a_{ij}(x) u_{x_i} \cos(\mathbf{n}, x_j)$, \mathbf{n} – внешняя нормаль к границе Γ , $\cos(\mathbf{n}, x_j)$ – направляющие косинусы нормали \mathbf{n} , либо третье краевое условие $\frac{\partial u}{\partial \mathbf{n}_L}(x) + \sigma(x) u(x)|_{\Gamma} = 0$, функция

ощие косинусы нормали **п**, лиоо третье краевое условие $\frac{1}{\partial \mathbf{n}_L}(x) + \delta(x)u(x)|_{\Gamma} = 0$, с $\sigma \in \mathbf{C}_{1,\alpha}(\Gamma)$, неотрицательна и не равна тождественно нулю на Γ .

В зависимости от вида граничного условия (3) определим пространство X. Пусть $X = \mathbf{H}^1_{\circ}(\Omega)$, если (3) – граничное условие Дирихле, и $X = \mathbf{H}^1(\Omega)$, если (3) – граничное условие Неймана или третье краевое условие. Сопоставим краевой задаче (2)–(3) функционал J^{λ} , определенный на X, следующим образом: $J^{\lambda}(u) = J_1(u) - \lambda J_2(u)$, где

$$J_1(u) = \frac{1}{2} \sum_{i,j=1}^n \int_{\Omega} a_{ij}(x) u_{x_i} u_{x_j} dx + \frac{1}{2} \int_{\Omega} c(x) u^2(x) dx$$

в случае граничного условия Дирихле или Неймана;

$$J_1(u) = \frac{1}{2} \sum_{i,j=1}^n \int_{\Omega} a_{ij}(x) u_{x_i} u_{x_j} dx + \frac{1}{2} \int_{\Omega} c(x) u^2(x) dx + \frac{1}{2} \int_{\Gamma} \sigma(s) u^2(s) ds$$

в случае третьего краевого условия;

$$J_2(u) = \int_{\Omega} dx \int_{0}^{u(x)} g(x, s) ds.$$

Определение 11. Пусть $f: \mathbf{R} \to \mathbf{R}$. Назовем $u \in \mathbf{R}$ прыгающим разрывом функции f, если f(u-) < f(u+), где $f(u\pm) = \lim_{s \to u\pm} f(s)$.

Определение 12. Сильным решением задачи (2)–(3) называется функция $u \in \mathbf{W}_r^2(\Omega)$, r > 1, которая удовлетворяет для почти всех $x \in \Omega$ уравнению (2) и для которой след Bu(x) на Γ равен нулю.

Определение 13. Полуправильным решением задачи (2)–(3) называется такое сильное ее решение u, значение которого u(x) для почти всех $x \in \Omega$ является точкой непрерывности функции $g(x,\cdot)$.

В работе [12] вариационное исчисление Кларка применено для локально липшицевых функций к доказательству существования сильных решений задачи Дирихле для уравнений эллиптического типа второго порядка с разрывной нелинейностью, развит вариационный подход применительно к краевым задачам для уравнений эллиптического типа с разрывными нелинейностями. Полуправильные решения в работе [12] не рассматривались. В работах [7], [8] получены достаточные условия существования нетривиального полуправильного решения задачи (2)–(3).

Имеют место следующие теоремы.

Теорема 3. Пусть выполнены условия:

- 1) $J_1(u) \geq 0 \ \forall u \in X$;
- 2) для почти всех $x \in \Omega$ функция $g(x,\cdot)$ имеет только прыгающие разрывы, g(x,0)=0 и $|g(x,u)| \leqslant a(x) \ \forall u \in \mathbf{R}$, где $a \in \mathbf{L}_q(\Omega)$, $q > \frac{2n}{n+2}$, фиксирована;
- 3) найдется $u_0 \in X$, для которого $J_2(u_0) > 0$;
- 4) если пространство N(L) решений задачи

$$\begin{cases} Lu = 0, \\ Bu|_{\Gamma} = 0 \end{cases}$$

ненулевое (резонансный случай), то дополнительно предполагается, что $\lim_{u\in N(L),\;||u||\to +\infty}J_2(u)=-\infty.$

Тогда существует $\lambda_* > 0$ такое, что для любого $\lambda > \lambda_*$ задача (2)–(3) имеет по крайней мере три сильных решения, причем по крайней мере одно из ненулевых решений является полуправильным.

Теорема 4. Пусть выполнены условия 1), 3), 4) теоремы 3 и дополнительно условия 1') для почти всех $x \in \Omega$ функция $g(x,\cdot)$ невозрастающая на \mathbf{R} и для некоторой $a \in \mathbf{L}_{\frac{2n}{n+2}}(\Omega)$ справедливо неравенство $|g(x,u)| \leq a(x) \ \forall u \in \mathbf{R}$;

2') для почти всех $x \in \Omega$ точки разрыва функции $g(x,\cdot)$ лежат на плоскостях $u = u_i$, $i \in I$ (I – не более чем счетно), u если $g(x,u_i-) > g(x,u_i+)$, то $g(x,u_i-)g(x,u_i+) > 0$ для любого $i \in I$.

Тогда существует $\lambda_* > 0$ такое, что для любого $\lambda > \lambda_*$ задача (2)–(3) имеет по крайней мере одно ненулевое полуправильное решение.

Доказательство теорем 3, 4. Важным условием, обеспечивающим существование нетривиального решения задачи (2)–(3), является условие 3) теоремы 3. В работах [7], [8] доказано, что при выполнении условий теорем 3, 4 существует $\lambda_0 > 0$ такое, что для любого $\lambda > \lambda_0 \inf_{v \in X} J^{\lambda}(v) < 0$, и найдется $u_{\lambda} \in X$, для которого $J^{\lambda}(u_{\lambda}) = \inf_{v \in X} J^{\lambda}(v)$, и любое такое u_{λ} является ненулевым полуправильным решением задачи (2)–(3). Таким образом, найдется и $\lambda_* > 0$ такое, что для любого $\lambda > \lambda_*$ существует по крайней мере одно ненулевое полуправильное решение u_{λ} задачи (2)–(3). Теорема 4 доказана. Наличие второго, тривиального, решения задачи (2)–(3) в теореме 3 обуславливается условием 2) теоремы 3 (g(x,0)) = 0 для почти всех $x \in \Omega$. Отметим, что оператор $A: X \to X$,

определяемый равенством

$$(Au, v) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) u_{x_i} v_{x_j} dx + \int_{\Omega} c(x) u(x) v(x) dx \quad \forall u, v \in X$$

в случае граничного условия Дирихле или Неймана, и равенством

$$(Au, v) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) u_{x_i} v_{x_j} dx +$$

$$\int_{\Omega} c(x)u(x)v(x)dx + \int_{\Gamma} \sigma(s)u(s)v(s)ds \ \forall u, v \in X$$

в случае третьего краевого условия, является самосопряженным, линейным и ограниченным. Ядро оператора A совпадает с пространством N(L). Согласно теории Фредгольма отрицательное подпространство оператора A конечномерно и если $N(L) \neq \{0\}$, то нуль — изолированная точка спектра оператора A конечной кратности [16]. Гильбертово пространство X плотно и компактно (в силу условия 2) теоремы 3) вложено в рефлексивное банахово пространство $\mathbf{L}_p(\Omega), p = \frac{q}{q-1}, q > \frac{2n}{n+2}$ [17]. Аналогично [7] показывается, что для компактного отображения $T: \mathbf{L}_p \to \mathbf{L}_q$ выполнены условия 2)-3) теоремы 1. Итак, все условия теоремы 2 выполнены. Поэтому существует $\lambda_* > 0$ такое, что для любого $\lambda > \lambda_*$ задача (2)–(3) имеет по крайней мере три решения. Действительно, применив теорему о горном перевале [12] получим, что для каждого $\lambda > \lambda_*$ существует также элемент $v_\lambda \in X$ — критическая точка функционала J^λ такая, что $J^\lambda(v_\lambda) > 0$ ($J^\lambda(v_\lambda) = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} J^\lambda(\gamma(t))$, где

 $\Gamma = \{ \gamma \in \mathbf{C}([0,1],X) : \gamma(0) = 0, \gamma(1) = u_{\lambda} \} \}$. Итак, в условиях теоремы 3 функционал J^{λ} имеет по крайней мере три различные критические точки. Таким образом, для любого $\lambda > \lambda_*$ существует по крайней мере два ненулевых решения задачи (2)–(3). Решение u_{λ} будет полуправильным при сделанных предположениях на разрывы нелинейности [7]. Теорема 3 доказана.

Отметим, что в работе [18] получены аналогичные теоремы о числе решений однопараметрического семейства задач Дирихле для уравнений эллиптического типа высокого порядка с разрывными нелинейностями. Доказательство этих теорем может быть также сведено к проверке выполнения условий теорем 1, 2 данной работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Красносельский М.А. Топологические методы в теории нелинейных интегральных уравнений. М.: Гостехиздат, 1956. 392 с.
- 2. Rabinowitz P.H. Some global results for nonlinear eigenvalue problems // J. Funct. Anal. 1971. Vol. 7. P. 487–513.
- 3. Красносельский М.А. Положительные решения операторных уравнений. М.: Физматгиз, 1962. 396 с.
- 4. Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spases // SIAM Review. 1976. Vol. 18. № 4. P. 620–709.
- 5. Rabinowitz P.H. Variational methods for nonlinear elliptic eigenvalue problems // Indiana Univ. Math. J. 1974. Vol. 23. № 8. P. 729–754.
- 6. Rabinowitz P.H. A bifurcation theorem for potentional operators // J. Funct. Anal. 1977. Vol. 25. P. 412–424.
- 7. Павленко В.Н., Потапов Д.К. *О существовании луча собственных значений для уравнений с разрывными операторами* // Сиб. матем. журн. 2001. Т. 42. № 4. С. 911–919.
- 8. Потапов Д.К. О существовании луча собственных значений для уравнений эллиптического типа с разрывными нелинейностями в критическом случае // Вестн. С.-Петерб. ун-та.

- Сер. 10. Прикладная математика. Информатика. Процессы управления. 2004. Вып. 4. С. 125—132.
- 9. Потапов Д.К. Оценка бифуркационного параметра в спектральных задачах для уравнений с разрывными операторами // Уфимск. матем. журн. 2011. Т. 3. № 1. С. 43–46.
- 10. Потапов Д.К. *Оценивание норм оператора в задачах на собственные значения для уравнений с разрывными операторами* // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2011. Т. 11. Вып. 4. С. 41–45.
- 11. Павленко В.Н. *Вариационный метод для уравнений с разрывными операторами* // Вестн. Челяб. гос. ун-та. Сер. 3. Математика. Механика. 1994. № 1(2). С. 87–95.
- 12. Chang K.C. Variational methods for non-differentiable functionals and their applications to partial differential equations // J. Math. Anal. and Appl. 1981. Vol. 80. № 1. P. 102–129.
- 13. Рисс Ф., Секефальви-Надь Б. Лекции по функциональному анализу. М.: Мир, 1979. 588 с.
- 14. Павленко В.Н., Винокур В.В. *Резонансные краевые задачи для уравнений эллиптического типа с разрывными нелинейностями* // Изв. вузов. Матем. 2001. № 5. С. 43–58.
- 15. Красносельский М.А., Покровский А.В. Системы с гистерезисом. М.: Наука, 1983. 272 с.
- 16. Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1983. 424 с.
- 17. Соболев С.Л. *Некоторые применения функционального анализа в математической физике.* М.: Наука, 1982. 336 с.
- 18. Потапов Д.К. *О числе полуправильных решений в задачах со спектральным параметром для уравнений эллиптического типа высокого порядка с разрывными нелинейностями* // Дифференц. уравнения. 2012. Т. 48. № 3. С. 447-449.

Дмитрий Константинович Потапов, Санкт-Петербургский государственный университет, Университетская наб., 7/9, 199034, Санкт-Петербург, Россия E-mail: potapov@apmath.spbu.ru