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THE NON-AUTONOMOUS DYNAMICAL SYSTEMS
AND EXACT SOLUTIONS WITH SUPERPOSITION

PRINCIPLE FOR EVOLUTIONARY PDES

V.A. DORODNITSYN

Abstract. In the present article we introduce a new application of S. Lie’s non-autonomous
dynamical systems with the generalized separation of variables in right hand-sides. We
consider non-autonomous dynamical equations as some sort of external action on a given
evolution equation, which transforms a subset of solutions into itself. The goal of our
approach is to find a subset of solutions of an evolution equation with a superposition
principle. This leads to an integration of ordinary differential equations in a process of
constructing exact solutions of PDEs. In this paper we consider the application of the most
simple one-dimensional case of the Lie theorem.
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Introduction

The concept of linear superposition of solutions in classical theory of linear ordinary
differential equations

𝑥𝑖𝑡(𝑡) = 𝜑𝑖1(𝑡)𝑥
1 + ...+ 𝜑𝑖𝑛(𝑡)𝑥𝑛, 𝑖 = 1, 2, ..., 𝑛,

was generalized by Sophus Lie [1] for nonlinear dynamical systems with the generalized
separation of variables in right hand-sides. Namely, S.Lie proved the following theorem.
Theorem. The equations

𝑥𝑖𝑡(𝑡) = 𝑓 𝑖(𝑡, 𝑥), 𝑖 = 1, 2, ..., 𝑛,

possess a fundamental set of solutions, i.e. its general solution can be represented by finite
number 𝑚 of particular solutions 𝑥11, ..., 𝑥𝑛1 ; ..., 𝑥1𝑚, ..., 𝑥

𝑛
𝑚 and 𝑛 number of arbitrary constants

𝐶1, ..., 𝐶𝑛, if and only if they have the following form
𝜕𝑥𝑖

𝜕𝑡
(𝑡) = 𝜑1(𝑡)𝜉

𝑖
1(𝑥) + ...+ 𝜑𝑟(𝑡)𝜉

𝑖
𝑟(𝑥), 𝑖 = 1, 2, ..., 𝑛, (1)

where the coefficients 𝜉𝑖𝛼(𝑥) satisfy the condition that the operators

𝑋𝛼 = 𝜉𝑖𝛼(𝑥)
𝜕

𝜕𝑥𝑖
, 𝛼 = 1, 2, ..., 𝑟, (2)

span a Lie Algebra 𝐿𝑟 of a finite dimension 𝑟. The number 𝑚 of necessary particular solutions
is estimated by inequality 𝑚𝑛 ≥ 𝑟. The superposition formulae for a general solution

𝑥𝑖 = 𝑆𝑖(𝑥1, ..., 𝑥𝑛;𝑥11, ..., 𝑥
𝑛
1 ; ..., 𝑥1𝑚, ..., 𝑥

𝑛
𝑚;𝐶1, ..., 𝐶𝑛), 𝑖 = 1, 2, ..., 𝑛, det ‖ 𝜕𝑆

𝑖

𝜕𝐶𝑘
‖ ≠ 0.
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are defined implicitly by 𝑛 equations

𝐽𝑖(𝑥
1, ..., 𝑥𝑛;𝑥11, ..., 𝑥

𝑛
1 ; ..., 𝑥1𝑚, ..., 𝑥

𝑛
𝑚) = 𝐶𝑖, 𝑖 = 1, 2, ..., 𝑛, det ‖ 𝜕𝐽𝑖

𝜕𝑥𝑘
‖ ≠ 0,

where 𝐽𝑖 are functionally independent with respect to 𝑥𝑖 invariants of the operators (2)
prolonged to the (𝑛+𝑚𝑛)-dimensional space

�̄�𝛼 = 𝜉𝑖𝛼(𝑥)
𝜕

𝜕𝑥𝑖
+ 𝜉𝑖𝛼(𝑥1)

𝜕

𝜕𝑥𝑖1
+ ...+ 𝜉𝑖𝛼(𝑥𝑚)

𝜕

𝜕𝑥𝑖𝑚
, 𝛼 = 1, 2, ..., 𝑟.

The non-autonomous dynamical system (1) will be referred as the Lie non-autonomous
dynamical system (NADS) or the Lie system. Notice, that the statement of the Lie theorem has
various aspects. The first one states that the superposition (which is nonlinear in general) of
finite number particular solutions is again a solution. The second one is that its general solution
can be represented by finite number 𝑚 of particular solutions. Thirdly, the Theorem based on
an invariant object which is Lie Algebra of operators 𝑋𝛼.

Notice, that if all functions 𝜑𝑖 = 𝑐𝑜𝑛𝑠𝑡, 𝑖 = 1, 2, ..., 𝑛, then system (1) simply represents
a one-parameter Lie group of point transformations, which generated by linear combinations
(with constant coefficients 𝜑𝑖) of operators (2). For variable coefficients 𝜑𝑖(𝑡) the system (1) is
sufficient different from a one-parameter Lie group of point transformations.

In 1980-th there was the renewed interest to this Lie’s theorem, and several important
applications were found [2,3,4,5]. The discussion of Lie’s theorem and several examples of
applications one can find in [6].

In this paper we consider the new application the above theorem. We do not investigate
system of type (1) itself, but consider non-autonomous equations as some sort of external action
on some given evolution equation. The goal of our approach is to find a subset of solutions of
evolution equation which possess the superposition principle. Solutions of a non-autonomous
equation will be considered as some generalization of symmetry transformations, which act on
an evolution equation and transform a subset of solutions into itself. This leads to an integration
of ordinary differential equations in a process of developing exact solutions of PDEs. We supply
the theory with examples.

The article is organized as following. In Section 1 we formulate the most simple one-
dimensional case of the Lie theorem. Section 2 devoted to the technique for constructing special
solutions with linear superposition principle, what demonstrated on examples in Section 3. In
Section 4 we generalize the approach for evolutionary PDEs in two space dimensions. Sections
5 and 6 devoted to solutions with the Bernoulli and the Riccati types superpositions. In final
Section 7 we develop the necessary and sufficient conditions for evolutionary PDEs to possess
subset of solutions with linear superpositions principle.

1. One-dimensional case of the Lie’s theorem

For 𝑛 = 1 the most general Lie’s non-autonomous dynamical equation is the Riccati equation

𝑢𝑡(𝑡) = 𝜑1(𝑡) + 𝜑2(𝑡)𝑢+ 𝜑3(𝑡)𝑢
2, (3)

where 𝜑𝑖, 𝑖 = 1, 2, 3 are some smooth functions of 𝑡.
The equation (3) possesses the fundamental set of solutions as far it is associated with the

Lie Algebra 𝐿3

𝑋1 =
𝜕

𝜕𝑢
, 𝑋2 = 𝑢

𝜕

𝜕𝑢
, 𝑋2 = 𝑢2

𝜕

𝜕𝑢
,

of the projective group. For the equation (3) 𝑛 = 1, 𝑟 = 3,𝑚 ≥ 3. In fact three particular
solutions casts the minimum number of solutions to develop a general solution of Riccati
equation.
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The subalgebras of (3) are casted by 1-dimensional subalgebras spanned by each operators
individually and by two-dimensional subalgebras (𝑋1;𝑋2) and (𝑋2;𝑋3). The equation (3)
possesses the well-known non-linear superposition principle for their solutions

(𝑢4 − 𝑢3)(𝑢2 − 𝑢1)

(𝑢4 − 𝑢2)(𝑢3 − 𝑢1)
= 𝐶,

where 𝐶 is an arbitrary constant, and its general solution can be expressed by means of three
particular solutions

𝑢 =
𝑢3(𝑢2 − 𝑢1) − 𝐶𝑢2(𝑢3 − 𝑢1)

𝑢2 − 𝑢1 − 𝐶(𝑢3 − 𝑢1)
.

For the 1-dimensional subalgebras spanned by each operators 𝑋1;𝑋2;𝑋3 individually there
exists point transformations, which change corresponding dynamical equations into classical
Lie group equations. Thus, nontrivial cases start from two-dimensional subalgebras (𝑋1;𝑋2)
and (𝑋2;𝑋3).

2. The subset of solutions with linear superposition

We firstly consider the subalgebra 𝐿2 spanned by the operators 𝑋1 =
𝜕

𝜕𝑢
, 𝑋2 = 𝑢

𝜕

𝜕𝑢
. The

corresponding non-autonomous evolution is a linear equation

𝑢𝑡(𝑡) = 𝜑1(𝑡) + 𝜑2(𝑡)𝑢. (4)

For equation (3) 𝑛 = 1, 𝑟 = 2,𝑚 ≥ 2. In fact two particular solutions casts the minimum number
of solutions to develop a general solution of the equation (4). Thus, (4) has a fundamental set
of special solutions 𝑢1 and 𝑢2 with superposition

𝑢− 𝑢1
𝑢2 − 𝑢1

= 𝐶,

which yield the general solution as

𝑢 = (1 − 𝐶)𝑢1 + 𝐶𝑢2, 𝐶 = 𝑐𝑜𝑛𝑠𝑡. (5)

In this paper we consider non-autonomous equations as some sort of external action on a given
evolution equation. Following the idea of classical Lie group analysis of differential equations
[7,8] we involve the prolongation of non-autonomous dynamical system for spatial derivatives.

Thus, we involve 𝑥 as one more independent variable and let 𝑢 be dependent on two variables:
𝑢 = 𝑢(𝑡, 𝑥). We rewrite (4) in the form

𝑢𝑡(𝑡, 𝑥) = 𝜑(𝑡) + 𝜓′(𝑡)𝑢(𝑡, 𝑥),

(we write 𝜓′(𝑡) for convenience) and prolong it for evolution of partial derivative 𝑢𝑥, 𝑢𝑥𝑥, ...:

𝑢𝑡(𝑡, 𝑥) = 𝜑(𝑡) + 𝜓′(𝑡)𝑢(𝑡, 𝑥), (6)

𝑢𝑥𝑡(𝑡, 𝑥) = 𝜓′(𝑡)𝑢𝑥(𝑡, 𝑥), 𝑢𝑥𝑥𝑡(𝑡, 𝑥) = 𝜓′(𝑡)𝑢𝑥𝑥(𝑡, 𝑥), . . . .

The above evolutionary system can be associated with the Lie algebra 𝐿2 spanned by the
following operators:

𝑋1 =
𝜕

𝜕𝑢
, 𝑋2 = 𝑢

𝜕

𝜕𝑢
+ 𝑢𝑥

𝜕

𝜕𝑢𝑥
+ 𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥𝑥
, ... .

Notice, that for the system (6) we still have 𝑛 = 1, 𝑟 = 2, as far as all differential sequences
of the first evolution equations do not produce new dependent variables. One can write down
a solution of the linear equations (6) in the following form

𝑢(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓(𝑡)𝑉 (𝑥),
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where 𝑉 (𝑥) describes dependence of 𝑢 on space variable 𝑥, and 𝜑(𝑡) is a special solution of
inhomogeneous equation

𝜑′ = 𝜑(𝑡) + 𝜓′(𝑡)𝜑.

Notice, that the superposition formula (5) yields the superposition for 𝑉 (𝑥) as well:

𝑉 = (1 − 𝐶)𝑉1 + 𝐶𝑉2,

where 𝐶 = 𝑐𝑜𝑛𝑠𝑡.
Thus, the set of solutions (𝑉1, 𝑉2) span a linear space.
Now we consider an evolutionary equation

𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥), (7)

which, in general, is nonlinear. We consider the compatibility condition for evolution (6) and
evolutionary eq. (7), that gives ODEs for unknown functions 𝜑(𝑡), 𝜓(𝑡).

Now we consider a row of examples of evolutionary equations, when such a compatibility
exists. Most of the following examples of equations were taken from [9,10,11,12,13] and yield
subspaces of solutions with various dimensions. In all cases we have linear superposition and
two functions 𝜑(𝑡), 𝜓(𝑡) to describe the corresponding subset independently of space dimension.

3. Examples of evolutionary equations with a linear subspace of solutions

Example 1. We consider the nonlinear equation

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥
2 − 𝑢2,

and looking for the special solution in the form

𝑢(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓(𝑡)𝑉 (𝑥), 𝑢𝑥(𝑡, 𝑥) = 𝑒𝜓(𝑡)𝑉𝑥(𝑥), 𝑢𝑥𝑥(𝑡, 𝑥) = 𝑒𝜓(𝑡)𝑉𝑥𝑥(𝑥), (8)

which yields the following equation

𝜑′ + 𝜓′𝑒𝜓𝑉 = 𝑒𝜓𝑉 ′′ + 𝑒2𝜓𝑉 ′2 − 𝜑2 − 2𝜑𝑒𝜓𝑉 − 𝑒2𝜓𝑉 2.

Splitting the last equation gives

𝜑′ = −𝜑2 + 𝑒2𝜓((𝑉 ′)2 − 𝑉 2), 𝜓′𝑉 = 𝑉 ′′ − 2𝜑𝑉.

Then we have the following overdetermined system

(𝑉 ′)2 − 𝑉 2 = 𝑘 = 𝑐𝑜𝑛𝑠𝑡, 𝑉 ′′ = 𝑚𝑉, 𝑚 = 𝑐𝑜𝑛𝑠𝑡.

From the last relations in the case 𝑘 ̸= 0 we have

𝑚 = 1, 𝑉 (𝑥) = 𝐴𝑒𝑥 +𝐵𝑒−𝑥, 𝑘 = −4𝐴𝐵.

So, we can write down the family of solution as

𝑢(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓(𝑡)(𝐴𝑒𝑥 +𝐵𝑒−𝑥),

where functions 𝜑(𝑡), 𝜓(𝑡) satisfy the following dynamical system:

𝜑′ = −𝜑2 − 4𝐴𝐵𝑒2𝜓, 𝜓′ = 1 − 2𝜑.

In the case 𝑘 = 0 one can integrate the corresponding dynamical system and express the
solution explicitly

𝑢(𝑡, 𝑥) =
1

𝑡+ 𝐶1

+
𝐶2𝑒

𝑡

(𝑡+ 𝐶1)2
(𝐴𝑒𝑥 +𝐵𝑒−𝑥),

where 𝐶1, 𝐶2, 𝐴,𝐵 are arbitrary constants, while 𝐴𝐵 = 0.

Example 2. Consider the nonlinear heat equation

𝑢𝑡 = (𝑢𝑢𝑥)𝑥 + 𝑢2 = 𝑢𝑢𝑥𝑥 + 𝑢𝑥
2 + 𝑢2.
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The special solution in the form (8) yields the following equation

𝜑′ + 𝜓′𝑒𝜓𝑉 = (𝜑+ 𝑒𝜓𝑉 )𝑒𝜓𝑉 ′′ + 𝑒2𝜓𝑉 ′2 + 𝜑2 + 2𝑒𝜓𝑉 + 𝑒2𝜓𝑉 2.

Splitting the last equation yields

𝜑′ = 𝜑2 + 𝑒2𝜓(𝑉 𝑉 ′′ + 𝑉 ′2 + 𝑉 2), 𝜓′𝑉 = 𝜑𝑉 ′′ + 2𝑉.

Then we have the following overdetermined system:

𝑉 𝑉 ′′ + 𝑉 ′2 + 𝑉 2 = 𝑘 = 𝑐𝑜𝑛𝑠𝑡, 𝑉 ′′ = 𝑚𝑉, 𝑚 = 𝑐𝑜𝑛𝑠𝑡.

From the last relations we have

𝑉 (𝑥) =
√

2𝐶 cos
𝑥√
2
, 𝐶 = 𝑐𝑜𝑛𝑠𝑡.

So, we can write down the family of solution as

𝑢(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓(𝑡)
√

2𝐶 cos
𝑥√
2
,

where functions 𝜑(𝑡), 𝜓(𝑡) satisfy the following dynamical system:

𝜑′ = 𝜑2 + 𝐶2𝑒2𝜓, 𝜓′ = 2 − 𝜑

2
.

4. Some generalizations within linear superposition

1. The linear superposition evolution can easily be generalized for higher order time-
derivatives. Indeed, one can prolong evolutionary system (6) for partial derivative 𝑢𝑡𝑡, 𝑢𝑡𝑡𝑡, ...:

𝑢𝑡𝑡(𝑡, 𝑥) = 𝜑′(𝑡) + 𝜑(𝑡)𝜓′(𝑡) + (𝜓′(𝑡) + 𝜓′′(𝑡))𝑢(𝑡, 𝑥), . . . .

In that case the solution has evidently the same form

𝑢(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓(𝑡)𝑉 (𝑥). (9)

To determine unknown functions 𝜑(𝑡), 𝜓(𝑡), 𝑉 (𝑥) one should substitute (9) into corresponding
evolutionary equation.

2. The linear superposition evolution can be generalized for 2-D space-dimensional
solutions 𝑢(𝑡, 𝑥, 𝑦). For that case we prolong the evolution system (4) for partial derivative
𝑢𝑥, 𝑢𝑦, 𝑢𝑥𝑥, 𝑢𝑦𝑦, ...:

𝑢𝑡(𝑡, 𝑥, 𝑦) = 𝜑(𝑡) + 𝜓′(𝑡)𝑢(𝑡, 𝑥, 𝑦), (10)
𝑢𝑥𝑡(𝑡, 𝑥, 𝑦) = 𝜓′(𝑡)𝑢𝑥(𝑡, 𝑥, 𝑦), 𝑢𝑦𝑡(𝑡, 𝑥, 𝑦) = 𝜓′(𝑡)𝑢𝑦(𝑡, 𝑥, 𝑦),

𝑢𝑥𝑥𝑡(𝑡, 𝑥, 𝑦) = 𝜓′(𝑡)𝑢𝑥𝑥(𝑡, 𝑥, 𝑦), 𝑢𝑦𝑦𝑡(𝑡, 𝑥, 𝑦) = 𝜓′(𝑡)𝑢𝑦𝑦(𝑡, 𝑥, 𝑦), . . . .

In 2-D case the solution has similar to 1-D case form

𝑢(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓(𝑡)𝑉 (𝑥, 𝑦),

and the same linear superposition formula.
Below we consider an example of evolutionary equation of the second order

𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑦, 𝑢𝑥𝑥, 𝑢𝑦𝑦, 𝑢𝑥𝑦),

which is compatible with the evolution (10).
Example3. Let us consider the nonlinear equation

𝑢𝑡 = 𝑢(𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 2𝑢𝑥𝑥𝑢𝑦𝑦 − 𝑢𝑥
2 − 𝑢𝑦

2. (11)

We substitute a solution
𝑢(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓(𝑡)𝑉 (𝑥, 𝑦),

and obtain

𝜑′ + 𝜓′𝑒𝜓𝑉 = (𝜑+ 𝑉 𝑒𝜓)(𝑉𝑥𝑥 + 𝑉𝑦𝑦)𝑒
𝜓 + 2𝑒2𝜓𝑉𝑥𝑥𝑉𝑦𝑦 − 𝑒2𝜓(𝑉 2

𝑥 + 𝑉 2
𝑦 ).
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Then we split the last equality

𝑉 (𝑉𝑥𝑥 + 𝑉𝑦𝑦) + 2𝑉𝑥𝑥𝑉𝑦𝑦 − (𝑉 2
𝑥 + 𝑉 2

𝑦 ) = 𝑘, 𝑘 = 𝑐𝑜𝑛𝑠𝑡,

𝑚𝑉 = 𝑉𝑥𝑥 + 𝑉𝑦𝑦, 𝑚 = 𝑐𝑜𝑛𝑠𝑡, 𝜑′ = 𝑘𝑒2𝜓, 𝑚𝜓′ = 𝜑.

For the special case 𝑚 = −1, 𝑘 = −2 one can find the special solution

𝑉 (𝑥, 𝑦) = cos 𝑥+ cos 𝑦,

and then write the solution for equation (11) in the form

𝑢(𝑡, 𝑥, 𝑦) = 𝜑(𝑡) + 𝑒𝜓(𝑡)(cos𝑥+ cos 𝑦),

while 𝜑(𝑡), 𝜓(𝑡) should obey the following dynamical system

𝜑′ = −2𝑒2𝜓, 𝜓′ = −𝜑,

which can be integrated completely.
3. The linear superposition evolution can be extended for four-dimensional Lie Algebra,

involving variable 𝑥 as non-evolutionary parameter.
Indeed, let us consider the following extended evolution system (4):

𝑢𝑡(𝑡, 𝑥) = 𝜑1(𝑡) + 𝜑2(𝑡)𝑢+ 𝜑3(𝑡)𝑥+ 𝜑4(𝑡)𝑥
2, (12)

𝑢𝑥𝑡(𝑡, 𝑥) = 𝜑2(𝑡)𝑢𝑥 + 𝜑3(𝑡) + 2𝜑4(𝑡)𝑥, 𝑢𝑥𝑥𝑡(𝑡, 𝑥) = 𝜑2(𝑡)𝑢𝑥𝑥 + 2𝜑4(𝑡), . . . .

which still has linear superposition for its solutions. Thus, formally we have two dependent

variables 𝑢, 𝑥, while the second one does not evolute in time:
𝑑𝑥

𝑑𝑡
= 0, since 𝑥 = 𝑐𝑜𝑛𝑠𝑡. The

corresponding Lie Algebra is the following four-dimensional algebra 𝐿4, which we prolong for
high-order derivatives:

𝑋1 =
𝜕

𝜕𝑢
, 𝑋2 = 𝑢

𝜕

𝜕𝑢
+𝑢𝑥

𝜕

𝜕𝑢𝑥
+𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥𝑥
, 𝑋3 = 𝑥

𝜕

𝜕𝑢
+
𝜕

𝜕𝑢𝑥
, 𝑋4 = 𝑥2

𝜕

𝜕𝑢
+2𝑥

𝜕

𝜕𝑢𝑥
+2

𝜕

𝜕𝑢𝑥𝑥
.

In accordance with the Lie theorem we have two dependent variables 𝑢, 𝑥 since 𝑛 = 2, and
four-dimensional algebra 𝐿4, consequently 𝑟 = 4. The Lie theorem yields 𝑚 ≥ 2. In fact two
particular solutions cast the minimum number of solutions and allow to write down a general
solution of equations (12). Thus, (12) has the fundamental set of special solutions 𝑢1 and 𝑢2
with superposition

𝑢− 𝑢1
𝑢2 − 𝑢1

= 𝐶,

and a general solution is 𝑢 = (1 − 𝐶)𝑢1 + 𝐶𝑢2, 𝐶 = 𝑐𝑜𝑛𝑠𝑡. In accordance with the evolution
(12) a special solution has the following form:

𝑢(𝑡, 𝑥) = 𝜓1(𝑡) + 𝜓2(𝑡)𝑉 (𝑥) + 𝜓3(𝑡)𝑥+ 𝜓4(𝑡)𝑥
2, (13)

where functions 𝜓𝑖(𝑡) are connected with the functions 𝜑𝑗(𝑡) by means of the following dynamical
system

𝜓′
1 = 𝜑1 + 𝜑2𝜓1, 𝜓′

2 = 𝜑2𝜓2, 𝜓′
3 = 𝜑2𝜓3 + 𝜑3, 𝜓′

4 = 𝜑2𝜓4 + 𝜑4.

Thus, we got the new representation of solution, which possesses two additional functions of
𝑡. Now we consider the example of such extension.

Example 4. We consider the nonlinear equation

𝑢𝑡 = 𝑢2𝑥𝑥 (14)

and seek the special solution of equation (14) in the form (13). It yields the following equation

𝜓′
1 + 𝜓′

2𝑉 + 𝜓′
3𝑥+ 𝜓′

4𝑥
2 = 𝜓2

2(𝑉 ′′)2𝑉 + 4𝜓4
2 + 4𝜑4𝜑2𝑉

′′.
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Splitting the last equality and integrating corresponding equations for 𝑉 (𝑥) and 𝜓𝑖(𝑡) yields

𝑢(𝑡, 𝑥) = 𝐶5 −
𝐶2

3

12
(𝐶1 − 144𝑡)1/3 + 𝐶4𝑥+

𝐶3

(𝐶1 − 144𝑡)1/3
(𝑥2 +

𝐶2

2
𝑥+

𝐶2
2

16
)+

+
1

𝐶1 − 144𝑡

(︂
𝑥4 + 𝐶2𝑥

3 +
3𝐶2

2

8
𝑥2 +

𝐶3
2

16
𝑥+

𝐶4
2

256

)︂
,

where 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 are arbitrary constants.
Thus, we developed the 4-order in 𝑥 polynomial expression for the solution, which contains

three independent functions of 𝑡.

5. The subset of solutions with nonlinear superposition principle

We now consider the second subalgebra 𝐿2 spanned by the operators:

𝑋1 = 𝑢
𝜕

𝜕𝑢
, 𝑋2 = 𝑢2

𝜕

𝜕𝑢
, [𝑋1, 𝑋2] = 𝑋2. (15)

The prolongation of the 𝐿2 for spatial derivatives

𝑋1 = 𝑢
𝜕

𝜕𝑢
+ 𝑢𝑥

𝜕

𝜕𝑢𝑥
+ 𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥𝑥
, 𝑋2 = 𝑢2

𝜕

𝜕𝑢
+ 2𝑢𝑢𝑥

𝜕

𝜕𝑢𝑥
+ 2(𝑢𝑢𝑥𝑥 + 𝑢𝑥

2)
𝜕

𝜕𝑢𝑥𝑥
,

corresponds the following evolution (the Bernoulli equation):

𝑢𝑡 = 𝜑(𝑡)𝑢+ 𝜓(𝑡)𝑢2, (16)

𝑢𝑥𝑡 = 𝜑(𝑡)𝑢𝑥 + 𝜓(𝑡)2𝑢𝑢𝑥, 𝑢𝑥𝑥𝑡 = 𝜑(𝑡)𝑢𝑥𝑥 + 𝜓(𝑡)2(𝑢𝑢𝑥𝑥 + 𝑢2𝑥).

Let apply the point change of variable

𝑢(𝑡, 𝑥) = − 1

𝑣(𝑡, 𝑥)
,

then the subalgebra (15) becomes 𝑌1 = −𝑣 𝜕
𝜕𝑣

, 𝑌2 =
𝜕

𝜕𝑣
; [𝑌1, 𝑌2] = 𝑌2. The corresponding non-

autonomous evolution (16) is transforming into the linear one

𝑣𝑡 = −𝜑′(𝑡)𝑣 + 𝜓(𝑡).

Thus, now we have a linear superposition situation, which defines the family of solutions in
the form

𝑣(𝑡, 𝑥) = 𝜓(𝑡) + 𝑒−𝜑(𝑡)𝛼(𝑥).

Coming back to 𝑢(𝑡, 𝑥), we have the solutions in the form

𝑢(𝑡, 𝑥) =
−1

𝜓(𝑡) + 𝑒−𝜑(𝑡)𝛼(𝑥)
,

which possess the following nonlinear superposition principle for its solutions:

𝑢(𝑡, 𝑥) =
𝑢1𝑢2

𝐶𝑢2 + (1 − 𝐶)𝑢1
. (17)

One can apply that approach to the Example l and obtain the following nonlinear equations
with nonlinear superposition (17):

𝑢𝑡 = 𝑢𝑥𝑥 − 2
𝑢𝑥

2

𝑢
+
𝑢𝑥

2

𝑢2
− 1.
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6. The subset of solutions with the Riccati-type nonlinear superposition

We now consider the complete Riccati equation, prolonged to evolution of space derivatives

𝑢𝑡 = 𝛼(𝑡) + 𝛽(𝑡)𝑢+ 𝛾(𝑡)𝑢2, (18)

𝑢𝑥𝑡 = 𝛽(𝑡)𝑢𝑥 + 2𝛾(𝑡)𝑢𝑢𝑥, 𝑢𝑥𝑥𝑡 = 𝛽(𝑡)𝑢𝑥𝑥 + 2𝛾(𝑡)(𝑢𝑢𝑥𝑥 + 𝑢2𝑥).

Now we will construct a solution of the Riccati equation. Let 𝑢1 be a particular solution of
the Riccati equation (18). Then one can change variables as follows:

𝑢(𝑡, 𝑥) = 𝑢1 + 𝑤(𝑡, 𝑥),

and get the corresponding Bernoulli’s equation and its differential sequences

𝑤𝑡 = (𝛽 + 2𝛾𝑢1)𝑤 + 𝛾𝑤2, 𝑤𝑥𝑡 = (𝛽 + 2𝛾𝑢1)𝑤𝑥 + 2𝛾𝑤𝑤𝑥,

𝑤𝑥𝑥𝑡 = (𝛽 + 2𝛾𝑢1)𝑤𝑥𝑥 + 2𝛾(𝑤𝑤𝑥𝑥 + 𝑤2
𝑥).

The change

𝑤(𝑡, 𝑥) = − 1

𝑣(𝑡, 𝑥)

yields the following linear equation

𝑣𝑡 = 𝛾(𝑡) + 𝜓′(𝑡)𝑣, 𝜓′ = −(𝛽 + 2𝛾𝑢1).

The last equation possesses a linear superposition principle and has general solution

𝑣(𝑡, 𝑥) = 𝜑(𝑡) + 𝑒𝜓𝐶(𝑥),

where 𝜑(𝑡) is a particular solution of a linear equation:

𝜑′ = 𝛾 + 𝜓′𝜑.

The corresponding solution of the Bernoulli equation

𝑤(𝑡, 𝑥) = − 1

𝜑(𝑡) + 𝑒𝜓(𝑡)𝐶(𝑥)
,

yields the solution of the Riccati system

𝑢(𝑡, 𝑥) = 𝑢1 −
1

𝜑(𝑡) + 𝑒𝜓(𝑡)𝐶(𝑥)
,

which possesses the nonlinear superposition of the particular solutions.
In the following example we develop an equation which possesses solutions with the Riccati-

type superposition.

Example 5. Let consider a special integrable case of the Riccati equation 𝑢𝑡 =
2

𝑡2
− 𝑢2,

which has a general solution

𝑢(𝑥, 𝑡) =
3𝑡2

𝑡3 − 𝐶(𝑥)
− 1

𝑡
. (19)

Applying a shift by special solution 𝑢0 = −1/𝑡 we transform the Ruccati equation into the
Bernoulli equation

𝑣𝑡 =
2

𝑡
𝑣 − 𝑣2, 𝑢 = 𝑣 − 1

𝑡
.

We linearize the Bernoulli equation by change 𝑤 = −1

𝑣

𝑤𝑡 = −2

𝑡
𝑤 − 1, (20)

and find the solution
𝑤(𝑥, 𝑡) =

𝐶(𝑥)

𝑡2
− 𝑡

3
.
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The evolution (20) is compatible with the following equation

𝑤𝑡 =
√
𝑤𝑥𝑤𝑥𝑥 −

1

3
.

The substitution of solution in form (19) yields the equation

(𝐶 ′)5/2 +
5

2
𝐶2 = 𝑐1, 𝑐1 = 𝑐𝑜𝑛𝑠𝑡;

which can be solved in quadrature for 𝐶(𝑥):

𝑥 =

∫︁
𝑑𝐶

(𝑐1 − 5
2
𝐶2)2/5

+ 𝑐2, 𝑐2 = 𝑐𝑜𝑛𝑠𝑡.

Applying backward transformation we obtain the following equation for 𝑣(𝑥, 𝑡):

𝑣𝑡 =
√
𝑣𝑥

(︂
𝑣𝑥𝑥
𝑣

− 2
𝑣2𝑥
𝑣2

)︂
− 𝑣2

3
,

and then the evolutionary equation for 𝑢(𝑥, 𝑡):

𝑢𝑡 =
√
𝑢𝑥

(︂
𝑡𝑢𝑥𝑥

1 + 𝑡𝑢
− 2

𝑢2𝑥𝑡
2

(1 + 𝑡𝑢)2

)︂
− 𝑡𝑢2 + 2𝑢

3𝑡
.

The last equation has solution (19) and Riccati-type superposition for particular solutions.

7. How to separate evolutionary equations which possess a linear subspace
of solutions?

We now consider the compatibility conditions of the evolution (6) with a PDE

𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥) (21)

as a compatibility with certain differential constraint. There is a lot of different approaches to
constructing exact solutions for PDEs based on differential constraints (see, for example, [14]
and references therein). We restrict ourselves here with such constraint, which leads to solutions
with linear superposition principle.

Excluding two functions of 𝑡 by differentiation we rewrite linear evolution equations (6) as
differential constrain

𝑢𝑥𝑥𝑡𝑢𝑥 = 𝑢𝑥𝑡𝑢𝑥𝑥. (22)
Thus, now we can repose the problem of compatibility as a compatibility of (21) and differential
constrain (22). We substitute time derivatives from (21) into (22) and obtain ODE

𝐷𝑥

(︂
𝐷𝑥(𝐹 )

𝑢𝑥

)︂
= 0.

In the same way one can write down the constrain of 𝑘-th order:

𝐷𝑥

(︂
𝐷𝑘
𝑥(𝐹 )

𝑢𝑘

)︂
= 0, 𝑘 = 1, 2, . . . . (23)

The operator of total differentiation with respect to 𝑡 along trajectories of (21)

𝑋* = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥)
𝜕

𝜕𝑢
+𝐷2

𝑥(𝐹 )
𝜕

𝜕𝑢𝑥𝑥
+ . . . ,

casts a higher order symmetry operator. Then the criterion of an invariance of manifold (23)
reads

𝑋*
(︂
𝐷𝑥

(︂
𝐷𝑥(𝐹 )

𝑢𝑥

)︂)︂ ⃒⃒⃒⃒
(23)

= 0. (24)
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Being solved for 𝐹 equation (24) yields evolution equation which potentially has linear subspace
of solutions. Existence and particular form of solutions can be obtained by substituting solution
into evolution equation and applying splitting procedure, which was demonstrated by examples.

In a similar way one can write down the compatibility condition for evolutionary PDEs which
possesses a subset of solutions with Riccati-type superposition.

Concluding remarks

Thus, we considered the Lie non-autonomous dynamical equations (NADS) as some sort of
external action on a given evolutionary equation. It makes it possible to find a subset of special
solutions of evolutionary equation, which possesses a superposition principle which acts within
subset of solutions. This leads to integration of ordinary differential equations in a process of
constructing exact solutions of PDEs. In this paper we considered the application of the most
simple one-dimensional case of the Lie theorem. It also was shown that the NADS approach can
be generalized for 1+2 D equations as well. Feather generalizations will be published elsewhere.
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