2017
1. Я. Ш. Ильясов, “О кривой критических показателей для нелинейных эллиптических уравнений в случае нулевой массы”, Ж. вычисл. матем. и матем. физ., 57:3 (2017), 491–509  mathnet  crossref  elib; Ya. Sh. Il'yasov, “On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass”, Comput. Math. Math. Phys., 57:3 (2017), 497–514  crossref  isi  scopus
2. Yavdat Ilyasov, “On extreme values of Nehari manifold method via nonlinear Rayleigh's Quotient”, Topological Methods in Nonlinear Analysis, 2017, 1-32 http://projecteuclid.org/euclid.tmna/1489114818  crossref
3. Yavdat Ilyasov; Kaye Silva, “On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method”, Proceedings of the American Mathematical Society, 2017, 1-14 (to appear) , arXiv: arXiv:1704.02477 (accepted for publication)
4. Я. Ш. Ильясов, Э. Э. Холоднов, “О глобальной неустойчивости решений гиперболических уравнений с нелипшицевой нелинейностью”, Уфимск. матем. журн.,, 2017, № 4, 1-12 (в печати)
5. Yavdat Ilyasov, “Bifurcation and blow-up results for equations with $p$-Laplacian and convex-concave nonlinearity”, Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE), 2017, 1-12 (to appear)

   2016
6. V. Bobkov, Ya. Il'yasov, “Maximal existence domains of positive solutions for two-parametric systems of elliptic equations”, Complex Variables and Elliptic Equations, 61:5 (2016), 587–607 , Taylor & Francis  crossref  mathscinet (cited: 1)  isi  scopus
7. Ya. Il'yasov, A. Ivanov, “Computation of maximal turning points to nonlinear equations by nonsmooth optimization”, Optimization Methods and Software, 31:1 (2016), 1–23 , Taylor & Francis  crossref  mathscinet  isi  scopus
8. Ya. Il'yasov, “On critical exponents curve for nonlinear elliptic equations in zero mass case”, 2016, arXiv: 1605.08142
9. Jesus Ildefonso Diaz, Jesus Hernandez and Yavdat Il'yasov, “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for $N\geq 3$”, Special Issue of Chinese Annals of Mathematics (CAM) in honour of Haim Brezis., 38B:4 (2016), 1–34  crossref  isi  scopus

   2015
10. Ya. Il'yasov, “On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient”, 2015, arXiv: 1509.08019
11. J. I. Díaz, J. Hernández, Ya. Il’yasov, “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption”, Nonlinear Analysis: Theory, Methods & Applications, 119 (2015), 484–500 , Pergamon  crossref  mathscinet (cited: 3)  isi (cited: 5)  scopus (cited: 5)

   2014
12. Ya. Il'yasov, A. Ivanov, “Computation of maximal turning points by a variational approach”, 2014, arXiv: 1404.2810
13. Vladimir Bobkov, Yavdat Il'yasov, Maximal existence domains of positive solutions for two-parametric systems of elliptic equations, 2014 , 15 pp., arXiv: 1406.5275
14. Ya. Il'yasov, “Pohozaev’s Identity and Compact Supported Solutions”, The Seventh International Conference on Differential and Functional Differential Equation (Peoples’ Friendship University of Russia, Moscow, Russia, August 22–29, 2014), Peoples' Friendship University of Russia,, Moscow, 2014, 51-52 http://dfde2014.mi.ras.ru/
15. Yavdat Ilyasov, “Precise range for stable and blow-up solutions to equations with p-Laplacian and supercritical nonlinearities”, Abstracts Book. The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 44 (Madrid, Spain, July 07 - July 11, 2014), AIMS, 2014, 189 https://www.aimsciences.org/conferences/2014/abstracts-book-finalized-2014-06-10.pdf
16. Yavdat Ilyasov, “A new geometrical concept in the finding bifurcations. Generalized Collatz-Wielandt formula”, Abstracts Book. The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 33 (Madrid, Spain, July 07 - July 11, 2014), AIMS, 2014, 148 https://www.aimsciences.org/conferences/2014/abstracts-book-finalized-2014-06-10.pdf

   2013
17. А. А. Иванов, Я. Ш. Ильясов, “Нахождение бифуркаций для решений нелинейных уравнений методами квадратичного программирования”, Ж. вычисл. матем. и матем. физ., 53:3 (2013), 350–364  mathnet (цит.: 2)  crossref  zmath  elib (цит.: 2)
18. V. Bobkov, Ya. Il'yasov, “Asymptotic behaviour of branches for ground states of elliptic systems”, Electronic Journal of Differential Equations, 2013:212 (2013), 1–21  mathscinet (cited: 3)  zmath  isi (cited: 1)
19. Yavdat Il'yasov, “Nehari manifolds and fibering methods. Parametric analysis”, Nonlinear Analysis Plzen 2013 (Pilsen, Czech Republic, August 23-24, 2013), University of West Bohemia, Pilzen, Czech Republic, 2013, 14

   2012
20. Ya. Sh. Il'yasov, P. Taká{\v}, “Optimal $W\sp {2,2}\sb {\rm loc}$-regularity, ohozhaev's identity, and nonexistence of weak solutions to some quasilinear elliptic equations”, J. Differential Equations, 252:3 (2012), 2792–2822  crossref  mathscinet (cited: 4)  zmath  isi (cited: 7)  scopus (cited: 6)

   2011
21. Ya. Il'yasov, Th. Runst, “Positive solutions of indefinite equations with p-Laplacian and supercritical nonlinearity”, Complex Variables and Elliptic Equations, 56:10–11 (2011), 945–954 , Taylor & Francis  crossref  mathscinet (cited: 3)  isi (cited: 3)  scopus (cited: 3)
22. Ya. Il'yasov, “The method of the extended functional and solvability of elliptic problems with supercritical exponents”, Lecture Notes of 8Th International Conference on Function Spaces, Differential Operators, Nonlinear Analysis (Fsdona–2011),, 2011
23. Ya. Il'yasov, “On critical exponent for an elliptic equation with non-ipschitz nonlinearity”, Discrete Contin. Dyn. Syst., 2011, no. Dynamical Systems, Differential Equations and Applications. 8Th Aims Conference. Suppl. Vol. i, 698–706  mathscinet (cited: 2)  zmath

   2010
24. Ya. Il'yasov, Th. Runst, “An anti-maximum principle for degenerate elliptic boundary value problems with indefinite weights”, Complex Variables and Elliptic Equations, 55:8–10 (2010), 897–910 , Taylor & Francis  crossref  mathscinet  isi  scopus
25. Ya. Il'yasov, Yo. Egorov, “Hopf boundary maximum principle violation for semilinear elliptic equations”, Nonlinear Analysis: Theory, Methods & Applications, 72:7–8 (2010), 3346–3355 , Elsevier  crossref  mathscinet (cited: 9)  isi (cited: 11)  scopus (cited: 11)
26. Yavdat Ilyasov, “Existence of Compactons for Elliptic Equations with Autonomous Nonlinearity”, The 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden University of Technology Germany, May 25 - 28, 2010), Dresden University of Technology, 2010, 89 https://aimsciences.org/AIMS-Conference/2010/

   2009
27. Ya. Il'yasov, Th. Runst, A. Youssfi, “On the existence of pair positive–negative solutions for resonance problems”, Nonlinear Analysis: Theory, Methods & Applications, 70:10 (2009), 3461–3471 , Elsevier  crossref  mathscinet  isi (cited: 1)  scopus (cited: 1)
28. Ya. S. Il'yasov, “Constructive and algorithmic concept of the bifurcations finding to solutions of the nonlinear equations”, International Conference on Interdisciplinary Mathematical and Statistical Techniques, 2009
29. Ya. Il'yasov, Yo. Egorov, “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity”, 2009, arXiv: 0901.4191

   2008
30. Ya. Il'yasov, “A duality principle corresponding to the parabolic equations”, Physica D: Nonlinear Phenomena, 237:5 (2008), 692–698 , Elsevier  crossref  mathscinet (cited: 2)  isi (cited: 2)  scopus (cited: 3)

   2007
31. Я. Ш. Ильясов, “Исчисление бифуркаций методом продолженного функционала”, Функц. анализ и его прил., 41:1 (2007), 23–38  mathnet (цит.: 8)  crossref  mathscinet (цит.: 7)  zmath  elib (цит.: 1); Ya. Sh. Il'yasov, “Bifurcation Calculus by the Extended Functional Method”, Funct. Anal. Appl., 41:1 (2007), 18–30  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 7)  scopus (cited: 7)
32. Yo. V. Egorov, Ya. Il'yasov, “On conformal invariants for elliptic systems with multiple critical exponents”, Annals of Global Analysis and Geometry, 32:1 (2007), 39–66 , Kluwer Academic Publishers  crossref  mathscinet  isi (cited: 1)  scopus (cited: 1)
33. Ya. Il'yasov, “Bifurcation Calculus by the Extended Functional Method and Its Applications”, Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems, 2007
34. Yu. V. Egorov, Ya. Il'yasov, “On multiple solutions for elliptic boundary value problem with two critical exponents”, Harmonic, wavelet and $p$-adic analysis, World Sci. Publ., Hackensack, NJ, 2007, 113–139  crossref  mathscinet  zmath  scopus
35. Ya. Il'yasov, “On calculation of the bifurcations by the fibering approach”, Harmonic, wavelet and $p$-adic analysis, World Sci. Publ., Hackensack, NJ, 2007, 141–155  crossref  mathscinet (cited: 1)  zmath  scopus (cited: 2)

   2006
36. Yu. V. Egorov, Ya. Sh. Il'yasov, “On multiple solutions of the Yamabe problem”, Dokl. Akad. Nauk, 409:1 (2006), 19–21  mathnet  mathscinet  zmath

   2005
37. Я. Ш. Ильясов, “О глобальных положительных решениях параболических уравнений с неопределенным знаком нелинейности”, Дифференц. уравнения, 41:4 (2005), 518–526  mathnet (цит.: 1)  mathscinet (цит.: 3)  elib; Ya. Sh. Il'yasov, “On Global Positive Solutions of Parabolic Equations with a Sign-Indefinite Nonlinearity”, Differ. Equ., 41:4 (2005), 548–556  crossref  mathscinet
38. Ya. Il'yasov, N. Sari, “Solutions of minimal period for a Hamiltonian system with a changing sign potential”, Commun. Pure Appl. Anal, 4:1 (2005), 175–185  crossref  mathscinet (cited: 1)  zmath  isi (cited: 1)  scopus (cited: 2)
39. L. Cherfils, Ya. Il’yasov, “On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian”, Commun. Pure Appl. Anal, 4:1 (2005), 9–22  mathscinet (cited: 48)  zmath  isi (cited: 52)  elib (cited: 39)
40. Ya. Il'yasov, “On nonlocal existence results for elliptic equations with convex-concave nonlinearities”, Nonlinear Analysis: Theory, Methods & Applications, 61:1–2 (2005), 211–236 , Elsevier  crossref  mathscinet (cited: 23)  isi (cited: 18)  scopus (cited: 24)
41. Ya. Sh. Il'yasov, “Minimax values and parabolic equations with a sign changing nonlinearity”, Dokl. Akad. Nauk, 405:2 (2005), 166–168  mathnet  mathscinet
42. Ya. Il'yasov, Th. Runst, “On nonlocal calculation for inhomogeneous indefinite Neumann boundary value problems”, Calculus of Variations and Partial Differential Equations, 22:1 (2005), 101–127 , Springer  crossref  mathscinet (cited: 8)  isi (cited: 9)  scopus (cited: 10)

   2004
43. Ya. Il'yasov, Th. Runst, “On positive solutions of indefinite inhomogeneous Neumann boundary value problems”, Topological Methods in Nonlinear Analysis, 24:1 (2004), 41–67 , Juliusz P. Schauder Centre for Nonlinear Studies  crossref  mathscinet

   2003
44. Ya. Il'yasov, Th. Runst, “Positive solutions for indefinite inhomogeneous Neumann elliptic problems”, Electronic Journal of Differential Equations, 2003:57 (2003), 1–21 , Texas State University-San Marcos  mathscinet (cited: 5)
45. Ya. Sh. Il'yasov, “The fibering method”, Nonlinear analysis and nonlinear differential equations (ussian), FizMatLit, Moscow, 2003, 197–243  mathscinet (cited: 1)  zmath
46. Ya. Il'yasov, Th. Runst, “Nonlocal investigations of inhomogeneous indefinite elliptic equations via variational methods”, Function spaces, differential operators and nonlinear analysis (eistungen, 2001), Birkhäuser, Basel, 2003, 342–352  mathscinet (cited: 1)
47. Ya. Sh. Il'yasov, “On nonlocal investigations of families of elliptic equations with convex-concave nonlinearities”, Dokl. Akad. Nauk, 392:5 (2003), 603–605  mathnet  mathscinet (cited: 1)  zmath

   2002
48. Я. Ш. Ильясов, “Тождество Похожаева и метод расслоений”, Дифференц. уравнения, 38:10 (2002), 1365–1370  mathnet  mathscinet (цит.: 1); Ya. Sh. Il'yasov, “The Pokhozhaev Identity and the Fibering Method”, Differ. Equ., 38:10 (2002), 1453–1459  crossref  mathscinet
49. Я. Ш. Ильясов, “Нелокальные исследования бифуркаций решений нелинейных эллиптических уравнений”, Изв. РАН. Сер. матем., 66:6 (2002), 19–48  mathnet (цит.: 10)  crossref  mathscinet (цит.: 15)  zmath; Ya. Sh. Il'yasov, “Non-local investigation of bifurcations of solutions of non-linear elliptic equations”, Izv. Math., 66:6 (2002), 1103–1130  crossref  mathscinet  zmath

   2001
50. Я. Ш. Ильясов, “О процедуре проективного расслоения функционалов над банаховыми пространствами”, Функциональные пространства, гармонический анализ, дифференциальные уравнения, Сборник статей. К 95-летию со дня рождения академика Сергея Михайловича Никольского, Тр. МИАН, 232, Наука, М., 2001, 156–163  mathnet (цит.: 5)  mathscinet (цит.: 4)  zmath; Ya. Sh. Il'yasov, “On a Procedure of Projective Fibering of Functionals on Banach Spaces”, Proc. Steklov Inst. Math., 232 (2001), 150–156  mathscinet  zmath
51. Ya. Il'yasov, “On positive solutions of indefinite elliptic equations”, Comptes Rendus de l'Acad mie des Sciences-Series I-Mathematics, 333:6 (2001), 533–538 , Elsevier  mathscinet (cited: 13)  isi (cited: 10)
52. Ya. Sh. Il'yasov, T. Runst, “On the existence of multiple positive solutions for a class of nonlinear eumann boundary value problems”, Dokl. Akad. Nauk, 376:3 (2001), 300–302  mathnet  mathscinet  zmath

   2000
53. Ya. Il'yasov, “Action as function of period for ground states of semilinear elliptic equations”, NoDEA Nonlinear Differential Equations Appl., 7:4 (2000), 369–387  crossref  mathscinet (cited: 1)  zmath  isi
54. Ya. Il'yasov, Th. Runst, “Existence and uniqueness theorems for equations of the type $Au(x)=g(x,u,Du)$ with degenerate and nonlinear boundary conditions”, Function spaces, differential operators and nonlinear analysis (udasjärvi, 1999), Acad. Sci. Czech Repub., Prague, 2000, 143–148  mathscinet (cited: 1)  zmath
55. Ильясов, Явдат Шавкатович., Нелокальные исследования бифуркаций для семейств нелинейных эллиптических уравнений, Дисс.докт. физ.-матем. наук : 01.01.02, Башкирский государственный университет, Уфа, 2000 , 272 с. http://search.rsl.ru/ru/record/01000322255

   1999
56. Я. Ш. Ильясов, “О существовании конформно-эквивалентных метрик для римановых многообразий с краем”, Дифференц. уравнения, 35:3 (1999), 334–339  mathnet  mathscinet (цит.: 2); Ya. Sh. Il'yasov, “On the existence of conformally equivalent metrics for Riemannian manifolds with boundary”, Differ. Equ., 35:3 (1999), 335–340  mathscinet
57. Я. Ш. Ильясов, “Об одном необходимом условии существования положительных решений для класса уравнений с $p$-Лапласом”, Матем. заметки, 66:2 (1999), 312–314  mathnet (цит.: 2)  crossref  mathscinet (цит.: 2)  zmath; Ya. Sh. Il'yasov, “On a condition necessary for the existence of positive solutions to a class of equations with $p$-Laplace operator”, Math. Notes, 66:2 (1999), 249–251  crossref  mathscinet  zmath  isi
58. Th. Runst, Ya. Il'yasov, “On equations of the type $Au=g(x,u,Du)$ with degenerate and nonlinear boundary conditions”, Tsukuba J. Math., 23:3 (1999), 505–528  mathscinet (cited: 1)  zmath
59. Ya. Sh. Il'yasov, “A theorem on the absence of positive solutions for semilinear elliptic equations”, Dokl. Akad. Nauk, 364:1 (1999), 11–13  mathnet (cited: 1)  mathscinet  zmath  isi

   1998
60. Я. Ш. Ильясов, “Об асимптотике решений полулинейных эллиптических уравнений вблизи первого собственного значения невозмущенной задачи”, Матем. заметки, 64:4 (1998), 543–548  mathnet (цит.: 1)  crossref  mathscinet (цит.: 1)  zmath; Ya. Sh. Il'yasov, “On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem”, Math. Notes, 64:4 (1998), 471–475  crossref  mathscinet  zmath  isi (cited: 1)

   1997
61. Я. Ш. Ильясов, “О многообразии решений полулинейных эллиптических уравнений, удовлетворяющих тождеству Похожаева. II”, Дифференц. уравнения, 33:12 (1997), 1670–1675  mathnet  mathscinet; Ya. Sh. Il'yasov, “On the manifold of solutions of semilinear elliptic equations satisfying the Pokhozhaev identity. II”, Differ. Equ., 33:12 (1997), 1673–1678  mathscinet
62. Я. Ш. Ильясов, “Функционал Эйлера для уравнений с $P$-лапласианом как функция спектрального параметра”, Исследования по теории дифференцируемых функций многих переменных и ее приложениям. Часть 17, Сборник статей, Тр. МИАН, 214, Наука, М., 1997, 182–193  mathnet (цит.: 3)  mathscinet (цит.: 3)  zmath; Ya. Sh. Il'yasov, “The Euler functional for equations with the $p$-Laplacian as a function of a spectral parameter”, Proc. Steklov Inst. Math., 214 (1996), 175–186  mathscinet  zmath

   1996
63. Я. Ш. Ильясов, “О многообразии решений полулинейных эллиптических уравнений, удовлетворяющих тождеству Похожаева. I”, Дифференц. уравнения, 32:8 (1996), 1063–1070  mathnet  mathscinet; Ya. Sh. Il'yasov, “On the manifold of solutions of semilinear elliptic equations satisfying the Pokhozhaev identity. I”, Differ. Equ., 32:8 (1996), 1067–1074  mathscinet

   1995
64. Я. Ш. Ильясов, “О периодических нетривиальных решениях уравнений $-\Delta u=g(u)$ в $\mathbb R^{N+1}$”, Изв. РАН. Сер. матем., 59:1 (1995), 103–120  mathnet  mathscinet  zmath; Ya. Sh. Il'yasov, “On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$”, Izv. Math., 59:1 (1995), 101–119  crossref  mathscinet  zmath  isi
65. Я. Ш. Ильясов, “Об одном уравнении, возникающем при исследовании “основных решений” полулинейных эллиптических уравнений”, Матем. заметки, 58:3 (1995), 461–464  mathnet  mathscinet  zmath; Ya. Sh. Il'yasov, “An equation that arises in studying ground state solutions to semilinear elliptic equations”, Math. Notes, 58:3 (1995), 996–1000  crossref  mathscinet  zmath  isi
66. Я. Ш. Ильясов, “О функции действия на многообразии основных состояний”, ТМФ, 105:3 (1995), 438–449  mathnet  mathscinet  zmath; Ya. Sh. Il'yasov, “On function of action on the manifold of ground state solutions”, Theoret. and Math. Phys., 105:3 (1995), 1546–1555  crossref  mathscinet  zmath  isi  elib
67. Ya. Sh. Il'yasov, “On existence and non-existence of periodic solutions for the equations $-\Delta u=g(u)$ in $\bold R\sp {N+1}$”, Dynam. Systems Appl., 4:4 (1995), 529–548  mathscinet (cited: 1)  zmath
68. Ya. Sh. Il'yasov, “On the manifold of solutions of “ground state” type of semilinear elliptic equations”, Dokl. Akad. Nauk, 342:4 (1995), 452–454  mathnet  mathscinet  zmath  isi

   1994
69. Я. Ш. Ильясов, “О некоторой аппроксимации решений типа “ground state” уравнений $-\Delta u=g(u)$ в $\mathrm R^{N+1}$”, Дифференц. уравнения, 30:4 (1994), 621–629  mathnet (цит.: 1)  mathscinet (цит.: 1); Ya. Sh. Il'yasov, “An approximation of solutions of “ground state” type of the equations $-\Delta u=g(u)$ in $\mathbf R^{N+1}$”, Differ. Equ., 30:4 (1994), 570–579  mathscinet

   1993
70. Я. Ш. Ильясов, “О существовании периодических решений полулинейных эллиптических уравнений”, Матем. сб., 184:6 (1993), 67–82  mathnet (цит.: 5)  mathscinet (цит.: 1)  zmath; Ya. Sh. Il'yasov, “On the existence of periodic solutions of semilinear elliptic equations”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 167–178  crossref  mathscinet  zmath  isi
71. Ya. Sh. Il'yasov, “Existence of periodic nonnegative solutions of the equations $-\!\Delta u=g(u)$ in $R\sp {N+1}$”, Dokl. Akad. Nauk, 332:2 (1993), 149–151  mathnet  mathscinet  zmath  isi

   1990
72. Y. Sh. Il'yasov, “Non-equilibrium phase transitions in the multicomponent chemical systems”, Unsteady State Processes in Catalysis: Proceedings of the International Conference, Novosibirsk, eds. Yu S. Matros, VSP BV, Zeist, Netherlands, 1990, 123-126

   1988
73. Ильясов, Явдат Шавкатович., Об асимптотических разложениях решений квазилинейных стохастических параболических уравнений, Дисс. канд. физ.-матем. наук, АН СССР. Урал. отд-ние. Башк. науч. центр. Ин-т математики с ВЦ, Уфа, 1988 , 149 с. http://search.rsl.ru/ru/record/01008474354

   1987
74. Ya. Sh. Il'yasov, A. I. Komech, “Girsanov's theorem and ergodic properties of statistical solutions of nonlinear parabolic equations”, Trudy Sem. Petrovsk., 1987, no. 12, 88–117, 243–244  crossref  mathscinet  zmath  scopus

   1986
75. Ya. Sh. Il'yasov, “Asymptotic expansion of solutions of nonlinear stochastic parabolic equations”, Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk, 7:2 (1986), 36–40  mathscinet
76. Ya. Sh. Il'yasov, “Asymptotic expansion of the solutions of nonlinear parabolic equations with a small parameter in the presence of white noise”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1986, no. 3, 101–104, 121  mathscinet  zmath  isi