
INVERTIBLE CHANGES OF VARIABLES GENERATED BY 

BACKLUND TRANSFORMATIONS 

R. I. Yamilov 

In the classification of partial differential equations, one cannot 
avoid the use of invertible changes of variables, which include not 
only the long-known point and contact transformations but also, for 
example, so-called symmetric and generalized conta{t transformations 
(reviewed by Mikhailov, Shabat, and Yamilov [i]). The present paper 
considers a further class of invertible changes of variables. 

We consider vector evolution partial differential equations u~=f(u, ux. u ...... ). If we 
extend in some manner the set of dynamical variables u, ux, u ....... then many B~cklund trans- 
formations of such equations in the extended set u. u~. u ....... u=~. u=2 .... can be described as 
chains of ordinary differential equations (u .... )~=g((u~)~. u,. u,~:), nEE. that are compatible 
with these equations. In the case when there is a compatible pair -- a partial differential 
equation and such a chain -- we give a method for specifying changes of variables that 
are invertible in the extended set of variables (Theorem I). The Korteweg-de Vries equation 
and the decoupled nonlinear SchSdinger equation, under the conditions of validity of 
Theorem i, for example. 

i. We consider a vector chain of equations of the form 

(uo_~)x=f((u~)~. u,,, un+~), ( z . 1 )  

where n takes all integer values, the index x denotes the derivative with respect to x, 
and the symbols ui, f denote the vector columns u~=(zl~ i, ui~,....zt~) t and vector function 
f=(/', #,...,/~)q The chain (i.i) is completely determined by any of its equations, and to 
avoid cumbersome expressions we shall in such chains omit the index n, giving only the 
relation with n = 0: 

u , , ~ = f ( U x ,  u. u , ) .  ( 1 , 2 )  

where u~u0. The chain ut=H. where the vector function H depends on a finite number of 
variables of the set 

u, u=l.  u:~ . . . . .  u ~ . u  . . . . . . .  ( 1 . 3 )  

is compatible with (1.2) if the equation 

D~D (H) = (Of/au~)D~(H) + ( 0 f / 0 u ) H +  Of/Ou,)D(H) (1.4) 

is a consequence of (1.2). Here, 0f/Ou~. 0f/0u. 0f/Ou~ are Jacobi matrices (for example, 
@f/au~(O//Ou)}. and D x and D are operators that act on vector functions of a finite number 
of the variables (1.3): D x is a differentiation (D~(u)=u~). D is a displacement operator 
(D(u)=u~: if h is a vector function of several variables, then D(h(a. b. e .... ))=h(D(a). 
D(b)  . . . .  ) ) .  

The compatibility means in particular that the operators Dx, D and the differentiation 
D~ (D~(u)=H) commute. We shall consider chains (1.2) with nondegenerate matrix af/au~. In the 
case of such chains, we can regard the variables (1.3) as independent. By means of (1.2), 
all the variables O~/ax ~ in Eq. (1.4) can be expressed in terms of the independent variables, 
after which Eq. (1.4) must hold identically. A chain of the form (1.2) can be compatible 
both with purely "continuous" equations 

u ~ = F ( u ,  Ux. u . . . . . .  ).  ( 1 . 5 )  

and purely "discrete" equations 
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1,6) U ~ - - ~ ( U ,  U: : .  U: :  . . . .  

(see the examples below; an example of compatible chains of the form (1.2) and (1.6) 
appeared in [2]). The continuous Korteweg-de Vries equation 

m=t~=-12z~1~ 1.7) 

and the discrete Volterra chain 

u~=u(u,-u_~) 1.8) 

come under the ambit of the following theorem. 

THEOREM i. Suppose the chain (1.2) can be expressed in the form 

D~(~(u, u,))=~(u,  u~), 1.9) 

where the matrices 0~/Ou. 8~/otl~ are nondesenerate, and the coordinates of the vector 
functions q. ~ of the variables u i and u~ are functionally independent. Then the substitu- 
tion 

v:~(u, ut). i.i0) 

which relates the variables (1.3) and 

v,v: , ,v~>. . . .v~.v~ . . . . . .  i,Ii) 

is invertible. As a result of this substitution, Eqs. (1.5) and (1.6) which are compatible 
with (1.9) go over, respectively, into equations of the form 

vt:G(v.v~.v~ . . . . .  ). 1.12) 

v ~ = ~ ( v , v : , v : :  . . . .  ). 1.13) 

which are compatible with a chain of the form 

D(p(v. v~))=q(v, ,-~). 1.14) 

where the matrices Op/@v~. Oq/Sy~ are nondegenerate,, and the coordinates of the vector func- 
tions p. q of the variables v I and v~ are functionally independent. Conversely, if the 
chain (1.2) can be expressed in the form (i.14), then the change of variables 

u=p(v,v~) (1.15 

is invertible, and as a result of the change of variables Eqs. (1.12) and (1.13) which 
are compatible with (1.14) go over, respectively, into equations of the form (1.5) and 
(1.6), which are compatible with a chain of the form (1.9). 

Proof. It follows from the relations (1.9) and (i.i0) that 

v~=~(u.u:). (1.16 

and therefore the invertibility of the change of variables is obvious. We shall assume 
that u.m can be expressed in terms of v,v~ in accordance with the formulas (1.15) and 

m=q(v.v~), 1.17 

From these formulas, we readily obtain the relation (1.14). The equations 

which are differential consequences of the relations 

p(g(u,u~). r u:))=u,  q(g(u.m),  g(u. m))=u, .  1.18 

explain why the matrices 0p/Sv~,~q/0v~ are degenerate. 

Suppose the equation ut=H. where H is a function of the variables (1.3), is compatible 
with (1.9). The substitution (i. I0) carries it into the equation v~=R (R depends on the 
variables (i.ii)), and 

R=D~(u .  u,)=(Ogou)H~(o~/Ou,)D(H), (i. 19) 

D~R=D,,(u. m)= (h~/Su)H+ (8,/Om)O(H) (1.20) 

(see  (1 .10 ) ,  ( 1 . 9 ) ) .  The c o n d i t i o n  of c o m p a t i b i l i t y  (1 .4)  in the  case of the  equa t ion  v,=R 
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and the chain (1.14) has the form 

D(aPR+ OPD,R)= ~qR+ OqD:R. (1.21) 
~Sv 8v~ ' 0v 8v~ 

We express R. DAR) in terms of H D(H) by means of (1.19) and (1.20). By virtue of the 
consequences of (1.18), which are obtained by differentiating Eqs. (1.18) with respect 
to u, u~. the expression on the right-hand side of (1.21) is equal to D(H). and the expres- 
sion to which D is applied on the left-hand side of (1.21) is equal to H. i.e., (1.21) 
is transformed into an identity. Thus, an equation compatible with (1.9) goes over as a 
result of the substitution (i.i0) into an equation compatible with (i.14). 

We obtain Eqs. (1.12) and (1.13) from Eqs. (1.5) and (1.6). By virtue of (i.i0) and 
( 1 . 5 ) ,  

v,= (6~: Ou) F+ (oq, 6u~)D (F), 

and the right-hand side of the equation depends only on u. ul and their derivatives with 
respect to x. Therefore (see (1.15), (1.17)) v~ depends only on v, vs. v ....... i.e,, an 
equation of the form (1.12) holds. From (I.I0) and (1.6), we obtain 

v== (oq/au) ~ +  (ar D (~). 

and in the expression on the right there are only the variables u~. It can be seen from 
(1.14) that it is only on v~ and the variables v{ that the variables (v~)~ depend and 
hence (see (i.15)) the same is true of u, and therefore 

v~=~tr(~,v,v~,v:z, . . . ) .  (1 .22)  

Similarly, from (1.16) we find that v~ depends on the same variables as the function ~ in 
(1.22). Comparing v~ with v~ obtained by differentiating (1.22), we see that ~ in (1.22) 
does not depend on v~. i.e., an equation of the form (1.13) holds. 

The converse of the theorem is proved similarly. From the relations (1.14) and (1.15) 
we obtain (1.17). Expressing v, v= in terms of u, u~ in accordance with (i.i0) and (1.16) 
and eliminating v, we obtain Eq. (1.9). The condition of compatibility of the chain (1.9) 
and the equation obtained from the equation v~=R compatible with (1.14) is transformed on 
this occasion into an identity: D~(R)=D~(R). In order to express (1.13) in the form (1.6), 
we find from (1.15) and (1.13) that u~ depends only on v~. (v~)~, and therefore (see (I.i0), 
(1.16)) (1.16) holds. Finally, by means of (1.15), (1.17), and (1.12) we establish that 
u~, (u~)~ depends only on u~, u. u~.u ....... Comparing D(ut). D~(u~). we arrive at an equation of 
the form (1.5). 

Remark i. We shall say that Eqs. (1.5) and (1.12) are related by the substitution 
u=r(v,v~) i f  

(ar/av)G+(ar/av~)D~(G)=F(r(v, ~), D~(r(v. v~)),...). 

As the theorem shows, Eqs. (1.5) and (1.12) are related by the two different substitutions 
(1.15) and (1.17) (the coordinates of the vector functions p, q are functionally indepen- 
dent). Conversely, if there are two such substitutions, then, eliminating the letter u. 
we obtain a chain (1.14) compatible with (1.12). The compatibility occurs because differen- 
tiation of the relation (1.14) with respect to t leads by virtue of (1.12) to the 
equation 

F(p(v~. (v~)~. (p(v~. (v,)~)) . . . . .  )=F(q(v, v~), (q(v, v~)) . . . . .  ), 

which is a consequence of (1.14). 

Remark 2. From the local conservation laws a t = b x (or c~ = (D -- l)d) of Eq. (1.5) 
(or (1.13)), where a. b are scalar functions of a finite number of the variables u, ux, u ..... 
(c, d are scalar functions of the variables v. v:~. v:~ .... ). we can readily construct local 
conservation laws of Eq. (1.12) (respectively, (1.6)) using the substitution (1.15) 
(respectively, (i.i0)) (see, for example, [3]). 

In the scalar case, the simplest example of a chain of the form (1.2) that comes 
within the ambit of Theorem 1 is the chain 

(u,+u) x=utz--C. ( i. 23) 
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with which the equations 

~,=u=~-~t~:u~, (i,24 

u~:--(u~+u)-~(u~u_~) -~ (i.25 

are compatible. Equation (1.24) is known as the modified Korteweg-de Vries equation, and 
(1.23) is its B~cklund transformation. Equations (1.24) and (1.25) are compatible with 
each other by virtue of (1.23). The example of the compatible triplet of equations (1.23)- 
(1.25) appeared in [4]. 

In the vector case, we take the decoupled nonlinear Schr6dinger equation 

U~=gg~+2U2V, --z'~=U=+2Vhl (1.26 

and write its B~cklund transformation in the form a system of two chains, one of which is 

while the other is obtained by the substitution u-~-~u, e~--e -~. ~--a. A substitution of the 
form (i.i0) 6 = u i + su, $ = v i + s-!v leads to a system invariant with respect to the 
transformation 

u + + v ,  x ~ - x .  t - - - - t .  (1.27 

one of the equations of which has the form 

~ ,=z~=+~v+  %(u~+~u) (~u-'v-'-l)-~[ (ln uv~)~-~], ( I. 28 

where  y = ~. For  any ~, t h e  s o - c a l l e d  sy m m et r i c  t r a n s f o r m a t i o n  r e l a t e s  t h e  sy s t em  ( 1 . 2 8 )  
t o  d e g e n e r a c i e s  o f  t h e  L a n d a u - L i f s h i t z  model  ( s e e  [ 1 ] ) .  

. 

form u t = Uxx x + f(u, Ux, Uxx) with a rich set of local conservation laws (defined in 
Remark 2) consists of the Krichever-Novikov equation, Eqs. (1.7) and (1.24), and also 

Apart from some comparatively simple transformations, the list of equations of the 

u~=u=-'huy+z(~)tz~. 

where z ( u ) = a  exp(u)+~ exp(--u)+'f, 

(2.1 

3 UxRxx z 
+ y (R) u~(ud+~), (2 .2  

2 u J + t  

where y satisfies the differential equation 

(g')2=P(g)=-8/3(y+27) [(g-?)~-4~>] 

(see [5,3]). Equations (1.7), (1.24), (2.2), and (2.1) are related by double differential 
substitutions (see [3]), and hence (see Remark 1 on Theorem i) are equivalent from the 
point of view of the theory discussed here. As is shown by the example of Eq. (1.24), 
there can be a situation in which a scalar chain of the form (1.2) is compatible with a 
pair of equations: one of Eqs. (1.7), (1.24), (2.1), and (2.2) and a representative of the 
complete list of discrete equations of the form u z = g(ui, u, u_ i) with rich set of local 
conservation laws in [6]. We shall give several such pairs on the basis of Theorem i. We 
shall say that chains of the form (1.2) are nonlocal, and of the form (1.6) local. 

We can write (1.23) in the form (1,14) and introduce the new variable 2fi = u 2 - u x. 
Equation (1.24) goes over precisely into (1.7), and the chain (1.25) into the chain 

where ~ = i, h = (u z + u) i/2 On the other hand, (1.23) enables us to introduce the 
variable 6 = -2 In(u I + u). Thus, it becomes clear that Eq. (2.1) with ~ = 7 = $ + 3/2 = 0 
corresponds to the local chain 

u~=exp ((u~+t~)/2) - e x p  ( ( u + u _ j / 2 ) .  ( 2 .4  ) 

Omitting the nonlocal chain, we merely mention that it can readily be expressed in the form 
(1.9) and one can obtain the substitution 6 = exp((u i + u)/4), which leads to Eq. (2.2) with 
y(u) = --3/2u -3. From (2.4) we obtain a chain related to the Volterra equation (1.8) by 
an obvious point transformation (G = o(u)). 

A further group of examples can be obtained by using the double substitution in [3], 
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which relates the solutions of Eqs. (2.1) and (2.2) in the generic situation (at least one 
of the numbers ~ and B nonzero). The substitution has the form ~=• u~+~(u), where 
z(~(u))=g(u), ~ is a solution of (2.1), and u a solution of (2.2). In accordance with 
Remark 1 on Theorem i, this double substitution enables us to construct a nonlocal chain 
of the form (1.14) for Eq. (2.2), and, hence, a chain of the form (1.9) for (2.1): 

where P is the polynomial that determines the function y in (2.2). 

In the special case 2z(u) = cosh u + 1/3, the following local chain is compatible 
with (2.5): 

u~=th ((u~+u)/4) - ~ (  (u+u_~) 14). ( 2 . 6 )  

From it, we obtain for (2.2) a chain related by a point transformation to 

4v~=(t-v~)(v,-v_~) 

(note that v = tanh((u I + u)/4) is the connection between (2.6) and (2.7)). 
our special case (2.5) can be written in the form 

(u,+u) ~=~ sh (u,/2) - ~  sh (u/2), 

where  a = 4 i /~ /6 ,  and t h i s  e n a b l e s  us  t o  i n t r o d u c e  t h e  new v a r i a b l e  4fi = - -u  x + ~ s i n h ( u / 2 ) .  
We arrive at the equation 

< = ~=~+ (~/a--8,~ ~) u~ ( 2 ,8  ) 

with the nonlocal chain 

( 2 . 7 )  

F i n a l l y ,  in  

(arsh 2~- ' (u ,§  ~=u~-~ ( 2 . 9 )  

and l o c a l  c h a i n  o f  t h e  ( 2 . 3 )  w i t h  d i f f e r e n t  E and h.  S i n c e  Eqs.  ( 2 . 8 )  and ( 1 . 2 4 )  a r e  
i d e n t i c a l  a p a r t  f rom a G a l i l e o  t r a n s f o r m a t i o n  ( 6 ( t ,  s  = u ( t ,  x ) ,  ~ = x + 3 t / 2  (u  i s  a 
s o l u t i o n  o f  ( 2 . 8 ) ) ,  we s e e  t h a t  t o  Eq. ( 1 . 2 4 )  t h e r e  c o r r e s p o n d  n o t  o n l y  two n o n l o c a l  c h a i n s  
bu t  a l s o  two l o c a l  c h a i n s .  The c h a i n  ( 2 . 9 )  a p p e a r e d  in  [ 7 , 8 ] .  

3. There are not a few vector equations of the form 

V,=F(V, V~, V . . . . .  ) ,  (B.1) 

where V = ( u , v )  t, compatible with chains of the form 

V~=G(V, V• V~2,.. .) ( 3 . 2 )  

(see [4]). It is here natural to take the independent variables to be 

u ,v ,  u • 1 7 7  . . . .  , ( 3 . 3 )  

and t h e  c o m p a t i b i l i t y  c o n d i t i o n  t a k e s  t h e  fo rm 

(0G/OV) F +  (OG/OV,)D (F) + (OG/0V_,) D- '  (F) + . . . =  

(0F/0V) G+ (0F/0V~)D~(G) + (0F/0V=)D~ z (G) + . . . .  

For such equations, one can often introduce substitutions that are invertible in the set 
of variables (3.3) (see Theorem 2). The ambit of Theorem 2 includes the Schradinger 
equation (1.26), and also the Heisenberg and Landau-Lifshitz models written in the form 
(3.1) (see [4]). 

THEOREM 2. Suppose a chain (3.2) compatible with (3.1) has the form 

u~=~(u ,v ,  u~,v~). V~=~(~-~ ,v_~.~ ,v ) ,  (3.4) 

where ~(a, b, c, d), ~(a, b. c. d) are functionally independent as functions of the variables b 
and c. Then a change of variables 6 = u, ~ = v ! that is invertible in the set (3.3) 
carries (3.1) to an equation of the form (3.1) again, and the old and new equations are 
related by differential substitutions of the form 

~=a, v=A(a .~ .~ ,  ~) ,  (3 .5)  
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u,=B(a, ~, 0~, L), v~=~. (3.5 

Proof. Writing (3.1) in the new variables, we see that 6 t depends only on the 
variables 6, 9_ l and their derivatives with respect to x, and 9 t only on 9, 61 and their 
derivatives with respect to x. But in the new variables, the relations (3.4) are such that 
we can obtain expressions of the form 

~,--B(a ~, ~x, ~), ~-,=A(~, L ~, ~x). (3.7 

Therefore, 5 t and vt can be expressed in terms of 6, 9, 6x, 9x, .... The expressions 
(3.6) are a consequence of (3.7). 

Remark 3. When necessary, it is proposed to verify by direct calculations that 
Eq. (3.1) and the chain (3.2) written in the new variables are again compatible. This was 
done in the example given below. 

The substitutions (3.5) and (3.6) (in connection with chains of the form (3.4) more- 
over) appeared in [4]. On the basis of Theorem 2, we show how from the known system (1.26) 
we can obtain the quasilinear system 

{ u~=u=-2~ (ln a)~+~/2 (l--a ~z) u-~u~ ~, ( 3.8 
-v,=v=--2v~(ln b ).+V~ ( i--b-~) v-~v~ ~, 

where the functions a,b are given by the implicit relations 

9 2a(b+t)=uz~, _b(aTt) ~--~v~. 

This system of equations is invariant with respect to the substitution (1.27) and can be 
represented in the form 

V~=M(V, Vx)V~ ~-N(V, V~), 

where V~(a, v) ~ is a vector column, and the matrix M has vanishing trace and determinant 
equal to minus unity. 

The system (1.26) is compatible with a system of the form (3.4), 

(see [4]). Going over to new variables in accordance with Theorem 2, we obtain the com- 
patible pair 

{ ~,=~=-2 ( 3.9 ) (~v~+~) ,  
-v~=v=+2 ( v~u~-v~u~) , 

u~=a~+u~v, -v~=v-~+u~a. (3. i0) 

The system of chains (3.10) again has the form (3.4). By introducing standard new 
variables, we obtain from (3~ and (3.10) a consistent pair in which the discrete system 
does not belong to the systems (3~ However, we ca~ make additionally a point trans- 
formation (6 = 6(u, v), 9 = 9(u, v)) that does not change the form of the vector equations 
(3.1) and (3.2). The composition of the two invertible transformations 

a=2~/(uv~- l ) ,  ~=2v,/(uv,-l) 

leads to the continuous system (1.28) with ~ = u = ~ + 1 = 0 and a discrete system of the 
form (3.4), 

v,u~=2A(D(A)+I), --~_,v~=2A(D-'(A)+I), 

where A = (uv + 1) I/2 In the next step, the invertible change of variables in Theorem 2 
gives the system of equations (3.8). 

1. 
2. 
3. 

4. 
5. 

LITERATURE CITED 

A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Usp. Mat. Nauk, 42, 3 (1987). 
J. Weis, J. Math. Phys., 28, 2025 (1987). 
S. I. Svinolunov, V. V. Sokolov, and R. I. Yamilov, Dokl. Akad. Nauk SSSR, 271, 802 
(1983). 
A. B. Shabat and R. I. Yamilov, Algebra i Analiz, ~, 47 (1990). 
S. %. Svinolunov and V. V. Sokolov, Funktsional. Analiz i Ego Prilozhen., 16, 86 (1982). 

1274 



6, 
7. 
8. 

R. I. Yamilov, Usp. Mat. Nauk, 38, 155 (1983). 
A. Degasperis, P. M. Santini, and M. J. Ablowitz, J. Math. Phys., 26, 2469 (1985). 
B. A. Magadeev, Teor. Mat. Fiz., 72, 313 (1987). 

LOWER KORTEWEG-DE VRIES EQUATIONS AND SUPERSYMMETRIC STRUCTURE 

OF THE SINE-GORDON AND LIOUVILLE EQUATIONS 

V. A. Andreev and M. V. Burova 

A continuation of the hierarchy of the Korteweg-de Vries equation in 
the direction corresponding to negative powers of the spectral parameter 
is constructed. Among the members of this hierarchy there are equations 
related by a Miura transformation to the sine-Gordon and Liouville 
equations. The supersymmetric structure of this connection is 
clarified, 

1. Introduction 

Integrable nonlinear differential equations possess an extremely rich internal struc- 
ture. Indeed, new connections and constructions are still being found even in such well- 
studied equations as the Korteweg-de Vries (KdV) and sine-Gordon equations. Recently, 
structures analogous to the structures of supersymmetric quantum mechanics have been found 
in the framework of the inverse scattering method [1,2]. This work is based on a Miura 
transformation - on the one hand, it carries solutions of the modified Korteweg-de Vries 
equation (mKdV) into solutions of the KdV equation, while on the other hand it establishes 
a connection between the potentials of the Hamiltonian and the potentials of its super- 
charge. From this point of view, the Zakharov-Shabat operator F. that occurs in the Lax 
pair for the mKdV equation is a supercharge, and its square plays the part of a supersym- 
metric Hamiltonian. Such a Hamiltonian has the form of a diagonal matrix whose elements 
are Schr6dinger operators L in the Lax pair for the KdV equation. This correspondence 
also generates a connection between the integrals of the motion of the hierarchies of the 
KdV and mKdV equations. The m_KdV hierarchy also includes the sine-Gordon equation, for 
the example of which the supersymmetry properties are most clearly manifested. First of all, 
it is necessary to find its analog from the KdV hierarchy. Each equation of this hierarchy 
is characterized by the degree of the corresponding operator A (deg A) of the Lax pair. 
For the higher KdV equations, deg A > 0. In the case of the sine-Gordon equation, 
deg A = --i, and the operator A corresponding to its analog in the KdV hierarchy must have 
the same order. In the paper, we construct equations that continue the KdV hierarchy to 
the case of negative powers of the operators A. We shall refer to these equations as the 
lower KdV equations. They include the equations related by a Miura transformation to the 
sine-Gordon and Liouville equations. We establish the supersymmetric structure of this 
connection and give an invariant definition of the Miura transformation. 

We assume that the potential u in the SchrSdinger operator L decreases sufficiently 
rapidly at _+~ for all the integrals considered below to converge. 

2. Lower Korteweg-de Vries Equations 

For study of the KdV equation and its higher analogs, one considers the time-independent 
Schr6dinger operator 

d 
L------'~ (i) dx ~ 

and seeks differential operators A N such that the commutator [L, A N ] is an operator of 
zeroth degree (a function). To find the explicit form of the operators AN, one expresses 
them as sums of powers of the operator L: 
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