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INTEGRABILITY CONDITIONS FOR AN ANALOGUE OF THE

RELATIVISTIC TODA CHAIN

R. I. Yamilov∗

We consider a class of discrete-differential equations that contains the relativistic Toda chain and is

characterized by one arbitrary function of six variables. We derive three conditions that allow testing the

integrability of any given equation in this class. In deriving these conditions, we use higher symmetries

distinguishing the equations that are integrable via the inverse scattering method.
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1. Introduction

We consider discrete-differential equations of the form

ün = f(un+1, un, un−1, u̇n+1, u̇n, u̇n−1) ≡ fn, (1)

where un = un(t), n ∈ Z, u̇n = dun/dt, and ün = d2un/dt2. We additionally assume that ∂fn/∂u̇n+1 �= 0
or ∂fn/∂u̇n−1 �= 0. A known representative of this equation class is given by the relativistic Toda chain [1]

ün =
u̇n+1u̇n

1 + eun−un+1
− u̇nu̇n−1

1 + eun−1−un
. (2)

Other examples of integrable equations of form (1) were obtained in [2], [3]; the symmetry method used
in [3] allowed obtaining a list of such equations. The symmetry method involves a distinguishing signature
of the equations integrable via the inverse scattering method, namely, the existence of higher symmetries
and conservation laws. This method allows finding all the integrable equations of a certain form or testing
the integrability of a given equation. The method was used to obtain the integrability conditions and full
lists of integrable equations of classes including, for example, the Korteweg–De Vries equation, the nonlinear
Schrödinger equation, and the Toda and Volterra chains. These results and the description of the method
can be found, for example, in [4]–[6].

We briefly recall how the list of equations was obtained in [3]. The equations considered had the form

ün = f(un+1, un, u̇n+1, u̇n) − g(un, un−1, u̇n, u̇n−1) ≡ hn (3)

and were assumed to have the symmetry

un,τ = f(un+1, un, u̇n+1, u̇n) + g(un, un−1, u̇n, u̇n−1) ≡ sn (4)
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(where the subscript τ denotes the derivative with respect to τ); in other words, Eqs. (3) and (4) were
assumed to be compatible. The compatibility means that these equations have common solutions un(t, τ).
For such solutions, the relation ∂3un/∂t2∂τ = ∂3un/∂τ∂t2 holds, which can be written as

D2
t sn = Dτhn, (5)

Dt =
∑

i

u̇n+i
∂

∂un+i
+

∑

i

hn+i
∂

∂u̇n+i
, Dτ =

∑

i

sn+i
∂

∂un+i
+

∑

i

Dt(sn+i)
∂

∂u̇n+i
.

The compatibility condition for Eqs. (3) and (4) thus leads to Eq. (5) for the functions f and g; just
this equation was used in [3] to seek integrable equations of form (3). This approach allows finding new
integrable examples but does not give natural conditions for testing the integrability of a given equation.
The underlying reason is that the form of the symmetry is rigidly fixed here. But integrable equations
have infinitely many higher symmetries, and choosing another form of the symmetry may lead to different
results in general.

In this work, we follow a more general scheme of the symmetry method, which was used in [7] to
investigate the class of equations of the form

u̇n = a(un+1, un, un−1) ≡ an, (6)

containing the Volterra equation, and the Toda chain class,

ün = b(un+1, un, un−1, u̇n) ≡ bn. (7)

In accordance with this scheme, we use the assumption that the equation has one or two higher symmetries
(or conservation laws) of a sufficiently high order. The form and the order of the symmetry are not fixed.
Under this assumption, we derive several conditions for the right-hand side of the equation, i.e., for the
functions an and bn. These conditions are independent of the form and order of the symmetry and are
easily tested for any given equation.

We give an example of the simplest integrability condition and the corresponding statement for the
equation of form (6). If Eq. (6) with ∂an/∂un+1 �= 0 has a higher symmetry of order m ≥ 2, then there
exists a function qn = q(un+1, un, un−1, un−2) satisfying the relation

Dt log
∂an

∂un+1
= qn+1 − qn, (8)

where Dt =
∑

i an+i∂/∂un+i. What such a higher symmetry and its order are and how condition (8) can
be tested for any given function an is discussed below in the example of equations of form (1).

Our aim in this work is to derive three integrability conditions, similar to relation (8), for chains of
form (1). We follow the symmetry method scheme developed for equation classes (6) and (7) in [7] and
detailed in [8], [9]. In deriving these conditions, we encounter an essentially new theoretical obstacle, which
is overcome using a lemma formulated in Sec. 3.

2. Preliminaries

We first recall some facts from the general theory of the symmetry method following [8] and [9]; these
facts are needed for formulating the results in this paper. It is convenient to introduce the function vn = u̇n

and pass from Eq. (1) to the equivalent system of equations

u̇n = vn, v̇n = fn = f(un+1, un, un−1, vn+1, vn, vn−1). (9)
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The vector form of the system is

U̇n = Fn = F (Un+1, Un, Un−1), Un =
(

un

vn

)
, Fn =

(
vn

fn

)
. (10)

In the vector form, higher symmetries of system (9) are written as

Un,τ = Gn = G(Un+m, Un+m−1, . . . , Un+m′), Gn =
(

ϕn

ψn

)
, (11)

where m > m′.
Symmetry (11) is an equation compatible with (10), and these equations therefore have a common

solution Un(t, τ). The equality ∂2Un/∂t∂τ = ∂2Un/∂τ∂t is written for such solutions as DtGn = DτFn,
where Dt and Dτ are the differentiation operators in accordance with (10) and (11). The obtained relation
can be represented as

m∑

i=m′

∂Gn

∂Un+i
Fn+i =

1∑

i=−1

∂Fn

∂Un+i
Gn+i, (12)

where ∂Gn/∂Un+i are matrices of the form

∂Gn

∂Un+i
=





∂ϕn

∂un+i

∂ϕn

∂vn+i

∂ψn

∂un+i

∂ψn

∂vn+i





and the matrices ∂Fn/∂Un+i are defined similarly. The functions un+i and vn+i are considered independent
variables in (12), and relation (12), which is the compatibility condition for Eqs. (10) and (11), therefore
imposes strong constraints on the vector functions Fn and Gn.

In what follows, we say that the higher symmetry of Eq. (10) (or system (9)) is an equation of form (11)
with m > m′ whose right-hand side Gn satisfies compatibility condition (12). The number m is called the
order of the symmetry, which is nondegenerate if det(∂Gn/∂Un+m) �= 0. Using higher symmetries allows
constructing approximate solutions Ln of the equation

L̇n = [F ∗
n , Ln], (13)

which plays an important role in what follows. We now pass to a detailed discussion of this equation.
We define Fréchet derivatives of the vector functions Fn and Gn as

F ∗
n =

1∑

i=−1

∂Fn

∂Un+i
T i, G∗

n =
m∑

i=m′

∂Gn

∂Un+i
T i,

where T i are the powers of the shift operator T : n → n + 1, for example,

T iFn = Fn+i = F (Un+i+1, Un+i, Un+i−1).

With the notation
f (i)

n =
∂fn

∂un+i
, g(i)

n =
∂fn

∂vn+i
(14)
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for the derivative of fn in system (9), we obtain a more detailed formula,

F ∗
n =

(
0 0

f
(1)
n g

(1)
n

)
T +

(
0 1

f
(0)
n g

(0)
n

)
+

(
0 0

f
(−1)
n g

(−1)
n

)
T−1. (15)

Solutions of Eq. (13) are formal series of the form

Ln =
k∑

i=−∞
l(i)n T i (16)

with their coefficients l
(i)
n being 2×2 matrices. The series are multiplied in accordance with the rule

(lnT i)(l̂nT j) = ln l̂n+iT
i+j , and [F ∗

n , Ln] = F ∗
nLn − LnF ∗

n is the standard commutator. Finally, L̇n =∑k
i=−∞ l̇

(i)
n T i, i.e., the coefficients are differentiated with respect to time in accordance with Eq. (10).

If det l
(k)
n �= 0, then formal series (16) can be inverted using the standard definition L−1

n Ln = LnL−1
n =

E, where E = ET 0 is the operator of multiplication by the identity matrix E. The inverse series is given
by L−1

n =
∑−k

i=−∞ l̂
(i)
n T i, and the first coefficients are found in accordance with the formulas

l̂(−k)
n =

(
l
(k)
n−k

)−1
, l̂(−k−1)

n = −
(
l
(k)
n−k

)−1
l
(k−1)
n−k

(
l
(k)
n−k−1

)−1
.

The operator G∗
n can be regarded as a special case of series (16) for k = m and l

(i)
n = 0 with i < m′. If

symmetry (11) is nondegenerate, then the formal series (G∗
n)−1 can be defined, to be used below.

We deal with series (16) of the order k = 1 with a nondegenerate leading coefficient,

Ln =
∑

i≤1

l(i)n T i, det l(1)n �= 0, (17)

which is an approximate length-m solution of Eq. (13). In general, the formula

L̇n − [F ∗
n , Ln] =

∑

i≤2

θ(i)
n T i (18)

holds for series (17). Formal series (17) is called an approximate length-(m≥1) solution of Eq. (13) if the
first m coefficients of (18) are equal to zero: θ

(i)
n = 0 for 2 ≥ i ≥ 3 − m. The following statement can be

proved.

Theorem 1. If an equation of form (10) has two nondegenerate higher symmetries Un,τ = Gn and

Un,τ̂ = Ĝn of the orders m ≥ 1 and m+1, then the corresponding Eq. (13) admits an approximate length-m

solution, which has form (17) and is constructed as Ln = Ĝ∗
n(G∗

n)−1.

We comment on the motivation underlying the assumptions in this theorem. The assumption regarding
the orders m ≥ 1 and m + 1 of the higher symmetries was used previously in the case of analogues (6) of
the Volterra equation to obtain first-order solution (17). The validity of this assumption was justified as
follows. We consider chains similar to the Volterra equation with a symmetry of any order m ≥ 1. The
notion of the nondegeneracy of a symmetry has no meaning in this scalar case. It can be verified that for any
order m ≥ 1, relativistic Toda chain (2) has both a degenerate and a nondegenerate higher symmetry (see,
e.g., [9]). Therefore, in considering equations of this type, we can use the additional assumption regarding
the nondegeneracy of the symmetries to invert the operator G∗

n. In the case of the classical Toda chain and
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Eqs. (7), the situation is similar, but the nondegeneracy condition can be avoided because the operator G∗
n

can be inverted for symmetries of any form.
Instead of the solutions Gn of Eq. (12), we next use approximate solutions (17) of Eq. (13). Evaluating

the coefficients l
(i)
n , we obtain integrability conditions for the function fn determining system (9). It is

important that because a formal series Ln is constructed from the right-hand side of Eqs. (11) in accordance
with Theorem 1, the entries of the matrices l

(i)
n are functions of the form

φn = φ(un+k1 , vn+k2 , un+k1−1, vn+k2−1, . . . , un+k′
1
, vn+k′

2
) (19)

with any integers ki and k′
i such that k1 ≥ k′

1 and k2 ≥ k′
2.

We note the advantages of Eq. (13) compared with Eq. (12). Because we consider solutions of form (17),
the calculations become simpler, and the obtained integrability conditions are independent of the order m

of the higher symmetry. Approximate solutions of Eq. (13) not only constitute a linear space but can
also be multiplied. Finally, using solutions of this equation allows constructing local conservation laws for
system (9) in the form of relations Dtpn = (T − 1)qn, where pn and qn are functions of form (19) (pn is
called the conservation law density). Indeed, the formula

Dt tr resLj
n ∈ Im(T − 1) (20)

holds for solutions (17) of Eq. (13) (it is understood that the above function belongs to the image of T −1).
Here, Lj

n =
∑

i≤j l̃
(i)
n T i, and the residue of this formal series is defined as the coefficient at T 0: resLj

n = l̃
(0)
n .

Formula (20) implies that the trace of the matrix l̃
(0)
n is a local conservation law density for system (9) (the

function qn can be easily constructed from the known density). If (17) is an approximate solution of length
m ≥ 3, then formula (20) can be used for the powers 1 ≤ j ≤ m − 2.

3. The main complication

From Eqs. (13) and (17), we here derive two integrability conditions for systems of form (9) to identify
the main complication, which we then handle using the lemma. Only one restriction is taken into account
in what follows:

g(1)
n =

∂fn

∂vn+1
�= 0 (21)

(see (14)). The symmetric case g
(−1)
n �= 0 reduces to inequality (21) because the change of variables

ũn = u−n, ṽn = v−n takes symmetries of system (9) into symmetries, and the system integrability is
therefore preserved.

In addition to formulas (15) and (17), we introduce the notation

F ∗
n = F (1)

n T + F (0)
n + F (−1)

n T−1, l(i)n =

(
a
(i)
n b

(i)
n

c
(i)
n d

(i)
n

)
. (22)

We suppose that (17) is an approximate length-(m≥2) solution of Eq. (13). We can then use the relations
θ
(2)
n = 0 and θ

(1)
n = 0 (see (18)), which are written as

F (1)
n l

(1)
n+1 = l(1)n F

(1)
n+1, (23)

l̇(1)n = F (1)
n l

(0)
n+1 + F (0)

n l(1)n − l(1)n F
(0)
n+1 − l(0)n F (1)

n . (24)
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Relation (23) gives three equations for the entries of the matrix l
(1)
n , one of which has the form

b
(1)
n g

(1)
n+1 = 0. It follows from condition (21) that b

(1)
n = 0, and because det l

(1)
n = a

(1)
n d

(1)
n , taking (17)

into account, we obtain
b(1)
n = 0, a(1)

n �= 0, d(1)
n �= 0. (25)

Another equation in (23) is written as g
(1)
n d

(1)
n+1 = d

(1)
n g

(1)
n+1. Representing it in the form (T−1)

(
d
(1)
n /g

(1)
n

)
= 0

and recalling that the kernel of T − 1 consists of constant functions, we obtain the formula d
(1)
n = αg

(1)
n

with a constant α �= 0. Finally, dividing relation (18) by α, we show that an approximate length-(m≥2)
solution of Eq. (13) exists in form (17):

d(1)
n = g(1)

n . (26)

Precisely this solution is used in what follows.
The lower left entries in relation (23) and the upper right entries in (24) yield formulas for the functions

c
(1)
n and b

(0)
n :

b(0)
n = 1 − a

(1)
n

g
(1)
n

, c(1)
n = f (1)

n − a(1)
n �n, �n =

f
(1)
n−1

g
(1)
n−1

. (27)

Finally, from the diagonal part of (24), we obtain equations for a
(1)
n and d

(0)
n as

Dt log a(1)
n = (T − 1)�n, (28)

Dt log g(1)
n = (T − 1)

(
d(0)

n − g(0)
n − a

(1)
n �n

g
(1)
n

)
, (29)

where Dt acts on functions (19) in accordance with

Dt =
∑

i

vn+i
∂

∂un+i
+

∑

i

fn+i
∂

∂vn+i
.

We have thus obtained two conditions for the function fn in (9), which can be formulated as follows:
there exist functions a

(1)
n and d

(0)
n of form (19) satisfying relations (28) and (29). These conditions are

meaningful if we recall that the functions un+i and vn+i are here considered independent variables. The
integrability conditions have the form of local conservation laws with (29) being similar to condition (8).
For a given system (9), we know the left-hand side of (29) and can test whether it belongs to Im(T − 1)
(we explain how this can be done in the next section). If it does, then we can find a linear combination
d
(0)
n − a

(1)
n �n/g

(1)
n of the unknown functions d

(0)
n and a

(1)
n . In the case of equations of form (6) and (7), all

the integrability conditions are similar to (29), and if the equation is integrable, then these conditions allow
finding all the coefficients of formal series (17).

In Eq. (28), in contrast, the right-hand side is known but the conservation law density log a
(1)
n is an

unknown function. We cannot test such integrability conditions for a given function fn and cannot find a
(1)
n .

The relations for the other functions a
(i)
n and d

(i)
n are similar to (28) and (29). We cannot find the functions

a
(i)
n , and because they enter all the relations, all these integrability conditions become useless. This is

precisely the complication that occurs in applying the standard symmetry method scheme to systems (9)
and therefore to Eqs. (1).

This complication can be overcome using an approximate solution of Eq. (13) simpler than (17). In
constructing it, we use a certain exact solution Λn, which exists for any function fn and is in this sense
trivial. The operator of multiplication by the identity matrix E is the obvious trivial solution of Eq. (13).
The formal series Λn turns out to be a square root of this operator.
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Lemma. There exists a unique solution Λn of Eq. (13) such that

Λn =
∑

i≤0

λ(i)
n T i, λ(i)

n =

(
α

(i)
n β

(i)
n

γ
(i)
n δ

(i)
n

)
, λ(0)

n =

(
1 0

γ
(0)
n −1

)
, Λ2

n = E. (30)

Proof (outline). We decompose Λn into diagonal and antidiagonal parts:

Λn = σ + Rn + Sn, σ =

(
1 0

0 −1

)
, (31)

Rn =
∑

i≤−1

r(i)
n T i =

∑

i≤−1

(
α

(i)
n 0

0 δ
(i)
n

)
T i, Sn =

∑

i≤0

s(i)
n T i =

∑

i≤0

(
0 β

(i)
n

γ
(i)
n 0

)
T i, (32)

where β
(0)
n = 0, and first consider the condition Λ2

n = E. It is equivalent to the two relations

2σRn + R2
n + S2

n = 0, RnSn + SnRn = 0. (33)

We consider the first of these as an equation for the formal series Rn. Introducing the notation

χ(−1)
n = 0, χ(k)

n =
∑

k+1≤i≤−1

(
r(i)
n r

(k−i)
n+i + s(i)

n s
(k−i)
n+i

)
, k ≤ −2,

and collecting the coefficients of like powers of T , we obtain

2σr(k)
n + χ(k)

n + s(0)
n s(k)

n + s(k)
n s

(0)
n+k = 0, k ≤ −1. (34)

Hence, for any k ≤ −1, the functions α
(k)
n and δ

(k)
n are explicitly expressed in terms of β

(−1)
n , β

(−2)
n , . . . , β

(k)
n

and γ
(0)
n , γ

(−1)
n , . . . , γ

(k+1)
n , and Rn is uniquely determined. The same equation allows obtaining a repre-

sentation of the form Rn = σ
∑

i≥1 ciS
2i
n with constant coefficients ci. Because (s(0)

n )2 = 0, it follows that

S2i
n =

∑
j≤−i s̃

(j)
n T j, and such a representation is hence well defined. Collecting coefficients of like powers

of Sn in the first equation in (33), we obtain formulas for the constants ci:

2c1 + 1 = 0, 2ck +
∑

1≤i≤k−1

cick−i = 0, k ≥ 2.

We now have the relation

RnSn + SnRn = σ

[ ∑

i≥1

ciS
2i
n , Sn

]
,

which shows that Rn also satisfies the second equation in (33).
It remains to use Eq. (13), i.e., Ωn = Λ̇n− [F ∗

n , Λn] = 0. We introduce the notation Ω‖
n = 0 and Ω⊥

n = 0
for the diagonal and antidiagonal parts of this equation and also the operators and formal series

f∗,u
n = f (1)

n T + f (0)
n + f (−1)

n T−1, f∗,v
n = g(1)

n T + g(0)
n + g(−1)

n T−1,

An =
∑

i≤−1

α(i)
n T i, Bn =

∑

i≤−1

β(i)
n T i, Cn =

∑

i≤0

γ(i)
n T i, Dn =

∑

i≤−1

δ(i)
n T i.
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The equation Ω⊥
n = 0 is then written as the system

Bnf∗,v
n + Ḃn + An − Dn + 2 = 0,

f∗,v
n Cn − Ċn + f∗,u

n An − Dnf∗,u
n + 2f∗,u

n = 0.
(35)

Collecting the coefficients of like powers of T and using inequality (21), we can easily obtain explicit
recurrence formulas for the coefficients Bn and Cn, which uniquely define the formal series Sn.

We now only need to show that with the formal series Rn and Sn thus defined, the last condition
Ω‖

n = 0 is satisfied automatically. Because E is a solution of Eq. (13), Λ2
n = E, and Ω⊥

n = 0, it follows that

Ė − [F ∗
n , E] = Dt(Λ2

n) − [F ∗
n , Λ2

n] = ΛnΩn + ΩnΛn = ΛnΩ‖
n + Ω‖

nΛn = 0. (36)

If Ω‖
n �= 0, then there is the representation Ω‖

n =
∑

i≤l ω
(i)
n T i, where ω

(i)
n are diagonal matrices and ω

(l)
n �= 0.

But collecting the coefficients of T l in the last equality in (36) and considering the diagonal part of the
resulting relation, we obtain a contradiction: σω

(l)
n + ω

(l)
n σ = 2σω

(l)
n = 0. The lemma is proved.

Thus, the solution coefficients Λn can be found as follows. Relations (34) allow expressing the functions
α

(i)
n and δ

(i)
n in terms of β

(i)
n and γ

(i)
n , for example,

α(−1)
n = −1

2
β(−1)

n γ
(0)
n−1, δ(−1)

n =
1
2
γ(0)

n β(−1)
n ,

α(−2)
n = −1

2
(
α(−1)

n α
(−1)
n−1 + β(−1)

n γ
(−1)
n−1 + β(−2)

n γ
(0)
n−2

)
,

δ(−2)
n =

1
2
(
δ(−1)
n δ

(−1)
n−1 + γ(−1)

n β
(−1)
n−1 + γ(0)

n β(−2)
n

)
.

(37)

From system (35), we next obtain recurrence formulas for β
(i)
n and γ

(i)
n , for example,

β(−1)
n = − 2

g
(1)
n−1

, γ(0)
n = −

2f
(1)
n−1

g
(1)
n−1

,

β(−2)
n = −

β
(−1)
n g

(0)
n−1 + β̇

(−1)
n + α

(−1)
n − δ

(−1)
n

g
(1)
n−2

,

γ(−1)
n = −

g
(0)
n−1γ

(0)
n−1 − γ̇

(0)
n−1 + f

(1)
n−1α

(−1)
n − δ

(−1)
n−1 f

(1)
n−2 + 2f

(0)
n−1

g
(1)
n−1

.

(38)

Hence, we express the functions β
(i)
n and γ

(i)
n in terms of the f

(i)
n and g

(i)
n specified by (14), i.e., in terms of

the function fn that determines system (9).
Using the formal series Λn in the lemma, we can now construct an exact solution of Eq. (13) as

Λ+
n =

1
2
(E + Λn), Λ−

n =
1
2
(E − Λn). (39)

Using the formal series Ln in Theorem 1, we can next introduce two approximate solutions of Eq. (13),

L+
n = Λ+

n LnΛ+
n , L−

n = Λ−
n LnΛ−

n , (40)

which have the same order 1 and the same length m. Solutions (40) allow overcoming the above complication
and separating the most useful integrability conditions from useless ones.
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4. Integrability conditions

We first consider the more important case of an approximate solution L−
n of Eq. (13) of length m ≥ 4.

It turns out that in contrast to solution (17), we obtain only the integrability conditions similar to (8),
which are useful.

From formulas (30) and (39), we have

Λ−
n =

(
0 0

−γ
(0)
n /2 1

)
− 1

2
λ(−1)

n T−1 − 1
2
λ(−2)

n T−2 − . . . .

We keep the same notation L−
n =

∑
i≤1 l

(i)
n T i and (22) as for formal series (17). We see from expres-

sions (40) that the functions b
(1)
n and d

(1)
n for Ln and L−

n coincide, i.e., b
(1)
n = 0 and d

(1)
n = g

(1)
n �= 0

(see (21), (25), and (26)). Other coefficients of the formal series L−
n can be conveniently found using the

equation Λ−
n L−

n Λ−
n = L−

n , which follows from the property (Λ−
n )2 = Λ−

n . For example, it yields

a(1)
n = 0, c(1)

n = f (1)
n , b(0)

n = 1, a(0)
n = �n

with �n given by (27). We can similarly express any of the functions a
(i)
n , b

(i)
n , and c

(i)
n in terms of fn and

d
(i)
n with i ≤ 0.

Equation (13) is used only to find the functions d
(i)
n . Because L−

n is a length-(m≥4) solution, we obtain
relations for d

(0)
n , d

(−1)
n , and d

(−2)
n . All of them are written as local conservation laws also using formula (20)

with j = 1, 2 for d
(−1)
n and d

(−2)
n . As a result, we obtain equations of the form

Dtp
(i)
n = (T − 1)q(i)

n , i = 1, 2, 3, (41)

where p
(i)
n and q

(i)
n are functions of form (19) that are expressed in terms of fn. In addition, q

(1)
n and p

(2)
n

are expressed in terms of d
(0)
n ; q

(2)
n and p

(3)
n are expressed in terms of d

(0)
n and d

(−1)
n ; and q

(3)
n are expressed

in terms of d
(0)
n , d

(−1)
n , and d

(−2)
n . The simplest such formulas are given by

p(1)
n = log g(1)

n , q(1)
n = d(0)

n − g(0)
n , p(2)

n = tr resL−
n = d(0)

n + �n.

In the final formulas, it is convenient to pass from d
(i)
n to q

(i)
n . In addition, we need integrabil-

ity conditions for Eqs. (1), and we therefore replace vn with u̇n. Now fn is the function in (1), Dt =∑
i u̇n+i∂/∂un+i +

∑
i fn+i∂/∂u̇n+i, and we use the notation

�n =
∂fn−1

∂un

(
∂fn−1

∂u̇n

)−1

, ωn =
∂fn

∂un
− ∂fn

∂u̇n
�n − �2

n + Dt�n. (42)

The formulas for the conservation law densities then become

p(1)
n = log

∂fn

∂u̇n+1
, p(2)

n = q(1)
n +

∂fn

∂u̇n
+ �n, p(3)

n = q(2)
n +

1
2
(
p(2)

n

)2 +
∂fn

∂u̇n−1

∂fn−1

∂u̇n
+ ωn. (43)

Relations (41) and (43) are a corollary of the integrability of the equation of form (1). Therefore, the
necessary integrability conditions for Eq. (1) can be formulated as follows: there must exist functions q

(1)
n ,

q
(2)
n , and q

(3)
n depending on finitely many variables

un, u̇n, un+1, u̇n+1, un−1, u̇n−1, un+2, u̇n+2, un−2, u̇n−2, . . . (44)
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such that relations (41) and (43) are satisfied. In other words, the functions q
(i)
n have form (19) with vn = u̇n.

Functions (44) are considered independent variables in relations (41) and (43), and these integrability
conditions therefore impose strong restrictions on the function fn.

For the solution L+
n given by formulas (39) and (40), a similar argument yields b

(1)
n = 0 and a

(1)
n �= 0.

Other coefficients L+
n can be conveniently found using the equation Λ+

n L+
n Λ+

n = L+
n , for example,

d(1)
n = 0, c(1)

n = −a(1)
n �n, b(0)

n = −a
(1)
n

g
(1)
n

, d(0)
n =

a
(1)
n �n

g
(1)
n

with �n defined in (27). Using these equations, we express any of the functions b
(i)
n , c

(i)
n , and d

(i)
n in terms

of fn and a
(i)
n whenever necessary.

To obtain equations for the functions a
(1)
n and a

(0)
n in (13), we use the approximate solution L+

n of
length m ≥ 3. As previously, we write these equations as conservation laws,

Dtp̂
(i)
n = (T − 1)q̂(i)

n , i = 1, 2, (45)

where formula (20) with j = 1 is applied in one case. Finally, passing from the unknown functions a
(i)
n to

p̂
(i)
n and from the variable vn to u̇n, we obtain Eqs. (45) with

q̂(1)
n = �n, q̂(2)

n = ωn

(
∂fn

∂u̇n+1

)−1

ep̂(1)
n . (46)

As in the case of conditions (41) and (43), the function fn and the operator Dt here correspond to Eq. (1),
and notation (42) is used. This time, the necessary integrability conditions require the existence of functions
p̂
(1)
n and p̂

(2)
n that depend on a finite number of variables (44) and satisfy Eqs. (45) and (46).

With Theorem 1, the main result in this work can be formulated as the following theorem (we recall
that the higher symmetries are found for Eq. (1) written in equivalent form (9)).

Theorem 2. If an equation of form (1) with ∂fn/∂u̇n+1 �= 0 has two nondegenerate higher symmetries

of orders m ≥ 4 and m + 1, then there exist functions q
(i)
n with i = 1, 2, 3 and p̂

(i)
n with i = 1, 2 of finitely

many variables (44) such that conditions (41), (43) and (45), (46) are satisfied.

As previously noted, we cannot test conditions (45) and (46). Written here just to complete the
picture, they might prove useful in the future. To test the integrability of Eqs. (1), we propose using the
three conditions in (41) and (43). For a given Eq. (1), these integrability conditions are tested in accordance
with the general scheme described in [8], [9]. We formulate only the main statement of this scheme for the
function of the most general form

ϕn = ϕ(un+k1 , u̇n+k2 , un+k1−1, u̇n+k2−1, . . . , un+k′
1
, u̇n+k′

2
), (47)

where k1 ≥ k′
1 and k2 ≥ k′

2, using formal variational derivatives

δϕn

δun
=

−k′
1∑

i=−k1

∂ϕn+i

∂un
,

δϕn

δu̇n
=

−k′
2∑

i=−k2

∂ϕn+i

∂u̇n
.

The function ϕn satisfies the condition
δϕn

δun
=

δϕn

δu̇n
= 0 (48)
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if and only if it can be represented in the form

ϕn = c + (T − 1)ψn, (49)

where c is a constant and ψn is a function of form (47) with (possibly) different ki and k′
i.

For Eq. (41) with i = 1, for example, we first test condition (48) with ϕn = Dtp
(1)
n . If the answer is

affirmative, we must represent ϕn in form (49) (which is easy to do). If c = 0, then the first integrability
condition in (41) is satisfied, and we find q

(1)
n = ψn. We now know p

(2)
n and can pass to the next integrability

condition. It is clear that these conditions are tested consecutively as the functions q
(i)
n are found.

We note that the kernel of T − 1 consists of constant functions, and the functions q
(i)
n are therefore

defined up to arbitrary constants ci. From some partial solution {q(i)
n : i = 1, 2, 3} of system (41), (43), we

pass to the general solution: {q(i)
n + ci}. Then the corresponding conservation law densities p

(i)
n transform

as
p(1)

n → p(1)
n , p(2)

n → p(2)
n + c1, p(3)

n → p(3)
n + c1p

(2)
n +

1
2
c2
1 + c2.

Because the operators Dt and T − 1 are linear, we see that the answer to the question whether sys-
tem (41), (43) has solutions is independent of the choice of the ci constants. In other words, in testing
the integrability conditions, we can choose the functions q

(i)
n arbitrarily. If an equation of form (1) satisfies

all the three conditions in (41) and (43), then we obtain three local conservation laws for it. The above
method also allows performing additional integrability tests for the equation, if necessary. For this, we
similarly evaluate the next several coefficients of the formal series L−

n determined using relations (40). In
the case where the result of such a test is affirmative, we also construct additional conservation laws using
formula (20). We note that some (or even all) of the conservation laws thus obtained may be trivial (a
conservation law is said to be trivial if its density is a function of form (49)).

To conclude, we consider the example of relativistic Toda chain (2). It can be easily verified that all
three conditions in (41) and (43) are satisfied. Thus, with the notation φ(z) = 1/(1 + e−z) and wn =
un+1 − un, we have

p(1)
n = log u̇n + log φ(wn), q(1)

n = u̇n + u̇n−1φ(wn−1). (50)

At the second stage, we find

p(2)
n = 2u̇n + (T − 1)rn, q(2)

n = 2u̇n−1rn + Dtrn,

where rn = u̇nφ(wn−1). It turns out that the function p̂
(i)
n can also be chosen such that relations (45)

and (46) are satisfied. We use the function

pn =
1
u̇n

(ewn + 1)(ewn−1 + 1), (51)

which is a local conservation law density for Eq. (2): Dtpn = −(T − 1)ewn−1. The needed formulas have
the forms

p̂(1)
n = log pn + log φ(wn), p̂(2)

n = 2pn + (T − 1)
(
pn

(
2 − φ(wn)

))
.

We note that if a conservation law density is multiplied by any number and the trivial density of
form (49) is added to it, then the conservation law changes insignificantly. This is just the relation between
p̂
(1)
n and p

(1)
n :

p̂(1)
n = −p(1)

n + (T − 1)
(
un + un−1 + log φ(wn−1)

)
.

Thus, having verified four integrability conditions, we obtain three essentially different and nontrivial con-
servation laws with the densities u̇n and p

(1)
n , pn from Eqs. (50) and (51).
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5. Conclusions

We have derived integrability conditions for equations of form (1), which are necessary conditions for
the existence of higher symmetries. The standard symmetry method scheme, which amounts to investigating
approximate solutions Ln of form (17) of Eq. (13), does not give reasonable results in this case: the arising
integrability conditions cannot be used. This complication can be overcome using a lemma on the “trivial”
exact solution Λn of Eq. (13). The lemma allows constructing approximate solutions L−

n and L+
n of Eq. (13)

in accordance with formulas (39) and (40) instead of Ln. Next, evaluating the coefficients of these solutions
and applying formula (20), we obtain standard integrability conditions (41) and (43) from L−

n , which are
easy to use, and nonstandard conditions (45) and (46) from the solution L+

n .
Conditions (41) and (43) are similar to those that occurred previously in [7] in investigating analogues

of Toda and Volterra chains. They can be easily tested for any given Eq. (1) using the equivalence of
relations (48) and (49). These conditions thus give a convenient tool for testing the integrability of equations
of form (1). If the equation satisfies all three integrability conditions, then we obtain three local conservation
laws for it. Conditions (41) and (43) can also be used to seek new integrable examples, by investigating
equations of form (1) with a small functional arbitrariness, or even to fully classify integrable equations of
this class.

We note that proceeding further with calculating the coefficients of the solution L−
n and applying

formula (20), we can similarly perform an additional integrability test for a given equation, obtain additional
conservation laws for it, and write one or two more integrability conditions in the most general case.

Integrability conditions (45) and (46) differ principally from conditions (41) and (43). They have the
form of local conservation laws with an unknown density; they have not been encountered in investigating
the classes of Toda and Volterra chains. It is not clear how these conditions can be used to test the
integrability of a given equation or to classify them. Learning how such integrability conditions can be used
is an unsolved problem.

The exact solution Λn of Eq. (13), which is discussed in the lemma and is the square root of the operator
of multiplication by the identity matrix, occurs for the first time in the symmetry method literature. There
are also other cases where such an exact solution exists that helps overcome similar complications in the
theory. These are, first, the class of discrete-differential systems of the form

u̇n = f(un+1, un, vn), v̇n = g(vn−1, vn, un)

involving a Hamiltonian form of the known integrable relativistic chains of form (1), including relativistic
Toda chain (2) (see [6], [9], [10]). Another class consists of systems of partial differential equations with

ut = uxx + f(u, v, ux, vx), vt = −vxx + g(u, v, ux, vx),

which include the split nonlinear Schrödinger equation or the Ablowitz–Kaup–Newell–Segur system (see,
e.g., [5], [11] for the applications of the symmetry method to such systems). The technical trick involving
such a solution Λn can also prove useful in other problems.
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3. V. É. Adler and A. B. Shabat, Theor. Math. Phys., 111, 647–657 (1997).

4. V. V. Sokolov and A. B. Shabat, Sov. Sci. Rev. Sect. C, 4, 221–280 (1984); A. V. Mikhailov, A. B. Shabat, and

V. V. Sokolov, “The symmetry approach to classification of integrable equations,” in: What is Integrability?

(V. E. Zakharov, ed.), Springer, Berlin (1991), p. 115–184.

5. A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).
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