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RELATIVISTIC TODA CHAINS AND SCHLESINGER

TRANSFORMATIONS

R. I. Yamilov∗

We construct the auto-Schlesinger transformations for all equations in the known list of integrable rela-

tivistic Toda chains. Our construction is essentially based on the equations being Lagrangian and on a

standard transition to their Hamiltonian form; in this case, the transition is described by the changes of

variables that are invertible but not pointwise. We discuss two examples of another type that has similar

properties; these are also integrable Lagrangian equations allowing the Schlesinger transformation.
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1. Introduction

As is known, the Ablowitz–Kaup–Newell–Segur (AKNS) system of equations

ut = uxx + 2u2v, −vt = vxx + 2v2u (1)

allows the autotransformation

ũ = uxx − u2
x

u
+ u2v, ṽ =

1
u

(2)

(see [1]–[3]). Multiple application of this transformation,

(u, v) = (un, vn) → (ũ, ṽ) = (un+1, vn+1),

results in the chain of relations

un+1 = un,xx − u2
n,x

un
+

u2
n

un−1

(vn is excluded in accordance with vn = 1/un−1), which is written as the known integrable Toda model

qn,xx = eqn+1−qn − eqn−qn−1 (3)

in terms of qn = log un. Toda chain (3) thus determines auto-Schlesinger transformation (2) (we follow [3]
in using this term) for AKNS system (1). Other autotransformations of the same type for systems of
equations similar to (1) can be found in [4]–[6].

The auto-Schlesinger transformation for an integrable nonlinear equation is a special (degenerate) case
of the auto-Bäcklund transformation. Applying such a transformation, we do not obtain additional constant
parameters, but we can nevertheless sometimes construct a multisoliton solution. In the case where the
initial solution (u0, v0) of system (1) is such that v0 = 0, the function u0 satisfies the heat conduction
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equation: u0,t = u0,xx. We can easily find solutions of the heat conduction equation with a great number
of arbitrary constants such that after a certain number of steps, we obtain a multisoliton solution for both
system (1) and the nonlinear Schrödinger equation

iψt = ψxx + 2|ψ|2ψ

(see, e.g., [6]).
It turns out that the relativistic Toda chain

ün =
u̇n+1u̇n

1 + eun−un+1
− u̇nu̇n−1

1 + eun−1−un
, u̇n =

dun

dt
(4)

allows an autotransformation of the same type, namely,

ũn = log
eun+1 + eun

u̇n
(5)

(transformation (5) seems new, as do the other autotransformations presented below). This autotransfor-
mation is invertible on the solutions of chain (4), and the inverse transformation is

un = log
ũn,t

e−ũn + e−ũn−1
. (6)

It is interesting that when passing from (4) to the system for un and vn (vn = u̇n), we can easily write
a transformation (un, vn) → (ũn, ṽn) that is invertible in the usual sense (as is (2)). Introducing the
corresponding chain of transformations in terms of uk

n and v
k
n, we exclude v

k
n and obtain the pure difference

equation

euk−1
n −uk

n − euk
n−uk+1

n = euk
n+1−uk+1

n − euk−1
n −uk

n−1 . (7)

This is one of the known integrable equations approximating Toda chain (3) (see, e.g., [7]).
In this paper, we consider integrable equations similar to the relativistic Toda chain:

ün = F (u̇n+1, u̇n, u̇n−1, un+1, un, un−1). (8)

The list of such equations was obtained in [8] by using the method of higher symmetries (also see [9]).
This list comprises six equations, and we construct the Schlesinger transformation for each of them. These
transformations are similar to (5) and have the form

ũn = U(u̇n, un+1, un). (9)

The pure difference equations similar to (7) and related to transformations (9) are known (they can be
found, e.g., in [7], [10], [11]), and we do not give them here.

Transformations (9) not only are given by an explicit formula and are invertible (although not pointwise)
on the solutions of the corresponding equation but also have yet another property. Theoretically, transfor-
mation (9) can be a nonpointwise involution: σ2[un] = σ

[
σ[un]

]
= un (we use the notation ũn = σ[un]). It

can be a nonpointwise group transformation: if ũn = σ[α, un], where α is the group parameter, then

σ[0, un] = un, σ
[
α, σ[β, un]

]
= σ[α+ β, un].
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We can offer examples of each type of the transformations. In our case, transformations (9) are such that

σ2[un] = V (u̇n+1, u̇n, u̇n−1, un+2, un+1, un, un−1),

and the number of variables u̇n+i and un+i in σ3[un], σ4[un], . . . increases. In some sense, this property
shows that the transformations presented in this paper allow constructing a set of different solutions in
contrast to the involution or group transformation.

All integrable equations in the list obtained in [8] are Lagrangian [10]. In the construction of the
Schlesinger transformation, we essentially use the standard transition from the Lagrangian form of equa-
tions to the Hamiltonian form. But in contrast to the classical case, the transition here is given by a
nonpointwise invertible transformation [9]. We also note that the standard (nondegenerate) auto-Bäcklund
transformations are known for most of the equations in the list under discussion [10].

In the last section, we present two examples of another type that has similar properties. These are
also Lagrangian equations allowing the Schlesinger transformation. One equation (an equation on a lattice)
is intimately related to the difference nonlinear Schrödinger equation, and the other (a partial differential
equation) is related to the Landau–Lifshitz equation.

2. A scheme for constructing the Schlesinger transformations

We here explain how to construct the Schlesinger transformations for the relativistic Toda chains. We
first discuss the transition from the Lagrangian form of equations to the Hamiltonian form, i.e., the relation
between the known integrable equations of type (8) and the also known integrable systems of the class1

u̇n = f(un+1, un, vn), v̇n = g(vn−1, vn, un). (10)

Lists of both Eqs. (8) and systems (10) are presented in the next section. For brevity, we omit the index n
in formulas; for example, relativistic Toda chain (4) is written as

ü =
u̇1u̇

1 + eu−u1
− u̇u̇−1

1 + eu−1−u
. (11)

The equations in (8) are Lagrangian; in this case, the Lagrangian L and the Euler–Lagrange equation
are

L = L(u̇, u1, u),
∂2L

∂u̇2
�= 0, d

dt

∂L

∂u̇
=

∂

∂u
(1 + T−1)L (12)

(here, T is the shift operator: n → n + 1, in particular, T−1L = L(u̇−1, u, u−1)). The local conservation
laws ṗ = (T − 1)q, namely,

d

dt
(u̇Lu̇ − L) = (T−1 − 1)(u̇1Lu1) (13)

(for brevity, the partial derivatives are here denoted by subscripts) correspond to the standard conservation
laws for such equations. If the Lagrangian can be written as L = L(u̇, u1 − u), then there is also the local
conservation law

d

dt
Lu̇ = (1 − T−1)Lu. (14)

1We obtained the list of integrable Hamiltonian systems (10) using a symmetry test [12]. The main part of the list was

first published in [5]. The L-A pairs were constructed for some systems in [13]. The total list was published in [9], where, in
particular, it was shown that all the systems have higher symmetries and conservation laws.
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Relativistic Toda chain (11) is assigned the Lagrangian

L = u̇ log
u̇

eu1−u + 1
. (15)

In this case, the Legendre transformation H = vu̇ − L, v = Lu̇ results in a invertible change of
variables between u, u̇ and u, v that is given by a formula of the type v = θ(u̇, u1, u). More exactly, if we
pass from Eq. (8) to the system for y = u and z = u̇, then the systems for y, z and u, v are related by the
nonpointwise, but invertible, change of variables given by u = y, v = θ(z, y1, y) (the pointwise change of
variables would have the form u = U(y, z), v = V (y, z)). In this case, the Hamilton equations corresponding
to the Hamiltonian H are

u̇ =
δH

δv
, v̇ = −δH

δu
, H = H(v, u1, u), (16)

where
δH

δv
=

∂

∂v

∑
i

T i(H) =
∂H

∂v
,

δH

δu
=

∂

∂u

∑
i

T i(H) =
∂

∂u
(1 + T−1)H.

(17)

For comparison, we recall the classical formulas in the same notation,

L = L(u, u̇),
d

dt

∂L

∂u̇
=
∂L

∂u
, H = H(u, v), u̇ =

∂H

∂v
, v̇ = −∂H

∂u
,

and the change of variables is defined by v = θ(u, u̇).
It turns out that the known equations of class (8) are such that we can transform system (16) to

form (10) using an additional pointwise change of variables of the form v̂ = θ̂(u, v) (u is unchanged). In the
case of relativistic Toda chain (11), the additional change of variables v̂ = u − v + 1 results in the system
of equations

u̇ = eu1−v + eu−v, v̇ = eu−v−1 + eu−v, (18)

and the direct relation between (11) and (18) has the form

u = u, v = log
eu1 + eu

u̇
. (19)

The additional change of variables does not change the form of the Hamiltonian in (16) but generally
changes the Hamiltonian structure:

u̇ = ϕ(u, v)
δH

δv
, v̇ = −ϕ(u, v)δH

δu
, H = Φ(u, v) + Ψ(u1, v). (20)

For system (18), we have ϕ = −1 and H = eu1−v + eu−v. It is evident that the inverse transition from
Hamiltonian systems (20) to Lagrangian equations is also possible. If we start with the system of equations
of form (10), (20) (where fv �= 0), then the invertible transformation leading to (8), (12) is given by the first
equation in the system (compare (18) and (19)). The formula for constructing the Lagrangian is slightly
modified in comparison with the classical formula:

L = ψ(u, v)u̇−H, ψv =
1
ϕ
. (21)
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The arbitrariness in the choice of the function ψ is inessential because Lagrangian equation (12) is unchanged
under changing the Lagrangian to

L̂ = αL + β + σ(u)u̇ + (T − 1)ω(u), (22)

where α �= 0 and β are constants and σ and ω are arbitrary functions.
Such a relation between integrable equations (8) and systems (10) was discussed in [9]. Two lists were

obtained independently (the systems of form (10) were the first; cf., e.g., [5] and [8]); their total equivalence
up to nonpointwise, invertible transformations similar to (19) was discovered only more recently.

We discuss the proof of the statement that the indicated change of variables and formula (21) transform
system (10), (20) (with fv �= 0) to Eqs. (8), (12). We use just this statement in what follows. Introducing
the dependent variables yi and zi such that y = u and z = u̇ and using (10), we have the invertible
transformation

y = u, z = f(u1, u, v) (23)

connecting the sets of variables yi, zi and ui, vi together with the relations for the partial derivatives

∂

∂v
= fv

∂

∂z
,

∂

∂u
=

∂

∂y
+ fu

∂

∂z
+ T−1(fu1)

∂

∂z−1
. (24)

Formulas (21), more exactly,

L(z, y1, y) = ψ(u, v)f(u1, u, v)−H(v, u1, u),

and (24) allow evaluating

Lz = ψ, Ly = ψuf −Hu, Ly1 = −Hu1

(we also use Hamiltonian structure (20)). It is now easy to verify that (12) is a consequence of (10), (20):

d

dt

∂L

∂z
=
dψ

dt
= ψuf + ψvg = ψuf − (

Hu + T−1(Hu1)
)
= Ly + T−1(Ly1).

The coefficient of ż = ü in the Euler–Lagrange equation differs from zero, Lzz = (ϕfv)−1, and this equation
can therefore also be written in form (8).

We can now explain the source of auto-Schlesinger transformation (5). Relativistic Toda chain (4)
allows the involution

Invu : ũn = −u−n, t̃ = −t, (25)

and its Hamiltonian form (18) is invariant under the involution

Invu,v : ûn = −v−n, v̂n = −u−n, t̂ = −t. (26)

Introducing the notation Lg : (un, u̇n)→ (un, vn) for map (19) generated by the Legendre transformation,
we can consider the composition

AT = Invu ◦Lg−1 ◦ Invu,v ◦Lg: ũn = vn = log
eun+1 + eun

u̇n
, t̃ = t. (27)

Therefore, if un is a solution of relativistic Toda chain (4), then the function vn obtained from (18) is also
a solution of (4). Formula (5) with vn in place of ũn (coinciding with the second formula in (19)) is just
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another form of the first equation in system (18). It is natural that inverse transformation (6) proves to be
the rewritten second equation in the same system.

In the general case, formulas (10) and (20) indicate the equal status of u and v: the function v also must
satisfy an equation of form (8), (12) (this can be easily proved). In the case of system (18), the equations
for u and v proved to be identical. This is proved by the transition to a special form of each integrable
system (10), (20); we provide this form in the next section. For example, system (18) was presented in [5]
and [9] in the polynomial form

u̇ = uv(u1 + u), v̇ = −uv(v + v−1).

We slightly change it using the pointwise transformation ũ = log u, ṽ = − log v.
In the next section, all integrable systems (10), (20) are represented in a form allowing an involution

similar to (26). In addition, the corresponding Lagrangian equation is also invariant under some involution,
and the two involutions taken together guarantee that u and v satisfy the same Lagrangian equation. As
a result, we can obtain the Schlesinger transformation expressing ũ = v in terms of u1, u, and u̇ using the
first equation in (10).

Concluding this theoretical section, we note that for Lagrangian equations (12), there is an intimate
connection, as usual, between conservation laws and higher symmetries. Given a higher symmetry, we can
easily construct a conservation law as shown in [10]. On the other hand, using a change of variables of
form (23) between equation (12) and its Hamiltonian form (20), we can obtain a rather simple formula for
constructing a higher symmetry in accordance with a conservation law.

In fact, if ṗ = (T − 1)q is the local conservation law for system (20) (the function q and the density p
of the conservation law depend on ui and vi), then the system

uτ = ϕ
δp

δv
, vτ = −ϕδp

δu

is a symmetry, i.e., a system compatible with (20). We can easily rewrite all the formulas in terms of ui

and u̇i. It follows that if the function

p = p(u̇i1 , u̇i1−1, . . . , u̇i2 , uj1 , uj1−1, . . . , uj2)

is the density of the conservation law for Lagrangian equation (12), then the equation

uτ =
1
Lu̇u̇

δp

δu̇
,

δp

δu̇
=

∂

∂u̇

−i2∑
k=−i1

T k(p) (28)

is its symmetry.
For example, the functions

p(1) = u̇1u̇S(u1 − u) +
1
2
u̇2, p(2) =

1
u̇
(1 + eu1−u)(1 + eu−u−1),

where S(z) = 1/(1 + e−z), are the densities of the conservation laws for relativistic Toda chain (11), and
formula (28) gives the respective symmetries

uτ1 = u̇1u̇S(u1 − u) + u̇u̇−1S(u− u−1) + u̇2, uτ2 = −p(2)

for this chain because Lu̇u̇ = 1/u̇ (see (15)).
It is easy to see that in the case of standard conservation laws (13) and (14), formulas (28) result in

trivial pointwise Lie symmetries that have the respective forms uτ = u̇ and uτ = 1.
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3. The list of the Schlesinger transformations

As previously stated, the lists of the integrable Hamiltonian systems of form (10) and Lagrangian
equations of form (8) comprise six objects. We first consider five cases with a similar structure.

In all five cases, systems (10), (20) can be written as

u̇ = r(u1 − u, u− v), v̇ = r(v − v−1, u− v) (29)

(i.e., the system is defined by one function r(x, y) of two variables), which provides the invariance under
involution (26). For example, system (18) is assigned the function r(x, y) = (ex+1)ey. The transition to the
Lagrangian equations is given as described in the preceding section: the relation between v and u̇ is defined
by the first equation in the system, and the Lagrangian is constructed in accordance with formula (21). In
all these cases, we can easily verify that Lagrangian (21) can be written as (for simplicity, we sometimes
use formula (22))

L = R(u̇)− u̇A(w1)−B(w1), w = u− u−1, (30)

where R′′ �= 0. Such a Lagrangian is assigned the equation

ü = Q(u̇)
(
u̇1a(w1)− u̇−1a(w) + b(w1)− b(w)

)
, (31)

Q(z) =
1

R′′(z)
, a(z) = A′(z), b(z) = B′(z), (32)

which is obvioustly invariant under involution (25). Therefore, as in the case of relativistic Toda chain (11),
the formula for ũ = v obtained from the first equation in system (29) yields the auto-Schlesinger transfor-
mation for Eq. (31). The inverse transformation can be found from the second equation in system (29).

In what follows, we present the main formulas for each of the five cases. We indicate the function r =
r(x, y) defining system of equations (29) and the functions ϕ and H that define Hamiltonian structure (20).
We then present the functions Q(z), a(z), and b(z) defining Lagrangian equation (31). We do not write
the Lagrangian because it is easily reconstructed from formulas (30) and (32). Finally, we present the
Schlesinger transformation for Eq. (31) (a formula for a new solution ũ = v). In some cases, there is a
dependence on the arbitrary constants µ and ν. Relativistic Toda chain (11) belongs to case III with µ = 1
and ν = 0.

The list of equations and transformations (five of six cases)

I. r = ex + ey, ϕ = −ev−u, H = eu1−v +
1
2
e2(u−v),

Q = 1, a = ez, b = −e2z,

ũ = u− log(u̇ − eu1−u).

II. r = xy, ϕ = v − u, H = v(u − u1),

Q = z, a =
1
z
, b = z,

ũ = u+
u̇

u− u1
.
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III. r = (ex + µ)(ey + ν), ϕ = −(1 + νev−u), H = eu1−v + µeu−v,

Q = z, a =
1

1 + µe−z
, b = −νez,

ũ = u− log
(

u̇

eu1−u + µ
− ν

)
.

IV. r =
x

x+ y
, ϕ = v − u, H = log

u− v

u1 − v
,

Q = z(1− z), a =
1
z
, b = 0,

ũ =
u+ u1(u̇− 1)

u̇
.

V. r =
ex + µ

ex+y + 1
, ϕ = µ− ev−u, H = log

eu1−v + 1
1− µeu−v

,

Q = z(z − µ), a =
1

ez + µ
, b = 0,

ũ = u1 − log
(
eu1−u + µ

u̇
− 1

)
.

We consider the sixth case separately and in more detail. This case differs significantly from the others.
System (10) has the form

u̇ =
2r

u1 − v
+ rv, v̇ =

2r
u− v−1

− ru,

r = r(u, v) = r(v, u), ruuu = 0,

(33)

i.e., r is a symmetric polynomial with six arbitrary constant coefficients, namely,

r(u, v) = αu2v2 + βuv(u + v) + γ(u2 + v2) + δuv + ε(u+ v) + µ. (34)

System (33) is intimately related to the Landau–Lifshitz equation (this system defines the auto-Bäcklund
transformation for the latter; see [5] and [13]). Hamiltonian structure (20) is defined by the functions

ϕ = r, H = log
r

(u1 − v)2
. (35)

The involution allowed by the system of equations is now

ûn = v−n, v̂n = u−n, t̂ = −t. (36)

We have some technical problems here related to deriving the explicit formula for v from (33) and
representing Lagrangian (21) in terms of u̇, u1, and u such that the obtained expression is not unduly
cumbersome. In parallel with the notation r = r(u, v), we introduce the notation s = r(u, u1) for a
polynomial of the same form (34) but in other variables. For any polynomial (34), the identities

2r
u1 − v

+ rv =
2s

u1 − v
− su1 , rv = su1 + (v − u1)su1u1 (37)
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hold, and, in particular, we can rewrite the first equation in (33) in terms of s,

u̇ =
2s

u1 − v
− su1 . (38)

Now using (37), (38), and the first equation in (33), we can easily express the functions v, rv, and r and
consequently the Hamiltonian H in (35) in explicit terms of u̇, u1, and u. To obtain the formulas for the
Lagrangian L in (21), it then remains to represent the function ψ in terms of the new variables.

We failed to derive the explicit formula for ψ, but it suffices to obtain the relations for the partial
derivatives of the function ψ in terms of the new variables by rewriting the defining equation ψv = 1/ϕ = 1/r.
Using formulas (24) (we recall that f(u1, u, v) here is the right-hand side of the first equation in the initial
Hamiltonian system (33)), we obtain the relations

ψv = fvψ̂u̇ =
1
r
, ψu1 = ψ̂u1 + fu1ψ̂u̇ = 0 (39)

for the function ψ̂(u1, u, u̇) = ψ(u, v). On the other hand, it follows from the two different representations
for the function f (see (33) and (38)) that

fu1 = − 2r
(u1 − v)2

, fv =
2s

(u1 − v)2
. (40)

Relations (39) and (40) taken together allow representing the partial derivatives ψ̂u1 and ψ̂u̇ in terms of u1,
u, and u̇. There is no need for a formula for ψ̂u. In particular, we find that ψ̂u1u̇ = ψ̂u̇u1 = 0, and we have
the representation ψ̂ = A(u1, u) +B(u, u̇) with the known derivatives Au1 and Bu̇ for A and B.

The presented scheme explains how to write the next defining equations for the Lagrangian L:

L = log
s

u̇2 −R(u)
+ u̇

(
A(u1, u) +B(u, u̇)

)
, (41)

s = r(u, u1), R(u) = s2u1
− 2ssu1u1 , (42)

Au1 =
1
s
, Bu̇ =

2
u̇2 −R(u)

. (43)

We recall that r is polynomial (34) defining Hamiltonian system (33). If we consider s in (42) a square
polynomial in u1, then R is the usual discriminant of this polynomial and therefore depends on only u
and is a polynomial of degree not higher than four. The functions A and B are not uniquely defined by
Eqs. (43), but this has no effect on the corresponding Lagrangian equation by virtue of (22).

The equation corresponding to Lagrangian (41)–(43) is

2ü =
(
u̇2 −R(u)

)(su − u̇1

s
+
šu + u̇−1

š

)
+R′(u), (44)

š = T−1s = r(u−1, u). (45)

This equation is invariant under the involution ũn = u−n, t̃ = −t, which taken together with involution (36)
explains why the function ũ = v found from (33) is a new solution of Eq. (44) with (45). To define v, it is
convenient to use relation (38), which gives the formula

ũ = u1 − 2s
u̇+ su1

(46)

for the autotransformation of Eq. (44) with (45).
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4. Similar examples

We show that there are equations of other classes that have similar properties. These are the integrable
Lagrangian equations allowing the auto-Schlesinger transformation. We present two examples: the first is a
difference-differential equation, and the second is a partial differential equation. The equation on a lattice
is intimately related to the difference nonlinear Schrödinger equation (which coincides with the Ablowitz–
Ladik equation). The other example is obtained from the stereographic projection of the Landau–Lifshitz
equation. We also briefly discuss the Schlesinger transformation for the corresponding Hamiltonian systems.

The construction scheme here is the same as in the preceding sections. We start with the known
Hamiltonian system of equations and obtain an equation equivalent to this system but new in form. In the
difference-differential case, we use the system of equations

u̇ = (uv + ν)(u1 + αu−1)− ηu,

v̇ = −(uv + ν)(v−1 + αv1) + ηv,
(47)

which is integrable for any values of the constant coefficients ν, α, and η (see, e.g., [9]). The Hamiltonian
structure (identical to that in (20)) is defined by the functions

ϕ = uv + ν, H = v(u1 + αu−1)− η logϕ,

i.e., the Hamiltonian has a form different from (20).
We note that system (47) generalizes one of the systems in the preceding section because for α = η = 0,

we have case III with µ = 0 after the pointwise change of variables

ũ = log u, ṽ = − log v. (48)

In addition, system (47) allows two integrable reductions. In the case of α = ν = 1 and η = 2, the
complex reduction ψ = u = v̄, θ = it results in the known difference nonlinear Schrödinger equation (or the
Ablowitz–Ladik equation [14])

iψθ = ψ1 − 2ψ + ψ−1 + |ψ|2(ψ1 + ψ−1).

In the case of α = −1 and η = 0, another reduction v = u yields the modified Volterra equation

u̇ = (u2 + ν)(u1 − u−1).

The same change of variables (48) transforms system (47) such that the system becomes invariant
under involution (26):

u̇ = (eu−v + ν)(eu1−u + αeu−1−u)− η,

v̇ = (eu−v + ν)(ev−v−1 + αev−v1)− η.
(49)

System (49) is completely similar to the systems in the preceding section. The first equation defines the
invertible relation between u̇ and v; the standard transition to the Lagrangian form yields the following
results.

If we introduce the notation w = u− u−1 as in (30), then the new equation can be written as

ü = (T − 1)((u̇+ η)(u̇−1 + η)V
)
+ ν(u̇ + η)(1 − T )(ew − αe−w),

V =
ew1+w−1 − α2e−2w

(ew1 + αe−w)(ew−1 + αe−w)
.

(50)
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The Lagrangian is defined as

L = (u̇ + η) log
u̇+ η

U
+ νU, U = ew1 + αe−w.

In this case, the Euler–Lagrange equation differs from the equation in (12) only in the expression δL/δu =
∂(T + 1 + T−1)L/∂u in the right-hand side. We note that the obtained Eq. (50) has the form

ü = F (u̇1, u̇, u̇−1, u2, u1, u, u−1, u−2) (51)

(compare (8)), and integrable equations of such a form are apparently unknown.
The higher conservation laws and symmetries for Eq. (50) can be obtained from the conservation laws

and symmetries of the corresponding system (47) [9]. As an example, we present the formulas for the
density of the simplest local conservation law

p =
(
u̇+ η

U
− ν

)
(c1ew1 + c2e

−w) + c3 log
u̇+ η

U

and for the simplest higher symmetry

uτ =
u̇+ η

U
(c1ew1 + c2e

−w)

(here, c1, c2, and c3 are arbitrary constants). Finally, we can easily verify that Eq. (50) is invariant under
involution (25). As before, this implies that the function ũ = v found from system (49) satisfies Eq. (50)
along with u. Therefore, the auto-Schlesinger transformation for the new Eq. (50) is

ũ = u− log
(
u̇+ η

U
− ν

)
. (52)

In the second example, we rely on the known integrable system of equations that looks like

u̇ = uxx +
2

v − u

(
u2

x +R(u)
)
+
1
2
R′(u),

v̇ = −vxx +
2

v − u

(
v2

x +R(v)
) − 1

2
R′(v).

(53)

Here, d5R(z)/dz5 = 0, i.e., there are five arbitrary constant coefficients in the system. The stereographic
projection of the Landau–Lifshitz equation on a sphere is represented in such a form (see, e.g., [5], [13]).

Superficially, the Hamiltonian structure has the previous form,

u̇ = ϕ(u, v)
δH

δv
, v̇ = −ϕ(u, v)δH

δu
,

but the formal variational derivative is given by

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+D2

x

∂

∂uxx
− . . . ,

where Dx is the total derivative with respect to x (the definition for δ/δv is similar). We represent the
coefficient ϕ and the Hamiltonian H for system (53) in terms of the functions ψ, S, and Q. Let

ψ =
1

v − u
, S = u2

x +R(u), Q = uxx +
1
2
R′(u). (54)
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Then

ϕ = − 1
ψ2

, H = Sψ2 +Qψ +
1
12
R′′(u).

The transition to the Lagrangian equation is again given by the invertible change of variables found
from the first equation in system (53). The equation itself is cumbersome, and we only present the integrable
Lagrangian

L =
1
S
(u̇ −Q)2 − 1

3
R′′(u). (55)

The explicit form of the equation can be obtained using the standard formula

DtLu̇ =
δL

δu
= Lu −DxLux +D2

xLuxx . (56)

In this case, the involutions are u↔ v, t→ −t for system (53) and t→ −t for Eq. (55) with (56). Therefore,
the formula for ũ = v found from (53) again gives the autotransformation for Lagrangian equation (55)
with (56):

ũ = u+
2S

u̇−Q
. (57)

We present the two densities p(i) of the local conservation laws p(i)
t = q

(i)
x for the obtained equation (the

first of these is the standard one):

p(1) = u̇Lu̇ − L =
1
S
(u̇2 −Q2) +

1
3
R′′(u), p(2) =

1
S
uxu̇.

Equation (55) with (56) belongs to the class of equations of the form

ü = F (u̇, u̇x, u̇xx, u, ux, uxx, uxxx, uxxxx) (58)

(as well as the well-known Boussinesq equation) and is seemingly new in form. In the particular case of
R = 0 corresponding to the Heisenberg model, the formulas are significantly simplified, and we easily can
write the explicit form of the equation:

Dt

(
u̇

ux

)
= Dx

(
uxxx

ux
+
3
2
u̇2 − u2

xx

u2
x

)
,

L =
(u̇ − uxx)2

u2
x

, ũ = u+
2u2

x

u̇− uxx
.

The Lagrangian equations and the corresponding Hamiltonian systems indicated in this paper are
related by invertible changes of variables; therefore, all the autotransformations can be easily extended to
the Hamiltonian systems of equations. For example, using the transformation AT: (u, u̇) → (ũ, ũt) given
by (27) (we also can express ũt in terms of ui and u̇i by differentiating the formula in (27) with respect to
t and using relativistic Toda chain (11)), we pass to the composition Lg ◦AT ◦Lg−1 : (u, v) → (ũ, ṽ) (the
map Lg is defined by (19)) and obtain the autotransformation for Hamiltonian system of equations (18):

ũ = v, ṽ = log
ev1 + ev

e−v + e−v−1
− u.

Schlesinger transformation (52) is similarly extended from Eq. (50) to the corresponding system (49) and
consequently also to the initial Hamiltonian system (47):

ũ =
1
v
, ṽ = (uv + ν)

v1v−1

v
− νv. (59)

This transformation depends on only ν but is applicable for any values of the coefficients ν, α, and η in
system (47). The autotransformation for system of equations (53) is well known (see, e.g., [5], [6]) and is
similar to transformation (2) for system (1).
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5. Conclusion

The main results in this paper are the auto-Schlesinger transformations that have form (9) and are writ-
ten for all integrable Lagrangian equations (8) in the list obtained in [8]. The list comprises six equations,
five of which have the same structure (31). The explicit form of these equations and the corresponding auto-
transformations are given in the separate list in Sec. 3. The sixth equation together with the transformation
are given by (44) and (46) (also see (34), (42), and (45)).

In the construction of the Schlesinger transformations, we essentially use the fact (pointed out in [9])
that the standard Legendre relation between Lagrangian form (12) and Hamiltonian form (20) of the
same equation in this case is described by the invertible “triangle” change of variables of form (23),
which is explained by the specific character of the Lagrangians and Hamiltonians. As a result, we obtain
Schlesinger transformation (9) by simply rewriting one of the equations in the corresponding Hamiltonian
system (20), (10) as the formula for defining ũn = vn.

In addition, we demonstrate that proceeding in accordance with the scheme described in this paper, we
can construct integrable Lagrangian equations along with the allowed autotransformations in other classes
of equations. As an example, we obtained Eq. (50) with transformation (52), which belongs to class (51)
and is related to Ablowitz–Ladik system (47). Another example, Eqs. (54), (55), and (56), was obtained
from the Landau–Lifshitz equation, more exactly, from its stereographic projection (53). This example
belongs to the equations of type (58), and its auto-Schlesinger transformation is given by (57). We can
construct other equations of classes (51) and (58) similarly, and we plan to do this in a subsequent paper.

Finally, because the Lagrangian equations and Hamiltonian systems given in this paper are related by
invertible changes of variables, we can extend the autotransformations in hand to all Hamiltonian systems
of equations. As an example, we presented such transformation (59) for Ablowitz–Ladik system (47).
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