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Miura type transformations and nonlinear evolution scalar and vector equations related by these transformations are consid- 
ered. It is shown how to construct other such transformations and equations, using the given ones. 

As is known (see ref. [1])  the Miura transfor- 
marion is 

w = u x + a - u  2 (1) 

and links together the following well-known 
equations, 

ut =Uxxx + 6( ot-u2)Ux , (2) 

wt = Wx.~ + 6WWx , (3) 

where ot is an arbitrary constant. We shall be inter- 
ested in analogous objects in the more general case 
and consider evolution equations of the form 

ut =f (x ,  u, u~, Uxx, ..., O"u/Ox") (4) 

and transformations of the form 

w=p(x ,  u, Ux) , (5) 

where u, f w, p are N-vectors. This Letter consists of 
a theorem on the construction of such transforma- 
tions and equations related by them, and of examples. 

Let us denote the vector functions r(x, u, ux, ..., 
Omu/Ox m) by r[u] and write down eqs. (4) in the 
following way, 

ut =J tu]  • (6) 

Equation (6) is said to be reduced to an equation 

wt=h[w ] (7) 

via transformation (5) if formula (5) yields a so- 
lution of (7) for any solution of (6). In other words, 
the condition 

oAp) = h i p ]  (8) 

has to hold. Here O: is the differentiation with re- 
spect to t by virtue of (6), 

Of(p) = p , f  + pu~DxGO , 

Dx is the differentiation with respect to x, 

Dx(.D =f~ + f~ux + fuxU~ + .... 

and pu, Pux, f~, f,x, ... are matrices of partial deriva- 
tives. For example, p~= (Opi/duO, where pi, u j are 
coefficients of the vectors p, u. 

Theorem. Let eq. (6) and the equation 

U, = F[ U] (9) 

be reduced to eq. (7) via the transformations 

w=Dx(a(x ,  u))  +q~(x, u ) ,  (10) 

w=Dx(b(x ,  U) ) +~g(x, U) ( 1 1 ) 

respectively, and let the following matrix be non- 
degenerate, 

- a , ( x ,  u) by(x,  U) 4:0 (12) 
~o~(x, u) -~uv(x, U) " 
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Then there exists an equation 

v, =g[v] 

that will be reduced to eqs. (6), 
mations of the form 

u=q(x, v, vx) , 

U=Q(x,v,v~) 

(see diagram (19) ). The formulae 

b(x ,Q) -a (x ,q )=v ,  

~o(x, q) -fit(x, Q) =v~, 

g[v] =by(x, Q)F[Q]-au(x, q)J[q] 

(13) 

(9) by transfor- 

(14) 

(15) 

(16) 

(17) 

(18) 

enable one to construct the vector functions q, Q, g:. 

( f )  , <g) 

<h) ~ <F)  

(19) 

It will be noted that if 

l a u l ~ 0 ,  Ibvl # 0 ,  (20) 

then one can apply point transformations 3=  
a(x, u), U=b(x, U) to eqs. (6), (9) and bring (10), 
( 11 ) into a form such that a=u, b= U. In this case, 
instead of ( 12 ), ( 16)-  (18) we have the more sim- 
ple nondegeneracy condition 

I ~0u (x, u) -fitv(x, U) I # 0  (21) 

and the following formulae for q, Q, 

~o(x, q) -~u(x, q+ v) =v~, , (22) 

Q=q+v, g[v]=F[q+v]-f[q].  (23) 

Proof We shall consider pairs of solutions (u, U) 
of eqs. (6), (9) which satisfy the constraint 

Ox(a(x, u) ) +~o(x, u) 

=Dx(b(x, U))+fit(x, U). (24) 

Let us show that (24) is compatible with (6), (9). 
Differentiating (24) with respect to t we obtain the 
compatibility condition 

Oy(Dx(a) +~o) =OF(Dx(b) + fit). (25) 

Now let us use that eqs. (6), (9) are reduced to eq. 
(7) via ( 10 ), ( 11 ). This allows us to write down the 
condition (25) as follows, 

h[Dx(a) +fp] =h [Dx(b) +fit] (26) 

(see (8)) .  It is obvious that (24) implies (26). Thus 
system (6), (9), (24) is compatible, and relation- 
ship (25 ) holds for the solutions of this system. It is 
easy to see that (25) can be expressed in the form 

Dx( auJ) +tpuf =Dx( bvF) + fitvF. (27) 

Let us introduce a new vector function in the fol- 
lowing way, 

v=b(x, U) -a(x ,  u) . (28) 

In virtue of (24) the equality 

vx=~o(x, u)-fit(x, U) (29) 

holds. It follows from (12) that the change of vari- 
ables (28), (29) between u, Uand v, vx is invertible. 
The inverse change of variables has the form (14), 
( 15 ) where q, Q satisfy ( 16 ), (17). It is clear that 

-fitul\Qv Qvx " 

Differentiating (28) with respect to t we obtain ( 13 ), 
( 18 ). Hence, v satisfies (13), ( 18 ) for any solutions 
of (6), (9), (24). We have to prove that u, U are 
solutions of (6), (9) for any one of ( 13 ), ( 18 ). That 
is to say, we have to establish that 

Og(q) -j~q] =Og(Q) -F[Q] =0 (31) 

(see (8)) .  To do this, let us transform (31) into 

(qv q~x~( g ~ = ( J [ O ] ~  (32) 
Q, Q,,xlkDx(g).l \F[Q]J 

and note that (32) is equivalent to 

g=buF[ U]-auf[u] , (33) 

Dx(g) = ~0uf[ u ] -fitvF[U] (34) 

(see (30)) .  It is seen that (33) follows from (18) 
as well as (34) follows from (27), (33). 

So we see that in order to obtain ( 13)- (15)  from 
( 6 ), ( 7 ), ( 9 ) -  ( 11 ), we consider the constraint ( 24 ) 
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and choose a new variable v in a special way. The 
result can be generalized if one can choose such a 
variable in the case of more complicated constraints. 
Note that the question of the choice of new variables 
in constraints analogous to (24) was investigated in 
ref. [2]. 

There are many instances in which the theorem 
can be applied. We shall discuss here some of them. 
All scalar equations and transformations of the form 
(4) and (5) we shall deal with have been well-known 
for a long time. 

The functions f, F, h as well as the transformations 
(10), ( 11 ) may coincide with each other. This means 
in particular that ( I 0), ( 11 ) may be auto-transfor- 
mations. On the other hand, if we are given only one 
transformation, we can take advantage of the theo- 
rem too (see below). 

In the first instance we shall assume that ( 6 ), (10) 
coincide with (9), ( 11 ) respectively. The diagram 
(19) will become such that 

( h ) , - - ( f ) ~ ( g )  . 

Let us consider scalar equations of the form 

wt = ( D~ + 4wDx + 2Wx)H[ w ] ,  (35)  

u, = ( D 2 x + 2 u D x + 2 u x ) H [ u x - u  2 ] , (36) 

where H is an arbitrary function. They are related by 
means of the Miura transformation w= Ux-  u 2 for 
any H. If  H = w ,  then eq. (35) is the Korteweg- 
de Vries equation (3). We have other integrable 
equations as H =  Wx~+ ?w 2, 7e { ½, 3, 8). With the help 
of (22), (23) one can easily construct the equation 

V t = 2 ( D x + V x ) H [ ¼ ( 2 V ~ x - V 2 - e 2 V ) ]  (37) 

being reduced to eq. (36) by 

2 u = V ~ + e e  V, o-2=1. 

It is clear that one may apply the theorem once more. 
As a next example consider the Korteweg--de Vries 

equation (3). To obtain more results than in the pre- 
vious example, we should use the existence of the pa- 
rameter ot (see ( 1 ), (2)) .  Let eqs. (6), ( 7 ) and the 
transformation (10) be (2),  (3), ( 1 ) respectively. 
As (9),  ( 11 ) we take (2), ( 1 ) with a parameter fl 
in place of tx. Then eq. (13) is the Calogero- 
Degasperis equation 

Vt=Vxxx-½Vax-3(e2V+72e-2V)Vx+3~Vx, (38) 

where 7 = f l - a ,  J = f l + a  (we have performed the 
point transformation v=eV) .  The transformation 

2u=Vx+Te-V+xe v, K2=l, (39) 

reduces (38) to (2) with 2 8 = $ + r 7 .  In a similar 
way, one can construct an equation that will be re- 
duced to (38). 

It is possible to use the fact that the right hand side 
of (3) is expressed in the form Dx(wxx+3W2). This 
means that there is the equation 

Ut=Uxx~+ 3U2x +e  (40) 

linked with (3) via 

w = U x .  (41) 

If (6), (7), (9), (10), (11) are (2), (3), (40), (1), 
(41 ) respectively, eq. ( 13 ) will be 

Vt=Vxxx + 3V2xx/4( Ot--Vx) + 3v2 +~ . (42) 

The transformations (14), ( 15 ) are 

U=(Ol--Vx) 112 , U=(OI--Vx)I/2@V. 

In a similar way one can use the fact that (2) is ex- 
pressed in the form 

ut = Dx( ux~ + 6 o t u -  2u 3 ) • 

In ref. [3] eqs. (38), (42) and other equations re- 
lated to (3) were obtained from (3) in another way. 

Let us discuss the well-known (see refs. [4-6] ) 
integrable system 

u,  = u~.x + u u x  + VVx , 

- v t = 2 v ~ _ ~ + u v x .  (43) 

The transformation 

U = u , c + e ( v 2 - 2 u  2) , V = v x - 4 ~ u v ,  (44) 

where e=~2, links together (43) and 

ut = Ux:.x + Ox( ½ ~ x  - ¢ u v 2 -  ]¢u3) , 

v t = - 2v x ~  + D,,( VUx + 2¢gu2 + 1EV3) (45) 

(see refs. [ 5,6 ] ). This allows one to obtain the system 

P, = P ~ x  - 3qxqx~ + ½p,,[ 3q2x _ p 2  _ ee2p ch (2q) ] ,  

qt = - 2qx~x + 3qx p ~  + ePx e 2v sh (2q) 

+lq, :[3p2--q2x+ee2Vch(2q)  ] .  (46) 
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Note that formulae (22), (23) give a system tTt= 
A[fi, g], ~,=B[tT, ~] which does not coincide with 
(46). However, setting ~ = e  p ch(q),  g=2e p sh(q), 
22 + 2 = 0 we have (46) and the transformation 

u=3px+trePch(q),  v/2=3qx+trePsh(q),  (47) 

where 4a2= 1. System (46) appears to be new. 
There are several possibilities to construct other 

integrable systems. In the first place, one can take 
advantage of (47). In the second place, one can act 
as in the case ofeq. (42), for (45) has a correspond- 
ing form. Another possibility is explained by the fact 
that there are the system 

1 2 2 ut=Ux~x+~(ux+R ) + a ,  

v t=-2Vxxx+ 32Ux~x ~ 3 +Dx(vUx--~v ) (48) 

and the link between (43), (48) 

U=ux,  V = R ,  R = v x - 2 U ~ + ~ 2 v  2, (49) 

where 22+ 2 = 0, ot is an arbitrary constant. We can 
use (49) together with (44). 

Unlike all the above transformations of  the form 
(10) and ( 11 ), the following ones, 

U = u ~ - u 2 v ,  V=v,  (50) 

U=u,  V = - v x - V 2 U ,  (51) 

do not satisfy condition (20). Both (50) and (51) 
relate (see refs. [7,8] ) 

IX t ~ ldxx - -  2U2Vx  --  2t,/3t; 2 , 

v~ = - Vxx - 2v2ux + 2v3u 2 (52) 

to the nonlinear Schr6dinger equation 

U t = U ~ + 2 U 2 V ,  - V , = V ~ x + 2 V 2 U .  (53) 

Let us make use of  formulae ( 16 ) -  ( 18 ) in the case 
when (6), (9) are (52), and (10), (11) are (51), 
(50) respectively. To set in the obtained system 

p=Z~/ / ( t /~ -  1 ) ,  q = 2 f / ( ~ / ~ -  1 ) ,  

they will be 

qp2 + 2pp~ qx 
Pt = Pxx  

2(pq+ 1 ) 

pq2 + 2qq~ p~ 
q t = - q x x +  2(pq+ 1) (54) 

The links between (52) and (54) are 

U=px/2R, v = ( R + l ) / p ,  (55) 

u = ( R + l ) / q ,  v = - q x / 2 R ,  (56) 

where R = ( p q +  1) ~/2. System (54) is closely con- 
nected with the Heisenberg model. The transfor- 
mations (55), (56) arose in ref. [9] in connection 
with discrete models. 

It will be observed that there exist examples of 
vector equations and transformations of arbitrarily 
high dimension the theorem can be applied to. For 
instance, there are multi-field generalizations of 
(50 ) - (53 )  in ref. [10]. 

It is interesting that the described scheme of the 
construction of Miura type transformations and 
nonlinear evolution equations yields results in the 
case of  the Kadomtsev-Petviashvili equation (59). 
We start with the following transformation (57) (see 
ref. [11])  and eqs. (58), (59), 

W = U x q - O l - - l d 2  q - ~ D ~  -l Uy,  (57) 

ut = u .... + 6 (c~- u 2)ux + 3~2D~ t uyy 

+ 6eUxD x ~ uy , (58) 

wt = wxxx + 6WWx + 3e2D~ - l Wy~ , ( 59 ) 

where or, e are arbitrary constants, Dx  ~ is an inverse 
of Dx. An analog of the relationship (24) has the form 

( U - u ) x = O l - f l + U 2 - b l 2 - ~ D ~ l ( U - U ) y ,  (60) 

where U satisfies (58) with fl instead of o~. A new 
variable is chosen to be 

e V = U - u .  (61) 

Representing (60) in the form 

U+u= Vx+Re - v ,  

R=~+EDx~(eV)y,  y = f l - ~ ,  (62) 

we can express U, u via V. Now, differentiating (61 ) 
with respect to t and using (58), (61), (62), we 
obtain 

Vt = Vxxx - 1 V3x _ 3 (e2V + RZe_2V) Vx 

+3[O+eDx~(Re-V)y]Vx+3~Rye - v ,  (63) 

where d = f l + a .  It is not hard to verify that eq. (63) 
is reduced to eq. (58) with 2a=d+a3 ,  by means of 

2 u = V x + R e - V + x e  v, x 2 = l .  (64) 
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It is readily seen that i f¢=0,  then (57) - (59) ,  (63), 
(64) coincide with ( 1 ) - ( 3 ) ,  (38), (39). In partic- 
ular, eq. (63) generalizes the Calogero-Degasperis 
equation (38). 

In conclusion I should like to thank A.V. Mikhai- 
lov, V.V. Sokolov and S.I. Svinolupov for helpful 
discussions. I am also grateful to A.B. Shabat be- 
cause some of the ideas of this work arose thanks to 
him. 
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