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Abstract. A direct and elementary scheme for the construction of Miura-type trans-
formations and discrete differential equations related to them (scalar and vector) is
presented. The scheme is illustrated using as examples the Volterra and Toda models. A
discrete-differential analogue of the Calogero-Degaspertis equation is discussed in detail.
This example is used to show how to construct conservation laws, higher symmetries, and
solutions for an equation obtained with the help of the scheme.

1. Introduction

A construction scheme for Miura-type transformations of partial differential equations
was presented in [1] (analogous problems were discussed in [2]). In [1] the situation is
discussed in which two equations (F) and (G') are reduced to a third one (T') by Miura-
type transformations (these transformations have a special form}):

(F) «— (H)
. o)
(T) «— (G)

It is shown that there exists an equation (H) which can be reduced to (F) and (G) by
transformations of the same type. It is explained how to construct (H) and correspond-
ing transformations. If the given equations (F), (G), (T) possess conservation laws
and symmetries, the new equation (H) will have them too. There are many instances
in which the scheme can be applied.

The simplest example is the Korteweg—de Vries equation #,=4,.. +6fii.. As the
equation (F), take the modified Korteweg-de Vries equation {MKdv equation) u,=
Uex — 6871, related to the Korteweg—de Vries equation by the well known Miura trans-
formation #=u,—u* [3]. The eguation (G) and corresponding transformation are the
MKdv equation and Miura transformation again, but with v in place of u. Let us impose
the constraint u, —u>=uv,—v* and rewrite it as follows: (z—v),=u"— t*. Now we can
introduce a new dynamical variable w=#— v, hence w, =2 —v”. The variables # and v
can be easily expressed in terms of w, w,:

2u=wlw,+w 20=w"lw,—w. 2
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Differentiating w=u— v with respect to ¢ by virtue of the MEdv equation and wsing (2),
we obtain the equation (H) of (1):

PSP — 31— 3 €27, 3

where r=In(w), It is not hard to verify that (3) is reduced to the MKdv equation by
the Miura-type transformations (2). In other words, the formulae (2) take any solution
of (3) into a solution of the MKdv equation. Equation (3) is a particular case of
the well known Calogero-Degasperis equation [4]. Miura-type transformation of the
Calogero-Degasperis equation into the MKdv equation was found in [5], where inte-
grable Korteweg-de Vries-type equations were classified up to transformations of this
kind.

An analogous scheme for discrete differential equations will be discussed in the
present paper. As examples we shall consider the Toda model, the Volterra equation,
and a discrete differential analogue of equation (3).

2. General schemes

We consider systems of discrete differential equations (chains} of the form
(un)r=F(un+k, Upsi=1s Upt k=25 01+, un+m)- (4‘)

Here u; are vector dynamical variables, Fis a vector function, k and #1 are fixed integers,
and # is an integer parameter. The transformations under consideration are of the form
fin=a(tin+1, 1,). Let D be the shift operator which acts on vector functions depending
on a finite number of dynamical variables. The shift changes only the subscripts of the
variables u; for example

D(h(uz, u, u-1))=h(us, u,, u).

We see that the chains and transformations under consideration are invariant under
the shift. This means, in particular, that any transformation &,=a(ty+ 41, #a,) (fis a
fixed integer) can be expressed in the form we consider (one should denote &, by &,4).
For the chains (4) the notation wu,, = F[u,] will be used. As a rule, for brevity we shall
not write the parameter n. For example, the well known (scalar) Volterra equation
Uy =tUn(t4n +1 — 14,1} Will be of the form

Uy=ttte; —u_). (5)

One can write down formulae below at n=0.
Let us enumerate the conditions sufficient for the scheme to be applied.

Condition 1. There are two chains
u,= Flu] v, =G[v] (6

which are reduced to a third one #,= T'[if] (see scheme (1)) by transformations of the
form

d=alu, u) ti=b(v,, v). (N
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Condition 2. The constraint

a(uy, u)y=>b(v, v) 3)
can be expressed in the form
D(p(u, v))=q(u, v) (9)

({8) and (9) are equivalent). Coefficients of the vectors p, g are functionally independent.
Condition 1 means, in particular, that the equality
a,F+a,D{F)=Tl[a]

holds identically (here a,, a,, are Jacobi matrices, for example a,=(da’/du’), where
', v’ are coefficients of the vectors a, #). The same identity takes place for b, G. There-
fore, differentiating (8) using equations (6), we obtain I'[a] = T'[]. This relationship is
a consequence of (8), i.e. constraint (8) and equations (6} are consistent.

To obtain a new chain, let us consider the system (6), (8) (or (6), (9) which is the
same). We shall need the notion of independent dynamical variables. It should be
remarked that in the case of (4), for example, the dynamical variables u; can be regarded
as independent. In the case of the system (6), (9), the functions

W =P (U, Un) (10)

can be considered to be independent. The new chain is constructed in terms of the
variables w;. The change of variables (10} is invertible, for (9) implies w=p(u, v) and
w1 =g, v), and by condition 2 the variables u, v are expressed via w, wy:

u=r{wy, w) v=s(w), w). (11)

Differentiating w=p(u, ©) with respect to ¢ using equations (6) and (11}, we easily
obtain a chain in terms of w;:

w,=Hw]=pr, ) F[r] + pur, $)G[s]. (12)

If conditions 1 and 2 hold, we construct a new chain by the formula (12). New trans-
formations are given by (11).

1t is important that (12) is reduced to (6) by (11). Let us explain why this is true.
1t follows from (9) that D(p,F+p,G)=gq,F+ q,G. Comparing this equality with (12),

we find
H \_{(p. pu)(F[u])
(D(H)) (qu g./ \GIol/’ (13)

Note that one can obtain a chain in terms of w;, using the relationship w,=q(x, v).
However, as (13) shows, this chain will coincide with (12). The equality (13) is equiva-

w1 ( ) [ ]

Taking into account the independence of the dynamical variables w;, we see that the
last equality holds identically. Thus, formulae (11) yield solutions of egs. (6) for any
solution of eq. (12), We are led to the following result.

Theorem. If conditions 1, 2 are valid, then equation (12} is reduced to equations (6)
by the corresponding transformations (11).
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3. Discrete-differential analogue of the Calogero—Degasperis equation

First the scalar cagse will be considered, and the scheme will be illustrated using as an
example the Volterra equation (5). We shall obtain a discrete differential analogue of
the Calogero-Degasperis equation (3) and show how to construct local conservation
laws, higher symametries, and exact solutions for this equation.

3.1. Volterra equation example

The scalar chain (35) is called, owing to its properties, not only the Volterra equation
but also the difference kav equation. It is known that there are discrete differential
analogues of both the MKdv equation and the Miura transformation:
;= (" — @)1ty — 4-1) (14}
d=w+ay(—a) (15)
[6-8]. Here (15} reduces (14) to (5) for any constant ¢. As the chain (G) and corre-

sponding transformation (see scheme (1) and condition 1), use {14) and (15) again,
but with v and # instead of » and a. The constraint (8) takes the form

(uta)u—ea)=(v+B)v;—F) (16)

and can be expressed as follows: (v, ~ 8)/(u1 —a)=(u+ o) /(v+ B). Condition 2 holds
if a#0 or $5£0. In accordance with the scheme, the invertible change of variables
is defined by w=(v—§)/(u—a). It is convenient to carry out the additional point
transformation W, = (w,+ 1)/(w,—1):

w=(o+u—n)/(v—u+p) (17)

where p =a— f§, 1=a + . The function W satisfies a beautiful chain, being the discrete
differential analogne of the Calogero~Degasperis eguation (see (3)):

u,=R(u)( LI ) (18)

wtu utu_,
R(w)= (- 1)(n* — p*). (19)

Discrete Miura transformation of the chain (18}, (19) into the modified Volterra equa-
tion (14) is given by

_pumut 3 (n—p)m =)+ (20)
utu

The chain (18), (19) has been obtained in [9] (see also the introduction of [10]). In
[9] a complete list was given of scalar chains of the form u,=f(u,, 1, u-,) possessing
an infinite set of local conservation laws. The author constructed conservation laws
using transformations similar to (20}, which were found by complicated calculations.
Unfortunately, these transformations (and also (20)) are found only in the PhDD thesis
of the author.

=

3.2. Local conservation laws

Let us discuss the didactic example (18), (19) at greater length in order to demonstrate
that the scheme permits one, starting with an integrable chain, to construct chains
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which are also integrable. In particular, if we start with a chain possessing local conser-
vation laws, the new chain will have them as well. The local conservation law of the
chain (4) is of the form (p[u]),=(D—1)(c[u]), where p, o are scalar functions of a
finite number of the variables ;. It should be remarked that, in the case of the periodic
closure u,, y=1,, we have a constant of the motion #=Z} D'(p), since &, =0. If a chain
is reduced to (4) by a transformation #i=p[u], this chain possesses the conservation
law (pl@[u]]).= (D — 1) (clg[u]]).
Thus the Volterra equation (5) possesses conservation laws with densities

o =11n(u) PP =u PP =yt i (21)
(e =Yu+u-)), P =uu.,). The conserved density of (14) corresponding to p® is
p=(u+ ) — ). For the chain (18), (19) we have

_ (= m)Qd — D(putn)
(a0 J(uy + 1)

There exist simpler conserved densities of the chain (18), (19):

2
ln( R(u) 2) jau +6du
{1 +u) R(u)
where g, § are arbitraty constants.

Let us recall that the Volterra equation has an infinite set of local conservation laws
because it admits Lax representation L,= AL~ LA with

L=u/?D+u'?D7

24 =)D — "D
Operators of this kind are multiplied as follows: (fD¥)(gD™)=fD*(g)D**™. The func-
tion res(L*) (namely the coefficient of L* at D% is conserved density. For example,
res(L?) =u; +u~2p2, res(LY =wu, + (s +u)* +uu_, ~4p™ (densities p, p are equiva-

lent if p— pelm(D— 1)). Thus, the chain (18), {19) also possesses an infinite set of
local conservation laws.

(22)

3.3. Higher symmetries

There exists the possibility to construct higher symmetries of the new chain. If there
exist symmetries of the chain (F), (G) (see scheme (1)) which are reduced to a symmetry
of (T) by the same transformations, then the described scheme enables one to construct
a chain which is a symmetry of the new chain (H).

As is known, the chains (5) and (14) are Hamiltonian. This means that we can
easily obtain their higher symmetries. In the case of the modified Volterra equation
(14), symmetries are given by

u.=Kép/6u 23)
K=(u2-a2)(D—D_')(u2—a2) 24)

where p is a conserved density. The formal variational derivative dp/8u is the function
T, 8(D'p)/0u. For instance, if p=(u+ a)(u; — ), then §p/Su=u, +u_,, and the formu-~
lag (23), (24) give the simplest higher symmetry. In the case of the Volterra equation
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(5), there exist two Hamiltonian operators:
KV=u(D=D"Yu (25)
K®P=u[uD*+ (g +u)D—(u+u_ )" —u_ D7 u. {26)
Let p be some conserved density of (5), and ¢ be a conserved density of (14), constructed

with the help of the discrete Miura transformation (15). It is not hard to verify that
the symmetry (23), (24) with p=g¢ is reduced by (15) to the following chain:

4= (K@ +4a*K ) 5p/u. @7)

This is a symmetry of equation (5). The construction scheme can be applied if (27)
does not depend on the parameter «.
There are conserved densities of (5) p™, p™, ..., such that

K800 18u=KP§p D/ 6u KW /5u=0 (28)
(o™, p, p™ are given by (21); it will be explained below how to obtain the others).
If

p=p(k)_4a2p(k— |]+ (4a2)2p(k-'2]_ Lt (_4a2)k-lp(l)

then the symmetry (27) takes the form (23), (25) with p=p%**? (i.e. v, = KN p** 1/
du) and does not depend on ¢. In particular, the symmetry (23), (24) with

p=w+a)(u —a)—2a In[(u+ a)(u;— )]

of the chain (14) is reduced by (15) to the symmetry (23), (25) with p=p™ of (5), and
we can use the construction scheme to obiain the simplest higher symmetry of (18),
(19). Let us write it down for the chain (18) with

Rw)y=au*+ bl +c (29)
{a, b, ¢ are arbitrary constants). This syrametry of (18), (29) has the form
- i R(u)
=RW(1—-D)——(D+1 l:———-—-ﬂ-— u{l.
“ @) )u|+u( ) {ty + ) (u+u_y) ¢

In this way we can construct an infinite hierarchy of higher symmetries of the chain
(18), (19}.

Returning to the relationships (28), we denote u8p‘?/8u by k. The simplest way
to find 4 is to introduce the formal infinite series Q=AD" + A4 +FO72+ | [11].
Equations (28) are equivalent to

w (KD -2k g)=0. (30)
Applying the operator
(D-D7'D(Q)+Q(1+D7)

to (30}, we can see that (30) is equivalent to

u[D(Q)+ Q@+ DI = A+ e() (31)
where ¢(A) is a A-dependent constant of integration. The coefficients £ can be explicitly
found using (31). Setting c(A)=—A4/4, A" =3, we obtain AP =u, K =u(u, +u+u.,).
It can be proved that A”(i>2) are homogeneous polynomials, such that udh®/3u=
(i— 147, As conserved densities p' satisfying (28) we may take the polynomials
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(i— 1)7'A, Note that A% =p@ of (21), 34~ p™ (formal variational derivatives of
equivalent conserved densities coincide with each other).

3.4. Soliton solutions

Let us discuss the problem of the construction of solutions. If one can construct solu-
tions of the system {6), (8), then one can obtain solutions of the new chain (12) by
means of formula (10). In the case of the chain (18), (19), this system (6}, (8) becomes
one consisting of (14), (16) and the following equation:

v,=(v2—]32)(01-v_,). (32)

The constraint (16} is the Biacklund transformation for the modified Volterra equation
(14), and, therefore, it is possible to construct multi-soliton solutions of the system
(14), (16), (32).

In order to make the formulae simpler, let us pass, by means of the point transforma-
tion #=u+a, =v+p, i=—1, from (14), (16), (32) to

= (20 — w)(ty ~ u-1) (33)

,= (28 — )v(t, —v_y) (34)

(2e—uyu=02—v)v (35)
and, by d=u"", {=—1, from (18), (19) to (18) with

R(uy=(*— Di(a+ )’ — (2 - Y] (36)

It follows from the construction scheme that one can use not only the formula (10) but
also the following one (seg (9)): W+ = g(tn, vn). Therefore there is the transformation

t=(u—v)/(u+v) {37)

of (33)~(35) into (18), (36). This transformation will allow us to construct solutions
with special properties. First we shall write down solutions for the system of equations
(5) and

Lip=2Ap o= A9 (38)
{L,, A, are given by (22)). Then we shall use the fact that the function
#=u'"%p/p-, (o=D'(g)) (39)

satisfies (33) with 2e¢ = 4, and the equality (2¢ —#,)if=u takes place.

The dressing method gives the following real solutions « (i=1,2,3,...) of the
Volterra equation (5) and (s, vi), w(&:, v;) of (38) with u=u", 1=2 cosh(s,)
(here &, v, are real parameters, 0< g, < £;< ;<. ..). If i=1, then &V=1,

(&1, vi)=explya(&1, v1)]
w(e, vi)=expl-ya(er, v1)] (40)
yul&, v)=netisinh(2e)+v
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where # is the discrete parameter. Also
u(“' N (,,é,”)'"Z(u@,)‘ﬂeg"’ef_f{z;ﬂ“’ 9@1
" (einr, Vi) =AWU?, 070 (&141, Vins)
¥ g, Vinr) = =B, 6NN, visr)
where
09 =g, v))+ v, vi)
and A is the following operator:
Atw, ) =u}'"u (o797 "D~ 9l 9T} D).

Now we can easily construct solutions of the system (33}-(35). For any fixed i, we take
functions of the form

O=¢ (Pm(“—'n vi)+ 02‘!’(0(5:'5 vi)
W =30 %5, 1)+ cay (8, 1i)

where ¢, 20 are constants, ¢, + ¢ #0, ¢3+cs #0; 8, 1R, 8,>&-1(5,>0if i=1). The
functions

=)0 /P-, UG 75 &

satisfy (33)-(35) with & =cosh(e;), B=cosh(d;) (see (39)). In accordance with (37),
the following formula

(®/ Dy — /Y- )/ (O/D +¥/¥-)

yields solutions of the chain (18), (36). One can prove that «?, p(e;, v)), ¥¥(g,, v,)
are positive for any ne Z, t R and do not have singularities. It is clear that the solutions
of the chain (18), (36) also do not have singularities. They are also bounded.

Let i=1, ®=cosh y,(&1, v)), ¥ =exp 1,(5), 1) (see (40)). We obtain for the chain
(18), (36) with a =cosh(&,), f=cosh{§,) the following solution:

___cosh vl &1, vi)—exp(8) cosh y,_ (&1, vy)
cosh ya(&1, v;)+exp(8)) cosh y,— (&1, Vi)

Here u,~tanh[(£e&,— §,)/2] as n—xoo, We are led to another not very complicated
example if i=2 and ®=P(sz, v;), ¥=¢*(82, 7). In this case & =cosh(s,), f=
cosh(d2), and u,=(p—q)/(p+q) with

cosh| y.(&,, vi}+2(&2, &1)]
cosh[ y,—1(&1, vi}+2(&2, £1)]

p=exp(&;)

coshi yu(&1, v1) +2(82, &))]
coshf yp. (&1, vi) +2(82, &1)]

2(&, &) =1 In[sinh(e— £,)/sink(s+ &))].

g=exp(d2)

Now u,—~tanh[(&;— 8;)/2] as n—=%o0.



Construction scheme for discrete Miura transformations 6347

3.5. Zero-curvature represeniation

After what has been said above, it is not very surprising that the chain {18), (29) has
the zero-curvature representation L= D(A)L— LA, where

_ Lpf fu cﬂ."—ﬂ.uz)
L=R) (a/l_'uz—l Fu

_ 1 ( g(AY(u—u-y) f(x)(xuu-l—cr’))
utu  \fYA—ariuuy)  —g(A)(w—u-1)
(FA)*=A+acA2+b 2g(A)=A"—acd™,

Although the function f(A) is not rational, those who wish can easily obtain rational
dependence on the spectral parameter A (and polynomial dependence for the matrix
L).

4. Other examples

In this section we coansider systems of two discrete differential equations, related to the
Toda model. It is demonstrated, in particular, that there exist many instances in which
the proposed approach can be applied. Also, a useful and elementary addition to the
construction scheme is discussed.

4.1. Toda-model example

There are quite a lot of cases in which we can use the construction scheme. To be
convinced of this, let us consider a rich example related to the polynomial Toda chain

w,=u(v,—v) V=u—toy. (41)
There exist seven chains and eight transformations of the form
#=a(u, v, 1, ) O=0(u, v, 1y, v;) (42)

reducing them to (41):

w,=u(vy—v) v =v(u—u_y)
i=uv, f=utov (43)
ﬁ=u1v[ i=u-+ el

U= vy=exp(u, —u) —exp(u—u_,)

" -« (44
#=exp(u —u) i=p
z:,=u(v,—-21:~+ v-)) v,=u 45)
U= Uy v=0)1— 0
y=exp(th—uw)tu—v v=u—vtexp{v—u_)

[ 1 4 1 (46)
#=exp(v, —u) g=u—v
#,= 0, —u+exp(u—1ov) vi=exp(u—v)+o—u_, @

@=explu;—v) i=v,—u
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u= (o —u)(u=0)'" ve=(u—0)"*(v—u-) (48)
2i=v,—u H=(u—v)"?

w=(0—u)u-v)  v=@—o)o—uy)”? 49)
2ii=w — vy §={(v,—u)'"”

The integrable discrete differential model found by Toda is equation (44). Equation
(43) is equivalent to the Volterra equation (5) ((5) is turned into (43) by &, =u,, §,=
Uop— 1).

Considering transformations corresponding to (43)-(49), one can check that there
are 14 pairs of transformations which satisfy condition 2. That is to say we have 14
possibilities to nse the scheme. For example, taking the Volterra equation (43) (together
with the second of the corresponding transformations) and the Toda model (44), we
obtain the following chain and transformations:

u=(0,) "+ fv —v,=(u-)) "'+ u
(50)—(43): fi=u""v;’ d=uv (50)
(50)—(44): ii=—In(v)) d=u"or o,

Equations (43)-(49) can be called chains of the first level. The scheme enables us to
obtain chains of the fourth level (one needs four transformations of the form (42) to
reduce such a chain to (41)). Each of the levels contains more than enough chains. So
there exist five chains which are reduced to the Volterra equation (43) by trans-
formations of the form (42). In this case there are eight transformations again and a
lot of possibilities to apply the scheme. One of these five chains generalizes the modified
Volterra equation (14):

= (1 — %) (v, — v) 0= (0% = B)u—u_). 1)
Transformations reducing (51) to (43) are given by

t={u+a)(v,+5) b=(u—a)(v—pB)

f=(u+a)(v+h) o=(u—a)(v;— f).

Using (51) and these transformations, we can construct a generalization of the discrete
differential analogue of the Calogero-Degasperis equation (18), (19).

4.2. Zeroth-order conservation laws

We can see that it is an inferesting problem to describe all chains which are reduced to
the polynomial Toda chain (41). The construction scheme can be very helpful in this
connection, however, it does not enable one to obtain all chains of this kind. In particu-
lar, we are not able to obtain such chains as those of the first level ((43)-(49)) because
there are no transformations in this case.

We can construct new discrete differential systems and corresponding trans-
formations of the form (42), using not only the proposed scheme but also local conserva-
tion laws of the zeroth order: p,=(D—1}(o), where p=p(x, v) (as regards partial
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differential equations, see [10, 12]}. For example, conserved densities of the form p(u, 2)
for the polynomial Toda chain (41) are described by the following formula:

p=a(*+2u)+Bo+vyIn(u)+8 (52)

where a, B8, v, & are arbitrary constants (if p=2"+ 2, then o =2vu_;). We can intro-
duce new variables U;, V, as follows: U,— U=p(x, ©), V=r(u, v), where p and r are
functionally independent. Formulae of the form

u=u(U—U, V) v=o(U, = U, V) (53)

occur. Setting U, = o, V,=r, and using (53), we easily obtain a chain in terms of U, V,,
which is reduced to the given chain by the transformation (53). Then we can simplify
the chain resulting by point transformations: U= U 0, 7, v=wT, P). It is an easy
matter to construct in this way (44), (45), and (48), using conserved densities (52).

4.3. Schrédinger-type systems

It is worthwhile to remark that, if we construct integrable chains similar to (41) together
with discrete transformations, we can obtain, at the same time, integrable partial differ-
ential systems of the Schrodinger type (which were investigated and classified in {10, 12])
together with iransformations relating them [13, 14]. Let us consider an example
of how Miura-type transformations of chains generate chains of corresponding
Schrodinger-type systems.

There correspond the well known systems

Up=U,+(2UV), V.=—Vet+ QU+ V?, (54)
U,=U,+QUV+U?Y, V.==V,+QUV+ VY, (55)

to the polynomial Toda chain (41) and Volterra equation (43}, respectively [15]. To
obtain Miura transformations in this case, the solutions u,, v, of (41) (or (43)) must
satisfy the system (54) (or (55)) for any integer #. The first of the transformations of
(43) into (41} can be rewritten in the following way: &, = 4,0, 11 = Uy, + 1,0, T =1, T Uy,

In the second case we have: &, =t « 1Op 11, T =ty + Opp 1= —(I0 0y )y Fttnr 1 + 0n01. We

see that the system (55) is reduced to the dispersive water waves equation (54) by
U=U+UyV VP=U+V (56)
O=uvv P=U+V—(InV),. (57)

It is possible that the transformations (56) and (57) have not previously been known.

Using results from [14] and discrete transformations, one can construct many other
transformations of Schrédinger-type systems. There are many transformations of this
kind in {12], however, the purpose of that paper was not to find all the transformations.

5. Conclusions

3.1. Open problem

Recall that the analogue of the Calogero-Degasperis equation (18), (19) is reduced to
the modified Volterra equation (14) by the discrete Miura transformation (20). We
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may try to obtain one more integrable chain. As in section 3.1, we obtain the following
constraint:

(0= Puutplu —w)+e+p_(e—pvwtylo—v)+aty

58
u,+u n+v ( )

The problem is now to express this constraint in the form (9) (see condition 2). On the

fact of it, this is not so easy as in the case of (16), nevertheless, this can be done. If

a# f, then (58) is equivalent to
_— + 3 — —_

ooty OtBr@=Bu o atB@—fu

(e=7)o—(a—Bu—(f-7) (@=7)o;—(a=Plu+(B-7)

So we can use the scheme and construct a complicated integrable chain (which first
appeared in [9]) and a corresponding Miura-type transformation.

An interesting open problem is to describe relationships of the form (8), which can
be expressed in the form (9) (remember that the vector case is considered).

5.2. Other approaches

As is shown in many papers of Ufa mathematicians, concerning the classsification of
integrable equations (see [10] for details and references), most integrable equations are
reduced to a few simple enough equations by transformations which can be called
differential substitutions in the case of partial differential equations (56), (57), and
discrete substitutions in the case of discrete differential equations (see all the other
transformations in this paper). This indicates the necessity for a well developed theory
of transformations of differential equations (in particular, a theory of differential and
discrete substitutions). There are several different approaches to this problem at present
(we discuss here only substitutions).

In the first place, as we know already, starting with some key integrable equation,
one can construct other integrable equations and substitutions by the scheme presented
in this paper and in {1]. One can also use local conservation laws of the zeroth order.
In many cases, Backlund auto-transformations enable us to construct substitutions and
to obtain new equations [2]. These means prove to be convenient if we start with an
equation integrable by the inverse scattering method. One may consider that here we
go from lower equations to upper ones (see scheme (1)).

There are other possibilities to go in the same direction and to obtain substitutions,
A method presented in [16] uses L-A pairs and gives formulae of the form (39) first
of all. The well known method of the factorization of differential operators also uses
L-A pairs and allows one to obtain good results in many cases (see [11] for references;
see also [17]).

If we start with some linear equation possessing a rich enough Lie algebra of classical
symmetries (the heat equation, for instance), an approach developed in [18, 19] will be
convenient. In order to construct integrable equations and substitutions, it uses classical
symmetries. In this case, one goes in the opposite direction: from upper equations to
lower ones. It is possible to move in the same direction by so-called pseudo-symmetries
and special conservation laws [18]. It is interesting that Bickiund auto-transformations
enable us to construct substitutions, starting from both lower and upper equations [2].
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There exists another approach which gives so-called symmetrical transformations
{these are compositions of differential substitutions of a special form) [10, 12]. Symmet-
rical transformations are constructed for equations possessing both a classical symmetry
and a local conservation law of the zeroth or first order.

It should be said that most of these papers are devoted to partial differential equa-
tions and differential substitution. However, the schemes and methods can easily be
used in the discrete differential case.
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