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EXPLICIT BACKLUND TRANSFORMATIONS FOR MULTIFIELD 
SCHRODINGER EQUATIONS. JORDAN GENERALIZATIONS 
OF THE TODA CHAIN 

S. I. Svinolupov and R. I. Yamilov 

Biicklund transformations for multifield analogs of the nonlinear Sehr6dinger equation that correspond to unital Jordan algebras 
are found. These B/icklund transformations are explicit invertible autotransformations and as a result they are very convenient 
for the construction of exact solutions. It is established that to these B/ieklund transformations there correspond integrable 
multifield discrete--differential equations that generalize the infinite Toda chain. A simple construction is given by means of 
which multifield analogs of the infinite Toda chain can be constructed from every unital Jordan algebra. New examples of such 
chains are given. 

1. INTRODUCTION 

One of  the best known equations that can be integrated by the inverse scattering method is the nonlinear Schr6dinger 
equation, which it is convenient to write as a system of  two scalar equations: 

ut = u== - 2 u 2 v ,  vt = - v z z  + 2v2u, (1.1) 

where u=u(t, x), o=  v(t, x). One might suppose that all questions concerning the symmetries, conservation laws, L--A pairs, 
B~cklund transformations, and other algebraic properties of  this system received exhaustive answers long ago. However, new 

and interesting results were recently obtained. It was shown in [1] that the system (1.1), in addition to everything else, is 
remarkable in that it admits the autotransformation 

-x 2 (1.2) -- Uzx--U U z-u2~, , ~ - - - - U  -1, 

which connects two solutions (u, v) and (a, ~) of  the system (1.1). We shall briefly review below for the reader necessary 
information about the autotransformation (1.2) (for more details, see [1--3]). 

The important difference between the transformation (1.1) and the previously known B~cklund transformations is that it 
is explicit and invertible. Let us explain what we mean. For comparison with (1.2), we consider the well-known classical 
B~cklund transformation for (1.1): 

( f i + u ) z = ( f i - u )  ~ + ( f i + u ) ( ~ + v )  , ( ~ + v ) x = ( ~ - v )  ~ + ( ~ + v ) ( f i + u ) ]  . (1.3) 

If  by means of  (1.3) we are to construct from a known solution (u, v) of  the system (1.1) a new solution (a, ~), we must solve 

a system of  ordinary differential equations. In the case of  the transformation (1.2), we have an explicit expression for the new 
solution (a, fi). Moreover, the transformation (1.2) enables us to construct explicitly (without solving differential equations) 

a certain solution (u, v) from a known solution (4, ~). The reason for this is that the transformation is invertible, i.e., using 

the relation (1.2), we can express the variables u and v in terms of  a and ~ and their derivatives with respect to x. It is readily 
verified that the inverse transformation has the form 

~ - - - 1 - 2  v = v = = - v  v = - ~ f i ,  u = - ~ - I  (1.4) 

In what follows, we shall call transformations o f  the type (1.2) explicit autotransformations. 
It is obvious that explicit autotransformations are very convenient for constructing exact solutions. For example, in the 

case o f  the Schr6dinger equation (1.1), starting, for example, with the solution (u0=~P(t , x), %=0) ,  where ~p is an arbitrary 
solution of  the heat-conduction equation ~ot=~Oxx, we can, using the autotransformation (1.2), construct an infinite family of  

- -  - 1  2 solutions (uk, uk) , k E  N, the simplest o f  which has the form (u 1 -~xx-~O Cx, vt = - r  1). These solutions include in particular 
N-soliton solutions. 
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Integrable discrete--differential equations (chains) are intimately related to explicit autotransformations. For example, (1.2) 
corresponds to the classical infinite Toda chain 

( q . ) . .  = e x p ( q . + ~  - q . )  - ~ x p ( q .  - q . - 1 ) .  ( 1 . 5 )  

The chain (1.5) can be obtained from (1.2) as follows. The transformation (1.2) can be interpreted as a system of 
discrete--differential equations 

I 

- ~ + 1  = u k . .  - u ~ l , d , .  - ,~ku~,, , , ~+ t  = - - ~ ,  ( 1 . 6 )  

where k e g  is a discrete parameter. Eliminating from the system (1.6) the variables vt, we obtain 

- u .  ( u . ) +  - u . + x  - u . u , ~ _  x,  n e g .  ( 1 . 7 )  

It is readily seen that the substitution Un=eX p qn reduces the system (1.7) to the form (1.5). 
The fact that the nonlinear Schrrdinger equation (1.1) possesses the transformation (1.2) is not a unique phenomenon. 

Numerous examples of other integrable systems possessing explicit autotransformations are contained in [1]. A certain integrable 
discrete--differential equation is associated with each of the explicit autotransformations given in [1]. 

The aim of the present paper is to study the question of explicit autotransformations for multifield analogs of the nonlinear 
Schrfdinger equation (see [4,5]) and the associated multifield analogs of the infinite Toda chain. 

In [5], one of the present authors constructed a class of integrable multifield generalizations of the Schr6dinger equation 
that are assoeiated with Jordan pairs. We succeeded in finding explicit autotransformations for a very slightly smaller class, 
namely, for systems of the form 

U~ i i j k vn " i i " k ra  --2aykmu v u , i = 1 , .  N, v~= +2ayk,nvSu v , i = l , . .  N (1.8) 

(summation over repeated indices is understood), where 4k m E C are the structure constants of the triple Jordan system generated 
by an arbitrary Jordan algebra with unit element. For every such system (1.8), we give expressions for the explicit t~icklund 
transformation and construct the corresponding integrable multifield generalization of the infinite Toda chain. 

In presenting the proofs and the results, we have in a number of cases been forced to use purely algebraic concepts and 
methods. Therefore, the contents are illustrated by examples in which we have managed to avoid using specific algebraic terms. 
One such example is given below. 

Example 1.1. As we were informed by V. V. Sokolov, besides the well-known vector Schr6dinger equation (see [6]), 
it is possible to express in vector form one more of the generalizations of the nonlinear Schr6dinger equation, namely, 

U, = U== -4{U,V)U +2(U,U)V, VI = -V.= +4(U,V)V-2(V,V}U�91 (1.9) 

where U=(u t, ..., uN) T, V=(v 1 . . . . .  vN) T, and (,) is the ordinary scalar product. By direct verification we can show that 

~:-'U==-2(U,U)-t(U,U~)U=-I-(U,U)-x(U=,U=)U-2(U,V}U+(U,U)V, V--(U,U)-IU (1.10) 

is an explicit B~cklund transformation for the system (1.9). The inverse transformation has the form 

v=P==-2(F,F)I~(V,V=)V=+(P,F)-t(f,'=,v=)v-9-(F,~)~+(v, vIu, u=-@, r? ) -~  '. (l.ll) 

The vector generalization of the infinite Toda chain corresponding to (1.11) takes the form 

u.== = 2(u., u.)-' (u., u.=)u.= - (u., u.)-' (u.= , u.=)u. 

+ U,~+i + <U., U.) (U, , - t ,  U._i)-XU,~_I - 2<U,~-i, U,,-~) - I  <U., U,,- i}U..  (I. 12) 

The system of discrete--differential equations (1.12) has an infinite series of higher symmetries and conservation laws (see 
below), m 

. M U L T I F I E L D  N O N L I N E A R  S C H R I ~ D I N G E R  E Q U A T I O N S  

A S S O C I A T E D  W I T H  U N I T A L  JORDAN 
A L G E B R A S  ( J - - S  S Y S T E M S )  

In this section we shall describe more rigorously and in more detail than in the Introduction the class of systems that we 
consider, namely, we give a construction by means of which every Jordan algebra with unit element can be associated with a 
system (1.8). We then discuss which of our systems form the subclass of the larger class of integrable multifield analogs of 
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the nonlinear Schr6dinger equation that were studied in [5]. 
We recall the definition of a Jordan algebra (for more details about Jordan algebras, see [7--9]). 

Definition 2.1. A finite-dimensional commutative algebra J is called a Jordan algebra i f  the multiplication, which we shall 
denote by (,), satisfies the identity 

( ( ( x o z ) o z ) o z )  = ( ( z o z )  o ( z o z ) ) .  , (2�9 

Suppose that in the algebra J we have chosen a basis el, e 2 . . . .  , e N. Multiplication in J can be defined by specifying a 
set of structure constants ~jk: 

(ej o ek) i =ei l ,  e,. (2.2) 

Let 4k be the structure constants of some Jordan algebra J. We determine the constants ~l-rn of the system (1.8) as follows: 

a } k m  i r i r i r = ej~.ek,n + e,nrehj - ek~c], n, (2.3) 

Thus, with every Jordan algebra J we have associated a certain system (1.8). We shall assume that systems related by linear 
transformations, 

ui = M~u k, vi = M~vk, �9 i = l , 2 , . . . , N ,  d e t M ~ 0 ,  (2.4) 

are equivalent. It is obvious that the established correspondence does not depend on the choice of the basis, since transition 
to a new basis in the Jordan algebra J corresponds to a linear transformation (2.4). 

In what follows, we shall assume that the Jordan algebra J has a unit element, which we shall denote by e. We shall call 
the generalizations of  the nonlinear Schr6dinger equations (1.8) constructed as above on the basis of  a Jordan algebra with unit 
element J- -S  systems�9 

It is convenient to use more compact and invariant [with respect to the transformations (2.4)] vector forms of expression 

of the systems (1.8)�9 L e t  U=t~ei, v=viei . Then in terms of the multiplication in the Jordan algebra J, the system (1.8) can 
be expressed as 

U, = U . , - 4 ( ( U o V ) o U ) + 2 ( ( U o U ) o V ) ,  V~ = - V . . + 4 ( ( V o U ) o V ) - 2 ( ( V o V ) o U ) .  (2.5) 

A more elegant and succinct expression is obtained if for any three elements x, y, z E J  we define the ternary operation known 
as the triple Jordan product (see [8,9]): 

{ z  o u o ~} = ( ( z  o u) o ~) + ((~ o y) o ~)  - (y  o ( .  o z ) )  ( z .6 )  

[of. (2.3), which is the expression of (2.8) in the structure constants]. In terms of the ternary Jordan product, the system (1.8) 
takes the form 

u,  = u ~ .  - 2 { ~  o v o u } ,  v ,  = - v ~ .  + 2 { v  o u o~V}. (2.7)  

We now give examples that should convince the readers that most of the examples of  multifield generalizations of the 
nonlinear Schr6dinger equation known to them from other sources are J- -S  systems. 

Example 2.1. The simplest example of a Jordan algebra is JMat(N,N), the algebra of N •  matrices with Jordan 
multiplication 

1 
(z o y) = .~(z y + yz) ,  (2.8) 

It is obvious that the unit element in this Jordan algebra is the unit matrix. The where xy is the ordinary product of matrices. 
ternary multiplication operation (2.6) is given by 

1 

The J - -S  system corresponding to JMat(N,N) is the well-known matrix nonlinear Schr6dinger equation 

Ut = U~, - 2 U V U ,  Vt = - V ~ ,  + 2 V U V ,  (2.9) 

where U(t, x) and V(t, x( are N x N  matrices. �9 

The generalization of the considered example to the case of an arbitrary associative algebra makes it possible to construct 
a large class of J - -S  systems�9 Let A be an arbitrary associative algebra with unit element in which the multiplication is denoted 
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by (x'y). Defining the new multiplication 

1 ((~, �9 v) +-(v * x) ) ,  (2. lO) ( x o v )  = 

we obtain a new algebra A (+), which will be a Jordan algebra with unit element. 
Example 2.2. The system (1.9) in Example 1.1 is a J--S system. We consider the Jordan algebra V N that is obtained 

by equipping the N-dimensional vector space V with the multiplication 

( r  o V) = (e, t )V  + (e, V)z - (z, v)e, (2. !1) 

where e=(1,  0 . . . . .  0) T, and (,) is the ordinary scalar product. It is obvious that the vector e is the unit element of the algebra 
V N. It is readily verified that the ternary multiplication operator (2.6) in the considered case has the form 

{x o V o z} =iAv ,  x)z + (Av, z)x - (x, z)Av, 
i 

where A is the linear operator whose matrix is given by A = 2 e |  e)E, where E in the unit matrix. The corresponding J--S 

system is 

U, =U==-4(U, AV)U + 2(U,U)AV, Vt = - V ~ z  +4(V, A U ) V -  2(V, V)AU. (2.12) 

The system (1.9) is obtained from (2.12) as a result of  the linear transformation (2.4), where M=diag(1, i, ..., i). �9 

The class of  J--S systems that we have constructed does not exhaust the multifield generalizations of  the nonlinear 
Schrrdinger equation (2.1) of  the form 

i i 2a~,nuJukv m, i = 1 ,2 , . . . ,N ,  i . i 2fiikmtrivku,n "= 1,2,.. M, (2.13) U t ~ U x x - -  I) t = - - t ; x x  + ~ l . 

where 4h  n and ~c,n are constants. Systems of such form were considered in [4] (in the approach associated with L--A pairs) 
and in [5] (in the approach associated with higher symmetries, conservation laws, and the recursion operator). It was shown 

in [5] that the system (2.13) has a higher symmetry or nondegenerate higher conservation law if and only if ~km and ~k,n are 

the structure constants of a Jordan pair (with regard to Jordan pairs, see [10]). The J--S systems considered in this paper are 
a special case of such systems that is still fairly rich in examples. In terms of [5], they correspond to Jordan pairs (d, J) 
generated by a Jordan algebra with unit element. 

Thus, J--S systems are integrable; they have an infinite algebra of higher symmetries and an infinite series of local 
conservation laws. For example, the simplest higher symmetry of the J--S system (2.7) has the form 

Ur = U ,  x x - 6 { U o V o U ~ } ,  V r = V , z , - 6 { V o U o V , } ,  (2.14) 

and the three simplest conservation laws in the canonical series can be expressed as follows (see [5]): 

pl = w(v, v) ,  (2.15) 

= o,(v, v . )  - ~ ( u . ,  v ) ,  (2.16) 

= o , (u . ,  v . )  + ~ ( { v  o v ~ v } ,  v ) ,  

where o~ is the bilinear form whose components are defined by the formula wk)= an~im . 

(2.17) 

3. E X P L I C I T  A U T O T R A N S F O R M A T I O N S  

FOR J - - S  S Y S T E M S  

In this section, we give for every J--S system an explicit autotransformation that is a natural generalization of the scalar 
autotransformation (1.2). We then discuss the question of this transformation's being an autotransformation for the higher 
symmetries and densities of the conservation laws of J--S systems. 

Roughly speaking, to write down an explicit autotransformation for the J--S system (2.7) it is sufficient to replace in (1.2) 
the products of  the functions u and v by the triple Jordan products of the vectors U and V, and u -  1 by the element of the Jordan 
algebra that is the inverse of  the vector U. But if this is to be truly done, we must at least recall the definition of the inverse 
element and give an explicit expression for it. More detailed information about inverse elements of a Jordan algebra can be 
found in [8,9]. 

Definition 3.1. Let J be a Jordan algebra with unit element e. An element x E J  is said to be invertible i f  there exists an 
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element y such that 

( ,  o u) = ~, C(~ o ~) o y) = ~. 

The element y is called the inverse o f  x and denoted x -1 . �9 
Definition 3.1 can be reformulated in a more constructive form that will enable us to write down an explicit expression 

for the inverse element. In the standard manner, we introduce the operators of  multiplication by the element x in the Jordan 

algebra J: 

L(z) : S ~ J, L(~)y = ( z o  Y). (3.1) 

We define the linear operators P(x, y), P(x): J.-~J, 

P(x,  y) = L(z)L(y)  + L(y)L(z)  - L ((z o y)) , (3.2) 

eCx) = e ( z ,  z )  = 2L(~)  2 - Z ( (~  o ~ ) ) .  (3.3) 

In accordance with [9], the element x of  a Jordan algebra is invertible in the sense of  Definition 3.1 if and only if the linear 
operator P(x) is invertible. At the same time, the inverse element is unique and given by the expression 

z -1 = P ( x ) - l z .  (3.4) 

The reader should not be alarmed by the apparent complexity of  the expressions for the inverse element. It is readily 
verified that for a chosen basis the components of  the matrices of  the linear operators P(e k, ej) are determined by the formula 

( v (~k ,  e , , ) ) }  = %. . ,~  (3.5)  

where a~j m are the constants on the right-hand side of  the system (1.8). In a number of  cases, the inverse element in a Jordan 
algebra takes a fairly simple form, indeed as one would expect on intuitive grounds. 

Example  3.1. In the case of  the Jordan algebra JMat(N,N) in Example 2. l, whose elements are the N x N  matrices, the 
inverse element in the sense of  Definition 2.2 is precisely the inverse matrix. For the Jordan algebras V N in Example 2.2, all 
elements x for which (x, x) r 0 are invertible. The element that is the inverse of  x has the form 

z - i  = ( x , z ) - l A z .  �9 (3.6) 

T H E O R E M  3.1. Every J - -S  system (2.7) admits the explicit autotransforrnation 

= U , , -  ~ U , o  P ( U ) - i U o U , } - { U o  V o U}, V = - P ( U ) - ~ U .  m (3.7) 
k J 

Scheme of Proof .  We first show that the transformation (3.7) is invertible, i.e., the vectors U and V can be expressed 
in terms of  the vectors 0 and I7' and their derivatives with respec t to x. Using the fact that if z i s  an invertible element of  a 
Jordan algebra then z-1  os also invertible and (z-1)-1  =z (see [9]), we find from the second relation in (3.7) that 

tr. = . p ( p ) - I  p .  (3.8) 

Substituting the expression, found for U in the first of  the relations (3.7), we find that 

Since [cf. (2.6) and (3.2)1 

{ .  o y o z }  = e ( . ,  z )y  (3 .10)  

and in the case of  a Jordan algebra with unit element 

we Can use the relation (3.9) to express the vector V in terms of  the vectors 0, V, 17"X, l?xx. Making some manipulations of  the 
relation (3.9) using the Jordan identity (2.1), we can obtain a compact explicit expression for the vector V: 
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It remains to show that (3.7) is indeed an autotransformation of the system (2.7). Substituting in the system 

the values of 0 and 17 from the expressions (3.7) and replacing the derivatives with respect to t using the system (2.7), we obtain 

a set of  relations. It can be verified that these relations are satisfied identically by virtue of  the Jordan identity (2.1). 
This operation is not as trivial as in the case of  the scalar nonlinear Schrrdinger equation (1.1). To implement it, we must 

essentially use not only the Jordan identity (2.1) but also some not too obvious consequences of  it and also the fact that the J--S  
systems that we consider correspond to Jordan algebras with unit element. We omit this part of  the proof, since it has a purely 
algebraic nature and will hardly be of  interest for the readers. Those that wish to can fill the gap by using the consequences 

of  (2.1) given in [8,9]. �9 
Example  3.2. In the ease of  the matrix Schrrdinger equation (2.9) in Example 2.1, the explicit autotransformation has 

the form 

U=U~=-UxU-~U.-UVU, V=-U-I.�9 (3.12) 

We shall now show what happens to the higher symmetries and conservation laws of  J- -S  systems under the 

transformations (3.7). 
Proposit ion 3.1. The transformation (3.7) is an autotransformation for  the higher symmetries o f  the J - -S  systems. 
scheme of Proof .  Since the transformation (3.7) is invertible, it can be applied to any system. It is obvious that if  we 

act with an invertible transformation on a symmetry of a J- -S  system we obtain some symmetry. Using the homogeneity of  

the higher symmetries of  a J- -S  system (see [5]) and the transformation (3.7), we can  show that the obtained symmetry is 

identical to the original one. �9 
Proposi t ion 3.2. Under the action o f  the transformation (3.7), the densities o f  the local conservation laws o f  J - -S  systems 

go over into equivalent densities. 
Scheme of Proof.  Let p be the density of  a local conservation law. By b we denote the function p in which the arguments 

U, V, Ux, V x . . . .  are replaced by O, 17, (Ix, 17x . . . . .  respectively. For obvious reasons, the function ~ in which the change of 
variables (3.7) is made is also a density of  a local conservation law. It is necessary to show that h differs from p by a total 
derivative with respect to x of  some function. In other words, this means that there exists a function h which depends on a finite 

number of  variables in the set U, V, Ux, V x . . . .  and is such that 

p"-  p = h::. (3.13) 

Using the fact that (see [5]) the densities o f  the conservation laws of J - -S  systems are homogeneous polynomials in the variables 
u i, v i and their derivatives with respect to x that depend quadratically on the higher derivatives, one can prove formula (3.13). 

It is still an open question whether the integrable systems of  [5] that do not belong to the class of  J- -S  systems admit 
explicit autotransformations. We expect the answer to be in the negative. For example, we have not succeeded in finding an 
explicit autotransformation for the well-known vector Schrfdinger equation (see [6]) 

Ut = U::z - 2(U, V)U, , Vt = -V:::: + 2(U, V)V, (3.14) 

where U=(u  1 . . . . .  uN) T, V=(v 1, ..., oN) T and (,) is the ordinary scalar product. We note that nevertheless any integrable 

system of  the form (2.13) in [5] has some implicit B~cklund transformation (see [11]). 

4.  J O R D A N  G E N E R A L I Z A T I O N S  O F  T H E  T O D A  

CHAIN ( J - - S  S Y S T E M S )  

This section is devoted to multifield generalizations of  the infinite Toda chain. 
In exactly the same way as we proceeded with the autotransformation (1.2) in See. 1, we interpret the transformation (3.7) 

as a system of  discrete--differential equations 

f ~, f % 

: U ' u : z - l U ' ~ $ ~ 1 7 6 1 7 6 1 7 6  I. J k , V n + I : - P ( U n ) - I U n "  (4.1) U,,+I 
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Eliminating V n from (4.1), we obtain the multifield discrete--differential equation 

THEOREM 4.1. To every Jordan algebra with unit element there corresponds a system o f  discrete--differential equations 

(4.2) that has an infinite series o f  higher symmetries and local conservation laws. �9 

Systems of the form (4.2) are Jordan generalizations of the infinite Toda chain (1.7) [it is readily seen that (1.7) is obtained 
from (4.2) in the ease of  a trivial one-dimensional Jordan algebra]. We shall call them J - - T  systems. 

Example 4.1. The J - - T  system corresponding to the Jordan algebra JMat(N,N) has the form 

U . . .  - U . . U y l U . .  = U.+I - U.U~I_I~,~, (4.3) 

or, equivalently, 

(U,~=UgI)~ = U,~+tUC 1 - U,,U~I_I. (4.4) 

It is none other than the well-known matrix Toda chain. �9 
One further example of a J - - T  system is given in Example 1.1 [see Eq. (1.12)]. 
Scheme of Proof  of Theorem 4.1. As we have already said, every J- -S  system possesses both an infinite series of higher 

symmetries and an infinite series of  local conservation laws. On the other hand, from the symmetries and conservation taws 

of the J- -S  system one can construct the symmetries and conservation laws of the corresponding J - - T  system. 
In the construction of the symmetries, we use the fact that a symmetry 

U ~ = F ( U , V , U ~ , V , , . . . ) , .  V , = G ( U , V , U , , V , , . . . )  (4.5) 

of the J- -S  system (2.7) is invariant with respect to the transformation (3.7) (see Proposition 3.1). This is equivalent to the fact 
that the multifield chain 

U,r = F(Un, V,,, U , , ,  V,L, , . . . ) ,  V,r  = G(U,,, V, ,  Un,, V , ~ , . . . ) ,  (4.6) 

which is obtained from (4.5) by going over to the variables Un, Vn, is a symmetry of the chain (4.1). The symmetry of the J - -T  

system (4.2) can be obtained from (4.6) if we express the variables Vn, Vnx, Vn~ x . . . .  in terms of the variables Un, Unx, Unxx, 
.... using the formula 

Vn = - P ( U n - 1 ) - I U , _ I  (4.7) 

[see (4.1)]. Finally, we note that the higher derivatives Unxx, Unxxx . . . .  can be eliminated by means of (4.2). As a result, from 
the symmetry of the J - -S  system we construct the symmetry Un~=H n of the corresponding J - - T  system, the right-hand side H n 
of the symmetry depending only on the variables 

U . ,  U.=, U . •  U . •  U . •  . . . �9 (4.8) 

Note that by a local conservation law of the chain (4.2) what we mean precisely is a relation of the form 

(rn) ,  = s,~+l - sn. (4.9) 

Here, r n and s n are functions of  a finite number of the variables (4.8), and r n is differentiated by virtue of (4.2). In the 

construction of the local conservation laws of the J - - T  system, we use the circumstance that for any density P of a local 

conservation law of the J- -S  system a relation of the form (3.13) holds (see Proposition 3.2). Going over to the variables Un, 

V n and eliminating Vn, Vnx, Vnx x . . . .  by means of (4.7), we obtain from (3.13) the local conservation law (4.9) for the J - - T  
system (4.2). It is clear that as a result of these operations the density P goes over into the function Sn, and the function h into 
the density r n. �9 

Note that we can also go in the opposite direction. Namely, from the higher symmetries and local conservation laws of 
the J - - T  system, we can construct the symmetries and conservation laws of the corresponding J - - T  system (see [1,12]). 

Example 4.2. For obvious reasons, we have the right, when constructing the simplest higher symmetry of the J - - T  system 
(4.2), to use as initial symmetry the J- -S  system (2.7). Thus, one of the symmetries of  the J - - T  system (4.2) has the form 

U,~,= U , , , o P ( U , z ) - I U ,  oU, L, + g , , + l +  U, o P ( U , - a ) - I U , - l o  . (4.10) 

In the case of  the matrix Toda chain (4.4), it becomes the chain 
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Un, : U ~ = ~ I ' u n =  Jr U~+I  -I-'UnU~21Un. 

The readers can write down one further symmetry of  the J- -T  system independently, taking as basis the simplest higher 

symmetry (2.14) o f  the J--S  system (2.7). �9 
Example 4.3. In the ease of  the matrix nonlinear Schrtdinger equation (2.9), the first of  the densities (2.15)--(2.17)has 

the form Pl =tr(UV). To this density there corresponds the function h 1 = - tr(UxU-1 ) [found directly from the relation (3.13)]. 

The described scheme leads to the conservation law (4.9) of  the matrix Toda chain (4.4) with r nl =tr(UnxUn-1), snl =tr(UnUn_l) . -  1 
This conservation law can be readily obtained directly from (4.4). The answer is not so obvious if the density/>2 =tr(UVx) is 

used. In this case 

1 - 1 2  -1 trtUn(U:l_l)=] r~ =tr[~(U,=U~ ) +U,U~_I]  , s2n = -  . , 

In the case o f  the vector J--S  system (1.9), the first two densities in (2.15)--(2.17) can be expressed as follows: p 1 = (U, 
V), p2=(U, Vx). To them there correspond the conservation laws (4.9) o f  the vector chain (1.12) with 

1 -1 2 = u,,-1) + (u,,, u,,=) 2 - u,,) Iu,,=l , 

82=-IUn,((Un_I,Un_I)-Iu~_I)a~I. m " 
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