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We indicate the general connection between one-dimensional lattices with local symmetries and nonlinear integrable partial
differential equations in 141 dimensions. The nonlinear chain provides a set of finite-dimensional integrable models of the
corresponding PDE. The integrals of these finite-dimensional models are related in a direct way with the conserved quantities of

the PDE.

1. We consider partial differential equations that
can be represented as a compatibility condition of
two chains,

aan=¢(qn+l,qn:qn—l) ) (1)
atqn=‘//(qn+2, qn+1;54n, qn-lsqn—Z) . (2)

Here ¢,=4¢,(x, t) is a vector function and n=0, *1,
*2, .... The partial differential equations related to
(1), (2) can be written (see section 2) as a coupled
(u, v) system,

u=A(u,vu.,.+f(u,v,u.,v),
v,=B(u,v)v..t+g(u,v,u,v), (3)
for the vector functions

u=q,(x,1), v=q,_(x1). (4)

In fact the right-hand sides of egs. (3) coincide with
Vp= '//(qn+25 Qn+15 s qn—Z) and Wn_1 =W(qn+ 1> @ns ooy
4. 3), respectively. The dynamic variables g, 5, ¢, |,
4._2, 4._3 can be expressed in terms of x-derivatives
of the variables (4) by means of (1) for non-degen-
erated chains.

The correspondence between (3) and (1), (2) can
be used in a study of the finite gap type solutions of
(3). For this we should consider the periodic chains
with

4.+n=¢q, VnelZ. (5)

It is clear, that in the case (5) any solution ¢,(x, t),
n=1,.., N, of (1), (2) defines by virtue of (4) N—1
interrelated solutions of the system (3). In the lat-
tice representation approach to the integrability of
partial differential equations the chains (1), (2) play
the role of the L-A pair. We shall show that there
exists a direct correspondence between the conser-
vation laws as well as symmetries, of the coupled sys-
tem (3) and the related chains (1), (2).

The lattice representation approach proves to be
useful in the classification problem. Comparing the
lists of basic scalar chains (1) and coupled equations

(1]

U=t +f (4, 0, u, v,)

_vt=vxx+g(ua U, Uy, vx) (6)

we obtain in section 3 the lattice representation for
the two systems (6), whose integrability was an open
question.

2. We now discuss the derivation of the two vector
equations (3) from the compatibility condition of
the chains (1) and (2). We use the common nota-
tion A, ="(gu+ > nstm—15 - 4n_,) for functions in-
variant under the shift n—»n+1. The chain (1) is
called non-degenerated if the Jacobi matrices 3¢,/
d4,+ ., 99,/9q,_, have non-zero determinants.
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Theorem. Let the chains (1), (2) satisfy the com-
patibility condition

39, 39, 39,
- n + - ’l+ - n—
e T Bg, T g, U
v,
= . 7
. Bdas Otk (7)

and the chain (1) be non-degenerated. Then there
exist matl'ices An=A (qm qn_-1 )’ Bn =B(qn+ 1s qn) such
that

a'//n = a¢n a¢n+1
aqn+2 naqn+! aqn+2 ’

a'/’n =B a¢n a¢n—l
aq,:—z naqn—l aqn—Z ’

(8)

and, for any solution ¢,(x, t), n=0, *1, ..., of the
infinite dimensional dynamical system (1), (2), the
functions (4) satisfy the partial differential equa-
tions (3). Moreover in the scalar case A, =a, B,=j,
where «, feC are constants.

Proof. We denote

_ 99, . _ 0w,
7 " 0gn4r

It foliows from (7) that

b

O W e 1 =VWnbniz. 9)
The substitution ¥, =A4,0,¢,.+, in (9) gives us
An+l = (¢,n)_1An¢;l=>An =A(qny qn—l) .

In the scalar case we have 4, ,=4,, which implies

A,=a=const. It is clear that the second formula (8)

is also valid, and that B,,= f=const in the scalar case.
Now we compare the formula

99, 00, 0,
nar nt
aqn+l¢ o aqn ¢ aqn=1

¢n—l

qnxx =

with (8) and obtain that
G —A(dns €n 1) @rxx =8(Qn+ 15 Gns Gno15 n-2) »
Gn1i—B(@n @n_1 )01 x

=b(Gns1> > na1>9n_2) -

For the non-degenerate chain (1) we have
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4n+1 =P(qns 4n_1, qnx)’
qn—2=Q(qn7 4n_1, qn—l,x) . (11)

We substitute these expressions into (10) and obtain
the closed pair of partial differential equations (3)
for Qm qn_1-

It must be noticed that the compatibility condi-
tion (7), i.e. the equality d,0,4,,=,0,q,, implies in
the periodic case (5) the solvability of the finite di-
mensional dynamical systems (1), (2) for g, n=1,
..., N, with any prescribed initial values ¢, =¢% at
x=x° t=1° The solution ¢,=4¢,(x, t), n=1, .., N,
of the dynamical systems generates, by the theorem
above, N—1 solutions of the partial differential
equations (3).

We next note that formulas (11) and similar for-
mulas with high order derivatives d%gq, allow us to
interchange ., ¢n_1> n+ 1> 9n—2> Gn+2, n—3 - With
u,0, U, U, Uy, V., ... . Hence any function of the dy-
namical variables ¢, can also be represented as a lo-
cal function of the variables &, v and their derivatives.
We can generalize the theorem and replace (2) by
the chain

atmqn=y/(m)(qn+m’ qn+m—ly'"9 qn—m) . (12)

The formulas for 4,4, 9,,4._ can be rewritten as
the closed (#, v) system

d,u=Uu,v,..07%udlv),
0, 0=V(u,v,.., 07u, d7v). (13)

The block diagonal structure of the leading terms in
(13) can be derived, as above in the proof of the
theorem, from the compatibility condition 0,d,, =
d,,0,.1f,4,,=40,.0,,then formulas (12), (13) es-
tablish a direct correspondence between the higher
symmetries of the system (3) [1] with the higher
symmetries of the basic chain (1).

We shall now consider the connection between the
conservation laws of (3) and the local conservation
laws of the chains (1), (2). Let

B =P (@nsms> Qnam—1s - Q) (14)

be a conserved density for both chains, i.e.
(10)8h, =pnsr —Pn (15)

a,h,=0,,1—0,. (16)
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We recall that in the periodic case (5) it follows from
(15), (16) that

N N
9.3 hy=0,% hy=0.
1 1

The local conservation laws (15), (16) give us
0Pusr1 =00, =0,p,—00,.

Consequently

d,p,—0,0,=c=const. (17)

If c=0 we obtain from (17) the local conservation
law

atp(") U, Uy, Yy, ) =axa(u: U, Uy, Vs, )

for the system (3). We shall prove that c=01n (17)
for the chains (1), (2) which admit the reflection

4 —q_n, X —X, [—>—1L. (18)

Lemma 1. Let the conditions of the theorem be
fulfilled and (1), (2) be invariant under the reflec-
tion (18). Then the system (3) admits the involution

uer, X-—Xx, t-—t, (19)

and for any pair of conservation laws (15), (16) with
the invariant conserved density (14), i.e.

h(qm, qm— 19 oees q—m) =h(q—m’ q—m+ 13 oo qm) ’
we have ¢=01n (17).

Proof. The invariance of the system (3) under in-
volution (19) follows immediately from the defi-

nitions. From the invariance property of the
functions

ax Z hk=pn+l —Pn> at Z hk=an+l — On

we obtain that the reflection (18) transforms
Pn+1 (Gn41) into p_, (0_,). Applying the reflection
(18) to (15) we find c=—c, i.e. ¢=0.

We illustrate the above discussion by the conser-

vation laws of the Volterra model

qnx=qn(qn+l _qn—l) . (20)
One can verify that (15) holds with h,=gq,,
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Pr=Gn_14n a4  1,=qn(gnr1+qntdnot), Pn=
4n-191(qns1+...+q,_2). The chain (20) admits the
reflection (18) and lemma 1 implies that p=wuv and
p=vu.—uv,+2uv(u+v) are the conserved densities
for the system (3) related with (20). The explicit
form of the system (3) for the Volterra model (20)
will be given in the next section.
In addition to the formulas (8) we have

Lemma 2. Let the scalar chains (1), (2) with non-
zero 0¢,/04,..1, 0w,/ 04, - satisfy the compatibility
relation (7). Then there exist ®eC and a function
Pn=P(Gn+1> dn> 9n—1> dn_2) such that the following
formulas hold,

99
= - 2
6X1naﬂng-1 Pr+1 pn’ ( 1)
a'//n a¢n a¢n+l
= , 22
3rez " 0duer s (22)
. 90, ( 00us a¢,,>
— =q 1 F0n+ +=].
aqn+1 aqn+1 p e aqn+l aqn
(23)

Proof. Formula (22) was obtained in the proof of
the theorem. Differentiating eq. (7) with respect to
gn+> We find that

a¢n+2 a¢n>
9.(In @0, )+ =2 — 2
a( ( n¢ ¢ +l) aqn+2 aqn
— a‘/’n+l - a‘/’n
—_ 4 1 —- ! 1
(¢n+l) a (¢n) aQn+l >

where ¢, = d¢,,/94q,+ . This relation is equivalent to
formulas (21), (22).

Formulas (21)-(23) suggest the algorithm which
defines the chain (2) in terms of the basic chain (1).
For example, in the case

qnx=qn(qn+l_qn) (24)
the above formulas give us

90t =GnGns1 (Gn+2 —9n) =Dnxx + 20 Gnx -

This is the well-known Burgers equation. The sub-
stitution ¢, =§,.+,/4, connects (24) with the linear
chain §,, =§,+:-
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3. The compatibility condition (7) puts strong re-
strictions on the choice of the basic chains (1). For
example, in the scalar case the conservation law (21)
must be valid for (1) [1]. We do not discuss here
the classification of all the scalar chains (1) for which
relation (7) is solvable. It is an open problem as yet.
Our consideration is restricted to chains with high
order conservation laws and we go on to the follow-
ing list of the basic chains [1]:

qnx=P(qn)(qn+l"‘Qn—-l), PW=0’ (25)
G =Q(q:) [(dner —G2) 7'+ (4 —401) '],
Q¥=0, (26)
qnx=(qn+l —qn—l)_l(Rn +€\/ Fulni ),
€=0,1. (27)

In the last formula
R(u, v, w)=(av?+2pv+7)uw

+ (B2 + uw+8) (u+w)+y? +20v+v
and

Rn=R(qn+1y n> qn—]) ’
rn=r(qn—1a qn)=R(qn—l’qn,qn—l)- (28)

We can find the chains (2) related to (25)-(27)
by direct calculations, which are based on (21)-(23)
and on the invariance property under the reflection
(18). In the most intricate case (27), (28) we ob-
tain, for example, that for e=0

Fnv1ln 1 1 )
Qne = + 5
! (qn“—qn_l)z(qn—qm Gn_2—Gn
(29)

and for e=1

VAL A (30)

+1
2¢n Gn+v1—9n-1 aqn rn

The calculations simplify if we make use of the
hamiltonian structure. In the case (25) the high or-
der chains (12) can be obtained via the formula
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6,,,/1;,=P(q,,)<P(q,,+1)a d
n+1
—P(gn ) — )H“") (31)
g, '
Here the “hamiltonian™
N
H™=% hi{™, N>»>1, (32)

n=—N

is constructed from the conserved densities 2™, The
chain (2) corresponds to #,=¢,.49,+R(q,) and

hn=qn+1qn (P=aq2+}'),
hy=qns1dn+4q; (P=q). (33)

We now want to write down the list of systems (3)
corresponding to (25)-(27). It follows from section
2 (see the theorem and lemma 1) that all the systems
(3) have the form (6) and admit the involution
(19). We shall write down only the first equation
from the pair (6),

ut=uxx+f(ua U, u)n vx) . (34)

The second one can be reconstructed by virtue of
(19). We recall that actually (34) and (2) coincide
after interchanging ¢,, ¢,,_; with u, v and so on. Egs.
(34), which correspond to (25)-(27), can be writ-
ten down in the following form,

U=y + [2P(u) v+ Pu’l, (35)
U=y + 202 (u—v) !

+2[r(u, vV)u,—Q(u)v, ] (v—u)~2, (36)
U=t~ (U2+A)[2v,/r+(Inr), ] +34" . (37)

Uy =Uxx — (u)2c+A)vx/r_ (ll’l r)uu)zc

+rurv_rruuux‘ (38)
r
Here (35) corresponds to (25) with the same po-
lynomial P(q) =ag?+ g+ (see (31)-(33)). In the
next equation (36), corresponding to (26) with the
same Q, the polynomial 7(u, v) is constrained by the
conditions

r(u> v)=r(v,u), ruu=rw=% .

The last two equations with A=A (u) =irr,,— ir2 are
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related to (27) ((37) <= (29), (38) <= (30)). The
polynomial r(u, v) is defined by (28).

The general explicit integrability conditions for
systems (6) were discussed in ref. [1] (naturally
these conditions hold for (35)-(38) ). However, the
practical integration method is still beyond the scope
of the theory presented in ref. [1] (seeref. [2]). The
required complement is provided by the latice rep-
resentation approach, and by lucky coincidence the
last two systems (6), the integrability of which was
an open question, coincide with (37), (38).

The list of basic chains (25)-(27) allow us to con-
nect any scalar chain (1) possessing the higher local
conservation law (15) with one of the basic chains
by some substitutions [1,3]. The systems (6) re-
lated to these chains are connected with (35)-(38)
by the transformations described in refs. [1,2]. The
lattice representation suggests additional links be-
tween integrable systems. For example the well-
known systems

f, =l —202(d—-0)"",

—D, =D +202(0-D)", (39)
Up==Up —2U20,, —U, =V +202uU, (40)
are connected with one and the same chain

qnx=(qn+l_qn—l)—l- (41)

The system (40) is a special case of (37) with
R=r=1andisrelated to (27), (29) in the usual way,
U=g,, v=4q,_,. For (39) di=gq,, P=q,_,. This second
choice of dynamical variables is admitted for any

chain ¢,,=@(gn+1—Gn-1)-

A hamiltonian chain derived by Ablowitz and La-
dik [4] provides an example of a non-degenerate in-
tegrable vector chain. We have

Gux=Tn(Gn+1+9n_1)s —DPnx=ru(Pnai1+Dn-1),
qnt=rnaH/apm _pnt=rnaH/aqna (42)
where

N
rn=1+qnpn’ H= Zhn, N>1

~N
and
hn=a(rn+lqn+2pn+%qi+lpi)

+y(rn+lqnpn+2+%q?lpgl+l) . (43)
The change (4) of the dynamical variables

d9n=4, qn_1=4', DPn=D, DPn_1=D
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leads to the system of equations (3) which is invar-
iant under the two involutions

qgop', peq, xo—Xx, to-—t,
qep, q'op, X-—Xx, to—t, aey. (44)
The first one of egs. (3) has the form
4= 0y +20pg,+ (y—a)rq— (o+7)qq'px
—(a+p)r(pg' +rq),
r=1+gp, r=1+q'p', p=qr’'—pq . (45)

One can reconstruct the other ones by the substitu-
tions (44).

The general simple idea how to connect the partial
differential equations and the chains (1), (2) is not
restricted to non-degenerate chains (1) [5]. A good
example here is provided by the Toda lattice rep-
resentation of the nonlinear Schrodinger coupled
equations

U =U, +2u%, —v,=v,+20%u. (46)
In this case we have

u=exp(q,), v=exp(—g,-1),

Gnx=Dns Prx=€XP(Gn+1 —qn) —€XP(dn—Gn_1) ,
4u=0H/dp,, Pn=-0H[dq,, H=}h,,
hn=14D3+ (Pns1+Dn) €XP(Gns1 —qn) - (47)

The lattice (1), (2) can be considered as a special
kind of Bicklund transformation for the system (3).
For example the above formulas (47) define the well-
known Bicklund transformation for the nonlinear
Schrodinger equation (46) [6].
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