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SYMMETRIES OF NONLINEAR CHAINS

A. B. SHABAT AND R. I. YAMILOV

ABSTRACT. A direct relationship between nonlinear chains of the Toda type and
partial differential equations possessing higher-order symmetries is discussed.
For a given partial differential equation, a chain is determined (up to a change
in notation) by an invertible transformation

u(x, 1) —vix, )= Viulx, ), u(x, ,u, (8, ..., ),

which takes solutions of the equation again into solutions. The invertibility
of this transformation plays an important role in the general theory developed
in the paper, and we term the corresponding chains regular. A table at the
end of the article lists the key equations generalizing the Schrodinger equation
with a cubic nonlinearity, together with the invertible differential substitutions,
expressed in the form of nonlinear chains, which these equations admit.

We are grateful to B. A. Magadeev and A. V. Mikhailov for helpful discus-
sions.

1. Intyoduction

1.1. Examples of chains from the inverse scattering method. The following
general scheme can be used to construct finite-dimensional dynamical systems
describing the behavior of finite-band potentials. Consider a linear spectral
problem expressed as a first-order vector equation

® = U(x, ). (1.1)

The explicit formulas of the dressing method (see, e.g., [1]) lead to a chain of
potentials U, = U, (x, 1), n € Z, related by the formulas

q)n.x = Unq)n 2 ¢n+1 = Wn())(bn ] (21)
W, = L;n-'.[ WR(A) - W;](j')Un E] (13)

n,x

where the matrix functions W, (i) = W (x, 4) are polynomials in the spectral
parameter. As shown in the examples below (see also [2]-[4]), the latter condi-
tion enables us to eliminate the potentials U, , U, , from (1.3) and obtain an
infinite nonlinear chain for the coefficients of the polynomial W,(2) in powers
of A. This infinite chain of equations becomes a finite dvnamical system if we

impose the periodicity condition
U.v=0 (1.4)

n
and write
(V)
W=Ww w W (1.5)

n+N—=12*"""2 n+l"n’
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We then find from (1.3), (1.4) that

(V) (N) (M) (N}
dw/ldx=U, W-WU, =[U, A6 W] (1.6)
An obvious consequence of (1.6) is the formula
d (l?lr’) i 0 1.7
E;trace[ (xs"‘“)]_ ’ ( . )

which gives a first integral, polynomial in the spectral parameter, of the finite-
dimensional dynamical system (1.3), (1.4).

As a first example we consider how to apply the above general scheme to the
linear Schrodinger equation

W, + (u(x)+ Ay =0. (1.8)

In this case in (1.1) we have

v D= (-2 o) @=(y )

and a straightforward analysis shows that equations (1.3) have the very simple
polynomial solution

W (1) = (q: _‘;:'Mn gln) (detW,=4-a,, a,€C) (1.9)
and that the corresponding chain of equations has the following form:
d 2 2
ﬁ(qm"’qn):‘?m—4n+“n+1““n- n € Z. (1.10)
The formula
u,=q, —4q. -a, (L.11)

for recovering the potential in the Schrédinger equation (1.8) can be used to
relate (1.10) to the chain of classical transformations of the discrete spectrum of
the Schrodinger equation which are used to construct multi-soliton potentials.
Of greater interest, however, is the fact that the periodic closure condition

nin = 49ns Gy = &y (1-12)

for N odd enables one to pass from the under-determined system of equations
(1.10) to a finite-dimensional dynamical system

d 2
EE(T+E)q=(T—E)q 5
LS. . (1.13)
(T+E) = ikZ_O(_T) :

Here the matrix 7" corresponds to the cyclic permutation g, — and we

use the following notation for column matrices:

n+l?

T 2 2 2 T
q:[qn’qnﬂ““’ n+N—-1) » 4 =(qn+an’""qn+N—l+an+N—l) .

We will show below (see Proposition 1.1) that the problem of constructing
finite-band potentials for (1.8) reduces to (1.13).
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The application of the above general scheme 1o the canonical spectral problem

with
Ulx, A) = (_j(x) ’”(f)) (1.14)

leads, in the simplest case, to two essentially different chains: to

2 2
_(annx = 5nqn+1 @4, +4,P,,

5 3 (1.15)
5npmr = tlsraprx—l —a,py, +pnqn
(e,,d, € C), and to the Toda chain [5]
Gpxx = EXP(dyyy — @, T 7,) —€XP(G), — Gpy + V) (1.16)
(7, € C). In case (1.15), the solution of (1.3) is chosen to be
d —p )
W = f g 1.17
n (qn 24 +6, (o, — p,4,) (1.17)
(u,=4q,, v,=p,_,). The case of the toda chain (1.16) corresponds to
0 —exp(—q,+7 ))
W = n n .1
n (equn 2l +4q,, (1.18)

(4, =expq,. v, =exp(y,_; — 4, ).

In both of these examples (1.8) and (1.8) and (1.14) the trace of U(x, 4)
vanishes, so that d(det W, )/dx =0 (see (1.3)). Hence not only the trace (1.7)
but also the characteristic equation

™) 5 (V) ()
det(zE —Wix,A) =z —ztr W +detW =0 (1.19)
remains unchanged.

ProrosiTION 1.1. Let N be odd and let q be a solution of the dynamical
system (1.13). Then for every n, the Nth order differential operator

d d d
Zn = (E +qn+N—1) ’ (dx +qn+]) (3;“'(}'”)

commutes with L, = 4’ ldx* + u, .
Proor. It follows from (1.10) and (1.11) that
=(d/dx - q,)(d/dx +q,) -
and that the differential operators with different subscripts are obtained from
one another by conjugation, or more precisely,
L, (d/dx+gq,)=(d/dx+g)L,+a,-qa,,),
ﬂ+2(.fz’,/a’x + ¢, )d/dx +q,)
=(d/dx+q, WL,  +a, ,~a,,)d/dx+gq,)
={d/dx+q, Jd/dx+q )L, +a,—a,,,),... .

n+l

Thus,
Ln+NZ = Zn(Ln Ta, - anﬂ\-’)'

The vanishing of the commutator now follows from (1.12). e
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The ideas behind the above method for constructing a pair of commuting
differential operators by reducing the problem to the system of differential equa-
tions (1.13) are similar to the ones in the classical paper [6].

ReEmMARK 1.2. As a complement to Proposition 1.1, one can check that the
commuting differential operators are related by an alagebraic equation of the
form (1.19), with the replacements z — Z,, A — —L . If the initial data

q(x) at x = vcu for the dynamical system (1.13) are subject to the additional

conditions tr W( y=0, where for N=2m+ 1

N) - .
IF(W(A)=(—i)mQ. )+ (A" Q@+ + Q. (), (1.20)

then by (1.7) and (1.9), this algebraic equation (1.19) takes the form of a hy-
perelliptic curve

5 () 5 n+N-—1
Z,—-daaW(-L)=Z,— [] (Ly-)=0
k=n

The Toda chain (1.16) and its generalization (1.15) can also be used to con-
struct a pair of commuting differential operators:

_d 0 u @ _ {1 0
Ln—“zf?—(ﬂn 0”) v L=Wi L), o= (0 -1) *
(N) () k
where, for W(x, i) = Zak(xﬁ)l we define W(x, L )= 3 a,(x)L, . These
operators commute by (1.6); mdeed, in case (1.14) we have
(V)

old/dx - U, (x,A)®=L (P)-0=0=Z (D)= W(x, )®

whence

L,Z (D)= (L, —2)Z,(®)+Z,L (D)

— o(d/dx — U)W(®) + Z,L (®)

(V) (V) (N)
= g(dW /dx + WU, - U W)®) + Z,L,(®) = Z,L ().

Remark 1.2 remains valid in case (1.14), and for a Toda chain, for example,
after making the substitutions z — Z,, A — L we obtain

- =) (¥)
Z +Z, exp (Zyﬂ) =trW(L, ) (1.21)
- (2Ln)“ + Q,(a, q_\.JL}:" ++ Qyld, q,)
where q=(q,.4,.,, " s 4,.5_)» and the functions Q, are first integrals of

the chain (1.16) with the periodicity condition (1.12).

1.2. Liouville’s Theorem. The problem of finding explicit formulas for con-
structing pairs of commuting differential operators is considered in the recent
theory of finite-band integration (see [7]). However, we are interested only in
the fundamental issues involved, or more precisely, in analyzing the reasons
why the explicit formulas for finite-band potentials also yield solutions of non-
linear partial differential equations of the Korteweg-de Vries type. We will show
that the answer can be found in the proof of a classical theorem of Liouville
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[8] concerning the conditions for a finite-dimensional dynamical system of the
general form

deg. /dx=Fq ..., qy), k=1,2,..., N, (1.22)
to be solvable by quadrature.

THEOREM 1.3, Assume we are given commuting vector fields

N
X, =) f.(@0/dq, j=1,...,K<N,
k=1
satisfying the condition rank ( fﬂ() = K, together with functionally independent
first integrals Qidysooondy)s J=1,... . N-K, such that
X(0)=0, j=1,....K, i=1,...,N-K. (1.23)

Then each of the K dynamical systems
a.'qﬂ/dtj=fjn[q1,...,qN). = Ly Ny (1.24)
is solvable by quadrature.

Proor. The system of equations for determining the K additional first in-
tegrals

(I)j{'rjsq|9"'vq,\-’)=£}i_¢"j(q]1"'!q‘\:)! J'.:ls"'sK& (125)
can be written in the form
a’/a’tj(tbj.)-—.O@X,.(@j)=(5”.; vl =L e Ko {1.26)

For fixed j, the relations (1.26) give us a system of linear algebraic equations
for the partial derivatives ¢, = ngj/aqk of the function 9.
-1

In the case K = N, the matrix (@) coincides with the matrix (fjk) up
to transposition, The commutation conditions

X, X)= D IX,(f) = X;(£,)18/8g, =0 (1.27)

ensure that the differential forms

N
Bp= Z mjkqu

k=1
are closed, and hence that the functions @, are locally unique (dqaj = wj.).
We observe further that the change of coordinates p, = ¢.(q,, ..., qy), { =
1,..., N, takes the vector field XJ. into a/f}pj, Vi,
In the general case (K < N), the first integrals Q,, ..., Qy_, can be used

to reduce the order of the dynamical system (1.24) to K. It follows from (1.23)
that the reduced system also satisfies the hypotheses of Theorem 1.3. In the light
of the above discussion, we can therefore state that for K < N, there exists an
invertible change of variables

4;=0,4q.....4y), P;=0;(q,...,4qy), (1.28)

where i=1,..., N-K, j=1, ..., K, which takes the vector fields X, ...,
X, into d/8p,, ..., d/3p, , respectively. It is easy to see that the functions 9



382 A. B. SHABAT AND R. I. YAMILOV

in (1.28) satisfy (1.26) and that the functions g, (¢f,,...,¢), n=1,..., N,
found from the relations
SR =1 i=1,..., N-K,
pm(q]s-“ ;GN)==ﬁﬂs m = 1,.”, K}

give, for fixed ¢, , m # j, a solution of (1.24) depending on the correct number
of arbitrary constants, @

A dynamical system (1.22) with a complete set of N — 1 independent first
integrals gives the simplest particular case of Theorem 1.3. Here K = 1, and
the additional first integral (1.25) is readily found from the equation

N
X,\(9,) =D (F09,/0q,) =1
k=1

if, following the proof of the theorem, one introduces new dynamical variables
associated with the first integrals. The general solution is then found from (1.29)
with ¢, = x. In all remaining cases for K > 1, the above procedure “Liouville
integration™) leads by (1.29) to a general solution which is a function not only
of x but also of the additional arguments ¢ j Typically, & ~ N/2, and in the
especially important case of a Hamiltonian system, each first integral can be
associated with a corresponding vector field.

The above discussion is well illustrated by the dynamical system (1.13) with
N = 5. Starting with (1,5) and (1.9), we find by direct computation (cf. (1.20))
that

(5)
wWi)=1°Q, -1, + 0,

4 4
= H Tppie T Z(an+k - A)rn+k+1rn th+2 ntdet s
k=0 k=0

4

* Z Foaic(Qpppein = AN, g — 4, (1.30)
k=0

where r. = g +4q . It is now clear that by virtue of (1.7), this dynamical
system has three polynomial first integrals, of which the simplest is

4
QI = Zrm—k = 2(@'” + 4,41 i o qn+4)'
k=0

These integrals are functionally independent, and it remains to exhibit two
vector fields satisfying the conditions (1.23) and (1.27) (one of them always
coincides with d/dx ). Noting that the dynamical system (1.13) is Hamiltonian,
1.e., expressible in the form

N—1
1
dq/dx = J grad E (ngM ¥+ ak+nqk+n) J
k=0

where the matrix J = (T+E)" ! (T'—E) is antisymmetric, we can use the vector
fields corresponding to the dynamical systems

da/dt, = JgradQ, (j=1,2,3). (1.31)
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It is evident that grad Q, € KerJ . Straightforward computations show that
d/dt, = —d/dx . The resulting pair of vector fields X, =d/dt, (j =2, 3) and
the set (1.30) of first integrals Q,, Q,, @ satisfy all the hypotheses of Theorem
[.3. For example, the standard correspondence between Poisson brackets and
commutators gives

dQ,/dx = (grad Q;) " J grad Q, = {Q;, Q,}T = [X;, X,] = 0.

The dynamical system (1.13) is thus Liouville-integralbe for N = 5, and its
general solution depends on the extra argument ¢,, in addition to the original
independent variable x = —7,. In other words, Liouville integration yields a
function g¢(z,, ;) satisfying system (1.31). We suggest that the reader verify
that in the special case a, = 0 for all n, the dynamical system (1.31) dual to
(1.13), with j = 3, reduces to the chain of equations

= | —1
dqs/dr = (qs * qs+l) - (qs + 4 l) ’ (1.32)
where )
T =0y, ¢y = [[(€ik + Qurisr) = comSL,
k=0

and the periodicity condition g, = ¢, isimposed. In the general case, a rather
lengthy computation shows that (1.31) implies the following relations between
the partial derivatives the respect to x = —t, and ¢, of the general solution of

(1.13) with N =5

@t = Dpyxex — 6((15 + l:Mn)qmc : (1.33)
u, =u —6u u, . (1.34)

ni NXXX

Here (cf. (1.11) u, = ¢, - qj ~a, and the vector field d/d is given by the
following linear combination of the vector fields (1.31):

4
dfdt=—4d/dt,~ 2Q} + 43 a,)d/dx.
0

Summarizing, we may say that the Korteweg-de Vries equation (1.34) arises
inevitably in the solution of the dynamical system (1.13). Moreover, it turns
out that the dynamical system (1.31) associated with (1.13) with j = 3 coin-
cides with the modified Korteweg-de Vries equation (1.33) up to a change of
notation. In the next section we will show that these facts, established for the
example considered above, are a special case of a very general and simple result
concerning pairs of commuting infinite-dimensional vector fields.

1.3. Statement of the problem. The object of study in the sequel will be the
following infinite chains of equations generalizing (1.32), (1.16), and {1.15),
respectively:

an:F(qnsqn_lsqn+1)s (135)
Tnxx = F(qnx’ Gns qn—l ! qﬂ+l) ' (136)
pnx:F(pn’qn‘an)‘ qnsz(pn’qn’qn—l)' (1'37)

We will also investigate vector chains of the form

Po=Flp. ¢.8,.,), G =G0, 9,19, 1)- (1.38)
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It is easy to check that if G(a, b,c) = F(b, c, a), the vector chain (1.38)
reduces to the scalar chain (1.35) if we write p, = ¢,,, 4, = g,,_, - Chains
related by point transformations p, = ¢(p,), 4, = ¥(q,) will be regarded as
equivalent, so that the transition from the scalar chain (1.36) to the correspond-
ing vector chain (1.38)

P =F,:8,,49,.1)s G =Flq,,0,_,P,)

extends the class of admissible transformations. It is obvious that the structure
of the equations (1.35)-(1.38) is preserved under point transformations; the
only thing that changes is the form of the functions appearing on the right-hand
sides of the equations.

The nonlinear chains which we consider belong to a large class of infinite-
dimensional systems of the form

dq,/dx =F,, n=0,x1,+2,..., (1.39)
where each of the vector functions F, = (Fn1 s s Ff) depends on a finite set of
dynamic variables q, = (q,i‘ sy q:'} , the set depending on the number # of the

equation 1n (1.39). For example, setting qul =q, and q§ =p, = a'qn/dx, for
the generalized Toda chain (1.36) we obtain the infinite-dimensional dynamical
system
dg,/dx=p,, dp,fdx = F(p,, 4y Qu_ys dpiy)-
Our theory is based on the assumption that there exists an infinite-dimension-
al dynamical system

dq,/dt=f,, n=0,+1,%2,..., (1.40)

which is dual to (1.39) and satisfies the condition that the vector fields corre-
sponding to (1.39) and (1.40) commute:

+oo +oc s
a 3]
F —, f —
2 i, L,
These vector fields define the differentiation operators D = D, and D, on the
set of functions depending on finite sets of the dynamicval varlables and the
condition that the vector fields commute is equivalent to the relations

Df)=D/F), n=0,=%1,=2,.... (1.41)
Our goal is to derive from (1.39) and (1.40) differential relations
®(u, D' D (u)) = 0 (1.42)

which represent a closed system of partial differential equations.(') Here u =
(u',...,u”) is a distinguished set of components of the dyanmical variables,
and the number of “independent” equations in (1.42) is equal to the cardinality
m > d of this set.

In addition to our basic assumption regarding the existence of an infinite
system of equations (1.40) dual to (1.39), we shall also assume that both (1.39)

{')In what follows, we will indicate some general conditions which ensure that the pair of chains
(1.39}, (1.40) is equivalent to the associated finite system of partial differential equations (1.42)
{see Theorem 2.2).
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and (1.40) are invariant under the shift n — n + 1. As a rule, such infinite-
dimensional dynamical systems will simply be called chains (cf. (1.35)-(1.38)).
In a certain sense, the stringent requirement of shift-invariance replaces the in-
tegrability conditions in Theorem 1.3 and enables us, in the cases (1.35)-(1.38)
considered below, to effectively find the dual chain (1.40) and the associated
partial differential equation (1.42) directly in terms of the right-hand side of
the original chain (1.39). Here the necessary conditions for the existence of
the chain (1.40) dual to (1.39) are closely related to the symetry approach to
the problem of determining the integrability of partial differential equations,
discussed in the review [9]. To emphasize these connections, we introduce the
following.

DErFINITION 1. 4. A local conservation law for a shift-invariant vector chain
(1.39) is a scalar relation of the form

D(h) = (T — E)(r), (1.43)

where the shift operator 7T (7(g,) = ¢,,,) acts on the set of functions of
arbitrary finite sets of the dynamical variables. The function /4 appearing on
the left is called the density of the conservation law (1.43). A local conservation
law (1.43) is said to be trivial if the variational derivatives of its density vanish:

5h/6qy = 8(T"h)/dg, =0, 2 (. (1.44)

As in the continuous case (see [10]), one can prove that the vanishing of the
variational derivatives (1.44) guarantees that 4 is expressible in the form

h = (T — E)h + const,

where % is a suitable function of finitely many dynamical variables. It is also
evident that _
(8/0g /(T — E) =0, i=1,...,d. (1.45)
We conclude this section by noting that every shift-invariant infinite-dimen-
sional dynamical system (1.39) admits a finite-dimensional reduction, namely
the periodic closure
Q. x=4, forall n. (1.46)
With the system closed in this way, the shift operator becomes the cyclic per-
mutation
T (qrul PRS0 qn+,'\-') - (qn+2 S - qn+N’ lQ'n+l)’
and the resulting finite-dimensional dynamical system is invariant under cyclic
permutations of the variables. The local conservation laws for the original un-
closed chain are the inverse images of the first integrals of the reduced system,
and for the solutions of the latter we have by (1.43) that

d n+N—| A a+N=1 ; dh n+N—=1 e ;

EZT(MZ Z}' (E})= Z(T -TH(ry=0.
k=n k=n K=n

It can be verified that the vector fields (see (1.41)) continue to commute after

periodic closure is imposed, because the differentiation operators corresponding

to these fields commute with the shift (7D = DT, TD,=D,T).
2. General theory and examples

2.1. Regularity condition. To construct solutions of the infinite-dimensional
dynamical system (1.39), we can specify the components of the vector q, at
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one or several neighboring points (n =~ n,) as functions of x and try to find
the solution by passing to the subsequent equations in the system. For instance,
for the chain (1.38) we find

Qpy1 = PPy 4y Py s

Puir = V(P> duiys Qi) ) = WDy s Gys P> Qs )
with similar formulas for p, , and g, ,. By specifying the values p, =
u(x), g, = v(x) of the dynamical variables at the point n = n,, we can find
p,(x), q,(x) forany n € Z by expressing them in terms of u, v, u, ,v,,....
In other words, the general solution of the chain (1.38) contains two arbitrary
functions.

We define the rank of the infinite-dimensional dynamical system (1.39) to be
the number of arbitrary functions of x appearing in the general solution. An
example of a rank-one system is the chain

qnx = F(qn % qn+l)'

However, in this case the condition ¢, = u(x) for n = n; determines g, (x)
uniquely only for n > n,; for n < n,, additional constants of integration
appear in the solution.

For the case of a vector field of the general form

pnx=F(pn’qn’pn+]‘qn+l=pn—l’qn—l)' (2 1)
Ay = G{pn 3 qn & pn+| ? qn+1 s Py qn—l)
the choice of initial data
p, = u(x), g, =v(x) (n=ngy) (2.2)
is possible, provided the chain (2.1) is equivalent to the following chain
F+(pn 2 ns Ppys Qux s Py qn+l) = 0’
F_(Pys Gy Prxs Guxs P> 9p-t) =0
The functions p,,,(x), g,,,(x) are then determined by the equations
F+(pn : qn s Pux s Inx» pn+1 ¥ qn+l) = 0’
F_(p,H_] ] Q,,+1 s (pn+l)x s (qn+|)x‘ pn ) qn) = 0

Analogous equations hold for the functions p, ,(x) and g,_,(x). Typical of
such chains (2.1) are given by (1.37) and (1.38).
In the case of general position, the vector chain

U =F,=F@a,, a,,,, 0,_1), a=(,....q"), (2.3)
has rank 2m , since the nondegeneracy conditions
detdF/aq, , #0, detoF/oq,_, #0 (2.4)

ensure the unique solvability of the initial-value problem
. =u(x), q,_, =v(x) (n=ny). (2.5)

It is clear that the scalar chain (1.35) is of rank 2 in the case of general po-
sition. The generalized Toda chain (1.36) also has rank 2, since when the
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nondegeneracy conditions analogous to {2.4) are satisfied, the initial data (2.5)
can be used to find ¢,(x) for all n by means of the formulas

qn+l = F+(qn » qmr’ Qnxx» qn-—l) 3
Gua=F (a4, @ 1> (@) (@y_y) i) (2.6)

Thus, the general solutioin of the chain (1.36) contains two arbitrary functions.
DEFINITION 2.1. A nonlinear chain will be called regular if the initial data
for n ~ n; uniquely determine the functions q,(x), Vn € Z.
For a regular chain of rank M, all the components of the solution {q,(x),

n € Z} are uniquely expressible in terms of the vector function u = (ul(x), cees

u‘”(x)) of the initial data for the Cauchy problem in the discrete variable n by
means of the formulas

0, =000, 0 ), (2.7)

where the number of derivatives on the right is finite for any » but becomes un-~
bounded as n — +oc. The above chains (1.35), {1.36), and (1.38) are examples
of regular chains. However, the chain (1.37) is not regular, because additional
integration constants appear in the solution of the Cauchy problem with respect
to the discrete variable.

THEOREM 2.2. Assume we are given finite-dimensional dynamical systems
(1.39), (1.40) satisfying the conditions (1.41) for the corresponding vector fields to
commute. Assume that these systems are shift-invariant and that the first system
(1.39) is a regular chain of rank M . Then the problem of constructing a general
solution of equations (1.39), (1.40) is equivalent to solving the Cauchy problem
for the evolution partial differential equation

u=Glu,u ,u_,..), (2.8)

where the right-hand side of the equation for ' = qfd.]) is obtained by substituting

(2.7) into the right-hand side of the corresponding equation in the chain (1.40).

SKETCH OF PROOF. The equations (2.8) are a consequence of (1.39), (1.40),
and therefore the existence of a simultaneous solution {g,(x, ), n € Z} of
the chains implies the solvability of (2.8).

Now let u(x, ¢) be a solution of the Cauchy problem for the evolution equa-
tion (2.8) with the initial data

ui(x,r}:gof(x); i=1,....,.M: =0, (2.9)

The formulas (2.7) can be used to find the vector functions gq,(x, ¢) forall n €
Z.. One must check that the functions so constructed satisfy all the equations in
the chains (1.39), (1.40). By definition, formulas (2.7) give a solution of (1.39)
for any choice of the functions u'(x,?). Since u' = q;:g]}, formulas (2.8)
guarantee that the equations D,(¢).)) = F,] are satisfied. The conditions
(1.41) for the vector fields to commute ensure that the remaining equations
in the chain (1.40) are satisfied. More precisely, the commutation conditions
(1.41) for the vector fields imply that a solution of (2.8) remains a solution
under the transformation (2.7). e

Theorem 2.2 shows that in the infinite-dimensional case, the simultaneous
solution of the chains (1.39), (1.40) depends on M arbitrary functions (2.9),
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where M is the rank of the chain (1.39). We recall that in the finite-dimensional
case, the condition that the vector fields commute is necessary and sufficient for
the existence of a simultaneous solution of the dynamical systems

q" _Fn! qn;zj;l (n=1,...,N),

corresponding to the fields, the solution depending on N arbitrary constants.
We illustrate Theorem 2.2 for the Toda chain

Tnxx = eXp(an - gn) - exp( q,_ }) (2.10)

The reader can verify by direct calculation that the following chains are dual to
(2.10):

2

4, = 4q,, +exp(q,., — q,) +explq, —4,_,)» (2.11)
3

Gy =Gy t (2qnx + Ty ,x) eXp(an - qn)
+ (29,5 + 49,y Jexplq, — g, ). (2.12)

As already noted, chains of the form (1.36) are regular, and setting
u, =expq,, v, =exp(—q,_,), (2.13)

(cf. (2.5)), we can express the rigt-hand sides of the dual chains in terms of
derivatives of the functions (2.13). For (2.11), simple computations lead to the
system of equations
+ 2ulw —u +2v u, (2.14)

nt r:xv n-n? nt nxx

u

Thus, the equation of the form (2.8) associated with (2.10), (2.11) coincides
with the generalized Schrédinger equation (2.14) with a cubic nonlinearity. Sim-
ilar calculations for (2.10) and (2.12) lead to the generalized modified Korteweg-
de Vries equation

W, =, +ouwvu . Vo = Vprnx T 6”,{”,{"“ (2:15)

Theorem 2.2 asserts that any solution u,(x,1),v,(x,t) of the associated
equation (2.14) or (2.15) can, in conjunction with formulas of the type (2.13),
be used to construct a simultaneous solution {q,(x, ), n € Z} of the chains
(2.10), (2.11) or (2.10), (2.12).

The Toda chain (2.10) is often expressed in terms of the variables u, =

EXP( 9n+1 qn) Uy = Gy -

Uy = Uy, (V

el ~ Unls Uy = Uy~ Uy - (2.16)

This chain exemplifies a regular chain of the form (1,38). The following systems
of equations (cf, [11], [12]) are associated with (2.16):

um = unxx + z(unvn) ? UM = rl\:x + (T" * 2“ ) (21?)
un! = f!\ur + 3{Ununx + u + unvn)\'
(2.18)
.Um = Unxxr ( 31‘:11}?1: * Uﬂ + 6unanx'

It is evident that for a regular chain (1.39), the form of the dual chain (1.40) can
be recovered uniquely from the associated partial differential equation (2.8).
This general fact is illustrated by the pairs of equations (2.11), (2.14), and
(2.12), (2.15). The reader can use (2.17) and (2.18) to reconstruct the chains
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(1.40) and verify that the commutation conditions (1.41) hold for the vector
fields.

Clearly, the form of the associated partial differential equation (2.8} is in-
dependent of the choice of the point # € Z at which the initial data for the
original chain (1.39) are specified. In the regular case, formulas (2.7) can be
used to find an explicit expression for the action of the shift operator n — n+1
on the solutions of (2.8). As noted at the end of the proof of Theorem 2.2,
this operator preserves the solution set of the associated equation. Under the
hypotheses of Theorem 2.2, we thus have the next result.

CoROLLARY 2.3. The evolution equation (2.8) associated with the regular
chain (1.39) admits an invertible differential substitution

U=Uu,u,,u,,,...), (2.19)

which takes solutions of (2.8) again into solutions.

xx "

In the examples considered above, the form of the differential substitution
(2.19) is easily found from (2.10) and (2.16):

(210) e u, =u[(nu,)  +uv]l, v, ,=1/u,;
(216) e u, = u,l(lnw,),  +v,.1, v, =v, +(nu,)..

The periodic closure condition u, , =u,, v, , =, leads to periodic solu-
tions of the chains (2.10) and (2.16) and to finite-band solutions of equations
(2.14), (2.15) and (2.17), (2.18), respectively (see §1).

2.2. Examples of quasi-regular chains. The general scheme for reducing the
chains (1.39), (1.40) to partial differential equations can be generalized to the
nonregular case. As an example, we consider the linear rank-one chain

9 (9,) = dypy- (2.20)
Any chain of the form

9(4,) = i (2.21)
1s clearly dual to (2.20). For m = 2 we find, as in the regular case, that a

simultaneous solution of (2.20), (2.21) satisfies the evolution equation u, =
u, (u=gq,). The case m = ~1 leads to the hyperbolic equation

U, =u. (2.22)
We note that the substitution
P, =4,.,/4, (2.23)
takes the chain (2.20) into the discrete analog of the Burgers equation
Py =000 =B (2.24)

Chains consistent with (2.24) are obtained from (2.21) by the substitution (2.23)
and for m = 2 lead 10 the Burgers equation

v, = v, + 20, (v=p,) (2.25)
and for m = —1 to the hyperbolic equation
w, + (), -(e"),=0 (p,=e"). (2.26)

Using (2.20), we see that (2.23) coincides with the substitution v = u_/u, which
linearizes the Burgers equation (2.25). A similar substitution reduces (2.26) to
(2.22),
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As we noted in 2.1, §2, unlike chains of the form (1.38), chains of the type
(1.37) are not regular, and in this case two different choices of initial data are
possible:

D, =Hu, q,=v; (2.7)
p,=u, g, =1 (2.28)

For the chains (1.37) we are unable to express all the dynamical variables in
terms of the initial data u, v. Nevertheless, the examples given below will
show that in general, the dual chains can be used to derive a closed system of
partial differential equations for the functions (2.27), (2.28) (we call such chains
quasiregular). As in the regular case, the resulting system is a consequence of
the corresponding pair of chains (1.39), (1.40). It is clear from (1.37) that
solutions of the associated partial differential equation corresponding to the
choice of initial data (2.28) can be obtained from the solution of the equation
corresponding to the choice (2.27) by formulas of the type

=M, O=Vu,v,v,). (2.29)

As an example, we consider a local version of the chain (1.15):

£

2 2
Dux =pn+l +pnqn’ __qnx :qn—-l +qnpn‘ (2‘30)
This chain is an infinite Hamiltonian system of the form (see (1.44))
P, =1,0h,/6q,, q,, = —r,0h,/6p,, (2.31)

where r, =1, h, =p,  q, + quj/z. Using the Hamiltonian property, we
can construct a dual chain by using a local conservation law (see Definition 1.4)
with density

2 2 3 -3
hn = pn+2qn +pn+lqn+lqn +pn+lpnqn + %pnqn'

As in the case of the Toda chain, the choice of initial data (2.28) leads to the

system (2.14), while the choice (2.27) gives another familiar integrable system
({123, (13))

2 32

=, =2y, +ue),

2 32 (2.32)

-0, =9, +2(vu, —vu).

The solutions of system (2.14) are obtained from those of (2.32) by the formula

i=u, =—(uv+vl) (cf. (2.29)).

The requirement that a dual chain should exist severely restricts the form
of the right-hand side of the chain (1.37). By analyzing chains of the form
(2.31), (1.37) we have succeeded in finding two more interesting examples of
such chains (see [14]). In the first case,

h, =P,y —P)4,» T,=ap,q,+Bp,+q,)+7, (2.33)
and in the second,
hy=3nr, ~In(p,  —4q,).
r,=rp,,q,)=ap a’ + Bp,a,D, +4,)
+ 90,4, +6(p, +a,) +elp, +4a,) + i (2.34)
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The case (2.31), (2.33) leads to known generalizations of the systems (2.14),
(2.32) (see [9], [12]). The chain (2.31), (2.34) merits a more detailed discussion.
We recall the Landau-Lifshits equation
S,=SxS_+S8xjS, S$=(5,5,8), S +S+S=1, (235
which was solved in [15] and [16). Under the stereographic projection

s v
1 +.8; 1+8,

it becomes the system of equations

2
R
v, +u,, - 2-v£—~%—) -+ %R’(u} =0,
o ;( ) (2.36)
; v+ K(v f
_ITJ‘,+Uxx—2u__._._xuv+l__+ %R (U):O,
where " 3 5
Ruw)=au + pu +yu — pu+a. (2.37)
If J=diag(J,, J,, ;) we have
a:%(‘)’z,]‘), y=%(J1+Jg)_-;3, ﬁzO. (238)

The problem of finding solvable generalizations of the classical Landau-
Lifshits model (2.35) was studied in [9], [12], and [17]. The table at the end of
this paper lists four such generalizations of (2.35), referred to as II(b), IV(b),
VI(b), and VI(c). It is easily seen that II(b), with P(u) = R(u), goes into (2.36)
after the change of variables

t=u, b =—1/v, {=-it,

i.e., it coincides in essence with the original model (2.35).
As will be shown below, the Hamiltonian chain (2.13), (2.34) and a formula
of the type (2.29) can be used to answer the question concerning the existence

of higher-order conservation laws for the system of equations Vl(b).(z) The
function
r 1dr,/0p,

n= +3

Poyy = 4) Py =dpey)  2Ppsy — 4y

L Lon/og, 1 a'r,

2P, ~4ny 40p,04,’

where r, is given by (2.34), is the density of a local conservation law defining

the desired chain. The alternative choice (2.38) of initial data leads to a system
II(b) with

h

(2.39)

(2.40)

where r = r(u, v) is the polynomial in (2.34). In other words, the choice (2.28)
leads to the Landau-Lifshits equation. In the same notation, the case (2.37)
leads precisely to a system VI(b). In the corresponding substitution (2.29)

2
¥

| =

Plu) = %rr -~

v

v =u—r(u, Vv, +iru, 0] (2.41)

(2)Th1’s question was left open in the papers [9], [12], [17] cited above.
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The existence of the differential substitution (2.29), (2.41) demonstrates, in par-
ticular, that the system of equations VI(b) possesses higher-order conservation
laws.

In closing this section, we consider Hamiltonian chains of the form (2.31)
with r, =p,q, -1 and h, =p,. ,q,, h,=p, g, (cf. (2.33)):

PM = {ann B 1)pn+| 1 -qnx= (pnqn e l)qn__.l s (242)

Py=w0d, -0,y -4, =P,49,— 1, (2.43)

Althouth we are unable to construct an evolution system of partial differential
equations associated with these chains, by introducing the initial data (2.27) we
can express the mixed derivatives in terms of the data (cf. (2.22)). As a result,
we get the system of hyperbolic equations

u = (uv— l)_I‘quuI — (uv — Du,

v, = (Uv — 1)_lu'v_l_vr —(uv — 1),
which is a consequence of the chains (2.42), (2.43). The reduction 4 = v =
sin(w/2) of this known system ([18], [19]) is expressible in the form

w,, =sinw.

2.3. Complex structure. Reductions. Returning to the regular chains (1.35),
(1.36), and (1.38), we now indicate some conditions under which the associated
partial differential equation (2.8) is expressible as a system of equations

u=u, +f(u,v,u.,v), -v,=v,, +gu,v,u,v), (2.44)

generalizing (2.14), (2.17), (2.32), (2.36). We first consider the scalar chains
(1.35).

THEOREM 2.4. Assume we are given scalar chains
G = Fl@ys Q15 Ony)s
4y = G(qn TSR qn+2’ qn—l)’ (245}

whose corresponding vector fields satisfy the commutation condition (1.41). As-
sume that these chains are invariant under one of the following involutions:

m=-n, x=-x, [=-t, g =er; f[p=El) (2.46)
and that the nondegeneracy conditions are satisfied:
OF,[0q, #0 (i=zx1), 0G,[0q,,;#0 (j==2). (2.47)
Then for each n, the functions
u(x, 1) =q,(x, 1), v(x,t)=¢q,_(x,1) (2.48)

satisfy, for a suitable choice of scale (I = At), a system of equations (2.44)
invariant under the involution
¥=-x, i=—t, a=v, 7= —u. (2.49)
ProofF. The consistency condition (1.41) for the chains (2.45) reads
{8Fn/aqn+1)6n+l T (aFn/aqn)Gn + (aFn/aqn—l)Gn—l = Z(agrllaqn+k)Fn+k‘

k
(2.50)
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Differentiation with respect to q,, leads to the relation

(0F,/04,,,(0G,,,/04,,3) = (0G,/04, ,)(0F, ,/84,,,)- (2.51)
Using the nondegeneracy condition (2.47), we find from (2.51) that
(0G,/84,,,) = a(0F,[04,,,)(0F,,,/04,.,) (2.52)

where o = const. Comparing this formula with
= (3Fn/aqn+l)‘ai+l + (aFn/aqn)Fn A (8Fn/aqn—l)F -1

qnxx
we get that
u; - aux_‘- = f(qn+| y qn ' qﬂ'—l ’ qn_z) = f(u:' v, Hx ’ 'UX).
The equality
'_Uf - ﬁvxx = g(us v, ux 3 U‘\‘)

is established similarly. The invariance of the chains (2.45) under the involution
(2.46) implies that the resulting system of equations for u, v is invariant under
the change of variables (2.49). It follows, in particular, that a=f. ®

The assertion of Theorem 2.4 remains valid for the chains (1.36) and (1.38).
For the generalized Toda chains, the chains dual to (1.36) are chosen in the
form

Gy =Gy = GlAyrys oot Gos ) s 0G,[04,,,#0  (j=+1). (2.53)

Here we assume that the generalized Toda chain satisfies the nondegeneracy
conditions, and that the system of equations (1.36), (2.53) is invariant under
one of the involutions (2.46). For example, for a Toda chain the system of
equations (2.10), (2.11) admits the involution in (2.46) with ¢ = —1.

In the case of chains (1.38) satisfying the regularity conditions

dF,/oq,, OF,/0q aG,/op,, 0G, [dp,_ #0,
the dual chain is of the form
B =@UPys Qv P> gy By iy s
Qe = Y (Pps Qs P> Dpgrs P Q)
and satisfies the conditions
det(0(9,, ¥,)/0P, x> 4y ) #0, k==L
The involutions (2.46) are replaced by the involution

n+l? nt

(2.54)

m=-n, X=-x, l=-t, §,=e¢p,, DP,=¢q,, e==l, (2.55)
while formulas (2.48) for the transition to (2.44) are replaced by the formulas
ulx,t)=p,(x,t), v(x, t) =eq,(x, 1)
The system of equations
i+ u, = flu,v,iu,, v},

2.56
v, +v  =glu,v,iu,, iv) ( )

admits a complex reduction (v = &) if the functions [, g satisfy the conditions
gla, b,c,dy=f(b,a,—-d, —c), (2.57)
fla,b,c.d)=fla,b,c,d). (2.58)
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To specify the complex structure for the system (2.44) and the associated chains
(2.45), one must introduce new independent variables X = iv, [ = it and
require the chains (2.45) to be invariant under the involution

X=-x, i=-t, 4§,=4, (2.59)

in addition to the involution (2.46). The involutions (2.46) and (2.59) then
ensure that conditions (2.57) and (2.58) hold, respectively. For chains of the
form (1.38), the additional involution needed to define the complex structure is
given by the formulas

i=_x} f:'—f, ﬁn=pn’ én:qn' (2'60)

For chains with a complex structure which are invariant under the pair of

involutions (2.46), (2.59) or (2.55), (2.60), the corresponding system (2.56)
admits a complex reduction. For the chains (1.35), (1.36) the condition

&q_,_,=4,, YnelZ, (2.61)
and for chains (1.38) the condition
ep_,=4q,, YrneZ, (2.62)

ensure that the function u = g,(x, t) (or u = py(x, t) for (1.38)) satisfies the
reduced equation
i, +u, = flu,a,in,,ia). (2.63)

Indeed, for (1.35) and (1.36), e.g., the pair of functions u = ¢,, v = eq_,
satisfies the system of equations (2.56), and by (2.61) we have v = @. Since
these chains are invariant under the involutions defining the complex structure,
it suffices to impose the conditions (2.61), (2.62) on the initial data. It is also
clear that these conditions are compatible with periodic closure of the chains.
For example, to construct finite-band solutions of the nonlinear Schrodinger
equation

: 2

iu +u, =2ul"u
the condition —g_, | = ¢, must be imposed on the initial data for the chains
(2.10), (2.11) with x = —iX, t = —ii.

For scalar reductions the matter is more delicate. For example, the Korteweg-
de Vries equation can be derived as a scalar reduction of the modified Toda
chain (2.16). This chain admits the reduction U, =uU_,_,, ¥, =—V_,. Since
v, = 0, the function u, satisfies (see (2.18)) the equation

qu = quxx %+ 6u0u0x‘

The relationship between the chain (2.16) and the Korteweg-de Vries equation
was discussed in [2]. The example of the Toda chain (see (2.15)) shows that
a regular chain of rank2 can be used to construct solutions of the modified
Korteweg-de Vries equation. As in the case of a complex reduction, the pair of
chains (1.39), (1.40) must admit another involution in addition to (2.46). For
the chains (1.35), (1.36) this involution is given by the formulas

X=-x, f=—1, d, =9dq,, 6 ==+1. (2.64)

Imposing the conditions
ann-l = qn (265)
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on the initial data, we obtain a solution u = g,(x, f) of the reduced system
(2.8). For instance, the Toda chain (2.10) admits both of the additional in-
volutions (2.59) and (2.64) with § = 1. However, of the dual chains (2.11)
and (2.12), only the latter is invariant under the involution (2.64) with é = 1.
The condition (2.65) (¢4 = —1) on the initial data for the chains (2.10), (2.12)
leads to solutions of the modified Korteweg-de Vries equation

=u,, +6Kuu (2.66)

where « = 1. The pair of chains (2.10), (2.11) does not admit this reduction.
Equation (2.66) can be derived in the same way, as a reduction of the familiar
Volterra chain [20],
Gnx = 4y (qn+l - qn—l)' (2.67)
The standard choice of variables « =¢q,, v = ¢,_, for the chains (1.35) leads
to the system of equations

u,=[u,, +3u+vju, + W+ 6utv + 3wu2]x,
3 2 2
v, =[v, - 3u+vpy, +v +6v7u+3vu’],,

whose scalar reduction (v = —u) is equation (2.66) with ¥ = —1. .

A more complicated example of a scalar reduction is provided by the chain
IV(a) in the table at the end of this article. For Q(g,) = ¢, + dq, this chain
admits the involutions (2.46) and (2.64) with e =1 and J = —1, respectively.
One can check that with an appropriate choice of dual chain, the scalar reduction
(2.65) yields the familiar equation

u=u,. -3y )ut+ 3ui/2u2 - &(Bu +§/u)2u

X Txx X

of the Korteweg-de Vries type. This equation is more often expressed in the
gauge u =expv [21]-[23].

The quasiregular chains considered in §2, 2.2, also admit complex and scalar
reductions. For example, the pair of chains (2.42), (2.43) admits the scalar
reduction p, = (—1)"q_, , which takes the equation sin{w/2) = py(x, ) into
the sine-Gordon equation. We note that periodic closure is possible here only
for even periods. As in the case of a Toda chain, the reductions of the chain
(2.30) lead to a nonlinear Schrodinger equation and modified Korteweg-de Vries
equation.

In order to get a complex structure for the chain (2,31), (2.34) consistent with
the complex structure for the Landau-Lifshits model (2.36), one must impose
the constraint a —u = f +¢& = 0 on the coefficients of the polynomial r,
in (2.34). These chains then admit the additional complex reduction p, =

() (=i =il

3. Conclusion

At the end of this paper we present a table in which we attempt to summarize
the results of the classification for systems of partial differential equations of
the form (2.44) which are integrable, and for the regular chains (1.35), (1.36),
and (1.38). For a long time these two classification problems were regarded
as independent (see, e.g., the review [9]). The idea of comparing the two lists
arose quite recently, and the comparison was initially carried out along the lines
discussed in the proof of Theorem 2.4. In this approach, one starts with the
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complete lists of integrable chians of the form (1.35), (1.36) obtained in the
papers [24]-[26].

Corollary 2.3 of Theorem 2.2 in §2, 2.1, suggests another approach. For a
given system of equations (2.44), one can directly find an invertible differential
substitution (an explicit Backlund transformation) admitted by the system. It
is not hard to see that all three cases (1.35), (1.36), and (1.38) correspond to
differential substitutions of the form

uﬂ+l = U(un’ Un’ vnx)! 1“,”+1 = V(T-"n’ uﬂ+| ] (u?H-l)x)' (3.])

If the system of equations is associated with the chains (1.35), (1.36), then
formulas (3.1) can be simplified substantially (see the examples in 2.1 at the
end of §2). There are no difficulties in recovering the chain from the explicit
Backlund transformation (3.1).

The table lists the key systems of equations from [9], [12], along with their
corresponding regular chains.(3) To the Landau-Lifshits equation (2.36), (2.37)
corresponds to the chain II{a) with P(u) = au® + yu® + a, and the original
complex structure is recovered by means of the reduction g,=-1/q_,_, (cf.
the end of 2.3 in §2). The most complicated systems of equations occur for
the scalar chains IV(a), V(a), and VI(a) in [24]. The system (2.18), whose
reduction yields a nonlinear Schrodinger equation, corresponds to system I(b)
with Pla)=1, y=exp(u+v).

The theory of transformations developed for systems of the form (2.44) (see
[9]. [12]) carries over in a natural way to chains of equations [14]. For example,
any system of the form

U, =u, + Aui +Buw, +Cu.+ Dy .+ E, (3.2)
-y, =0, + Avi’ +Bu v, —~Cy, —Du_+E,
where A, B, ..., E are functions of the variable u+ v, reduces to system I(b)
(see the table) after a substitution of the form
i+0=a(u+v), i, =da(u+vu, +bu+v), (3.3)

where a’ux + b (@’ #0) is the density of the conservation law for system I(b).
The variables i, © in (3.3) pertain to the system (3.2). The functions a', b in
(3.3) can be expressed linearly in terms of the function y(u + v) appearing on
the right-hand side of the system of equations I(b). The chains corresponding
1o (3.2) are obtained from I{a) by the change of variables

ﬁn +qn = Cle(qn i qn—l) +62(qn _"qn—l)’

34
dn - én+| = Cl[e(qn - qn—l) + R{qmc)] + CZ(qn - qn—l) ES C3S(qnx) > e

where the functions ©, R, S are specified by the relations ©'(z) = y(z), R'(z)
= z/P(z), §'(z) = 1/P(z), and ¢,,¢, and ¢, are constants. These chains
are of the type (1.38), and one can pass from them to the systems (3.2) by
choosing variables in accordance with the formulas ¥ = p, , v =g, . Like I(b),
the system of equations V(b) can be generalized by making changes of variables
of the form (3.3). The chains (1.38) associated with these generalizations are
obtained from V(a) by transformations analogous to (3.4).

fs}Syslems of the Boussinesq type (see [9], [12]) are excluded from consideration,
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Summarizing these results, we note that the chains listed in the table not
only determine explicit Bicklund transformations for the corresponding partial
differential equations, but also contain complete information concerning the
symmetries and conservation laws for these equations [27] (c¢f. 1.2 in §l).(4)
By Theorem 2.2, formulas (2.7) can be used to convert any dual chain into
an evolution equation embodying a symmetry of the particular equation (2.44)
considered.

Similarly, if 4, = A(q,,,,, 94,,m_y> ---) 15 the density of a local conservation
law for a dual pair of chains (1.39), (1.40), then by Definition 1.4 there exist
functions, p, o such that

O, =Py = P oh =0, —a,. (3.5)

Writing ¢, = p,, — 0,,., we see that ¢, | = ¢, , 1e, ¢, = ¢ = const. It thus
follows from (3.5) that

P, =0, +cx),. (3.6)

It can be shown (see [27]) that ¢ = 0 if the hypotheses of Theorem 2.4 hold
and ¢ =1 in (2.46). Passing to “new dynamical variables” in relation (3.6), for
¢ =0 we get the local conservation law

dpu,u ,u,,...)=08.0wu,...) (3.7)

for the evolution equation (2.44).

As an illustration of the foregoing analysis, we consider in more detail the
chain (2.67) and the system of equations III{b) corresponding to it, with P(z) =
Q(z) = z. An obvious consequence of (2.67) is the relations

Qux = Ay ~ 9y a, =4,9,_»
(In qn),\' = bn+l - bn = oyt + 64> (3.8)
bn:qri+qn—l’ ¢, =4, ~ 4,

Switching to the variables (2.48), we find from (3.5) the densities for the conser-
vations laws (3.7) of a corresponding system of type lll(b): a=uv, b=u+v.
It is clear that the derivation of (3.7) also generalizes to “nonstandard” conser-
vation laws of the form
axhn = pn+| + pn ? a:hn == crn+| + an‘ (39)
In particular, the missing conservation law with the density p = u —v can be
obtained from ¢ =¢q,—q_, (see (3.8)).
In going from (2.67) to III{a), the nonstandard conservation law (3.9) takes
on the standard form (3.5). The change of variables is given by g, =¢,,, ¢, =
4,,_, » and the density f:ﬂ for the conservation law of the corresponding chain

of type Ill{a) is constructed from the density 4, for the chain (2.67) by ftn =

n+1 n’

(*YThis permits us, in particular, to state that all the systems (2.44) in the reviews [9], [12],
including IV(b) and VI{c), possess higher-order conservation laws (cf. the remark in 2.2, §2).
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Table

I

() G =Pla, Vg, —q,) =g, =g, )]
2
(b) ”;:“n‘*zp(“x)}’(“*‘”)”"?uxz
-v, =0, +2P(-v,)y(u+v)+ v,
Pla)=cea’+aa+ B8, ¥V =ev +yy+6

II
(a) “duxx T %Pr(qn) + [P(qn) + qjx][(qnﬂ - qn)-l - (qn o qn—l)”ll
(b) u, = u,, —20us + Pw)]/(u—v) + 1P'(w) 5
_ 2 | ! (P =0)
-, =1, =2, + P(v)]/(v —u) + 3P (v)
I11
(@) P =P, —4,), q,. = Qlg)p,—p,_)
(b) u,=u, +[2Puv+ 'yuz]x, -v, =v,, —[20(v)u + a’uz]_\,
) pu=90,,—4,), Qo = WP, —DP,_))
(d) w=u, +2Pu)v, + yui, v, =v, —20(v, )u, - m:i
P(a):ea2+aa+ﬁ, Q(a):aa2+ya+c5
o' = P(p), v'=Q(y)
10%

(@) Gy =04, —4,) +(g, 4, )]

(b) { U, =u, — 2ui(u —o) 4 2[r(u, viu, — Qlu)v, J(u - 'u)_2
—v,=v_ - 2v§(v —uw) ' = 2w, wy, — Q(v)u (v - m)_2

Qu) = au’ + ﬁu3 - yuz +0u+e

riu, v)= 2au'v’ + Buv(u+v)+ 2yuv +d(u+v) + 2¢
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A

(@) 4, =-20v,,, +q,) -y, +q, )"
V=P =ay'+ B8y +yy  + 6y +e

by | H= et Py, + P = 3[P"(v) = 29lu, + LP"(»)
—v,= v, - Pryiu, + Py’ + 3P (y) - 2lv, + P (p)
y=ylu+v)
VI
@) Gy =Gy —4y) R0 )], =01
R, =R,y 9y dp)s 1y =14y 9y y)
R(a, b, c) = (ab’ + 2Bb + y)ac + (Bb> + ub + 8)(a +¢)
+yb’ +26b+e,  rla,b)=Ra,b,c)
U, =u, - [ui + P(w)][(Inr), + 2vxr_l] + 4P (u)
OV N v —v_ -+ PR, - 201+ 4P W) @ =0
U, = u, — [+ P = (nriu, - §(Inr), u,
(c) -, =V, + [vf - P(*u)]uxr_] —(In r)uvf + 4 (nr). v,
4P(u) = 2rr,, — rj, r=ru,v) (v=1)

REMARK. In this table we employ the standard transition formulas (see 2.3,
§2) for the chains (1.35), (1.36), and (1.38). For the chain I(a), the transition
is given by the formula u = g,, v = —¢q,_, ; for the chains III(a) and (c), it is
given by the formula ¥ =p,, v =gq,. The formula u=g¢,, v =g, | is used

in the remaining cases.
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