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Abstract. In this paper we attempt to extend the symmetry approach (well developed in the
case of(1+ 1)-dimensional equations) to the(2+ 1)-dimensional case. Presence of nonlocal
terms in symmetries and conservation laws is the main feature of integrable(2+1)-dimensional
equations. We have introduced a concept ofquasi-local functionsto characterize nonlocalities.
We have found a few first integrability conditions for a class of scalar equations in terms of
quasi-local functions and have demonstrated that they are suitable for testing integrability.

1. Introduction

Integrable nonlinear equations have many applications in physics and mathematics and
are interesting by themselves. There is a rich theory of such equations which is mostly
devoted to the problem of integration and to the study of the underlying algebraic and
analytic structures. It is a very challenging problem to establish whether a given equation
is integrable or not, whether the powerful machinery developed for integrable equations can
be applied to an equation of our particular interest in a concrete problem. There are a few
approaches aimed at tackling this problem. Among them are: the approach based on the
Painlev́e conjecture, perturbative analyses of almost-linear or almost-integrable equations,
approaches based on the existence of higher symmetries and conservation laws. Possibly
the most advanced one is the symmetry approach.

The symmetry approach, suitable for (1+ 1)-dimensional nonlinear partial differential
equations and difference differential equations, has been created and developed during the
last 18 years [1–7]. It has proved to be a powerful tool for testing the integrability and
solving the classification problem for integrable equations. In this paper we are trying
to extend this theory to the (2+ 1)-dimensional case. The main feature of integrable
equations in (2+ 1) dimensions is that the equations themselves, their higher symmetries
and conservation laws are non-local, and this becomes the main obstacle to a straightforward
extension of the (1+ 1)-dimensional approach, which is based on the concept of locality.
To overcome this problem, a new concept ofquasi-local functions, which is a natural
generalization of local functions, is introduced. All known integrable equations and their
hierarchies of symmetries and conservation laws can be described in terms of quasi-local
functions. This observation will be exploited for a generalization of the symmetry approach
to multi-dimensions, creating integrability tests, and in the near future for a classification
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of the most important types of equations. We have found a few integrability conditions for
a class of scalar equations in terms of quasi-local functions and have demonstrated that the
conditions obtained are suitable for testing integrability.

2. Formal symmetries and conservation laws in the (1+ 1)-dimensional case

In the (1+ 1)-dimensional case integrable partial differential equations (PDEs)† or systems
of PDEs

ut = K (1)

possess a hierarchy of higher symmetries

utn = Kn n = 0, 1, 2, . . . (2)

and this property can be taken as a definition of integrability. HereK, Kn ∈ F whereF is
a differential field of complex (or real) valued functions ofu = u(x, t) and itsx-derivatives.
Each function from this field depends on a finite number of variablesu0 = u, u1 = ux ,
u2 = uxx, . . ., which we call the dynamical variables. WithF we can take the algebraic
closure of the field of meromorphic functions Alg(C〈〈U〉〉), whereU = {uk; k = 0, 1, 2, . . . , }
is the set of dynamical variables. In many applications the functionsK, Kn are simply
polynomials. Partial derivations∂x , ∂t and∂tn are represented inF by the operators

D =
∑
k>0

uk+1
∂

∂uk

d

dt
=
∑
k>0

Dk(K)
∂

∂uk

d

dtn
=
∑
k>0

Dk(Kn)
∂

∂uk

respectively.
Equations (2) define the symmetries of (1) if (see, for example, [6, 8])

[K,Kn]
def= K∗(Kn)−Kn∗(K) = 0 (3)

where ∗ denotes the Frechét derivative. The Frechét derivative is a linear differential
operator which is assigned to any functionf ∈ F

f → f∗
def=
∑
k>0

∂f

∂uk
Dk. (4)

Orders of equation (1) and symmetries (2) are defined as the degrees of the corresponding
Frech́et derivatives ordK = degK∗ and ordKn = degKn∗. We say thatKn defines a higher
(or non-classical) symmetry if ordKn > 1.

A function ρ ∈ F is called a density of a conservation law of (1) if there existsσ ∈ F
such that

ρt = D(σ). (5)

If we are not interested in a particular form ofσ we write ρt ∈ DF , whereDF is the
image of the fieldF under the action of the operatorD (i.e.DF = {D(f ); f ∈ F}).

Relation (5) is obviously satisfied ifρ = D(h), whereh ∈ F . In this caseσ = ht ∈ F .
Such densities are called trivial. Two conserved densitiesρ1, ρ2 are considered as equivalent
(ρ1 ' ρ2) if the differenceρ12 = ρ1 − ρ2 is a trivial density (ρ12 ' 0, i.e.ρ12 ∈ DF ). By

† For simplicity here we restrict ourselves to the consideration of scalar equations, a generalization for the vector
case can be found in [4–6].
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the order of a conserved densityρ we shall mean the degree of the differential operator
R = (δρ/δu)∗, where the variational derivative is defined as

δf

δu

def=
∑
k>0

(−D)k ∂f
∂uk

∀f ∈ F . (6)

The variational derivative has the following useful properties [8]

δD(f )

δu
= 0

d

dt

δf

δu
= δ

δu

df

dt
−K†∗

δf

δu
∀f ∈ F (7)

(A† denotes the formally adjoint operator: ifA =∑ akD
k thenA† =∑(−D)k · ak, and ·

is the usual operator multiplication). Moreover, ifδf/δu = 0, f ∈ F , thenf ∈ DF + C
(the Gelfand–Manin–Shubin theorem [9]). Thus, a conserved density is non-trivial if its
variational derivative does not vanish. Only non-trivial conserved densities make sense.

Let us denote byR{D} a ring of formal pseudodifferential operators (or, shorter, formal
operators) of the form

A = apDp + ap−1D
p−1+ · · · + a0+ a−1D

−1+ · · ·
with coefficientsak ∈ F . The product inR{D} is uniquely defined by

bkD
k · amDm = bkamDk+m +

(
k

1

)
bkD(am)D

k+m−1+
(
k

2

)
bkD

2(am)D
k+m−2

+
(
k

3

)
bkD

3(am)D
k+m−3+

(
k

4

)
bkD

4(am)D
k+m−4+ · · · (8)

where (
k

m

)
= k(k − 1)(k − 2) . . . (k −m+ 1)

m!
.

We denote byR{D}+ the subring of differential operatorsR{D}+ ⊂ R{D}. For example,
if f ∈ F , then the Frech́et derivativef∗ does belong toR{D}+. In the scalar case,
R{D} is a skew-field because for each operatorA ∈ F the inverse operatorA−1 such that
AA−1 = A−1A = 1 exists and is uniquely defined. Moreover, fractional powersAk/p of a
formal operatorA,p = deg(A), are well defined.

A formal operatorL ∈ R{D}
L = lpDp + lp−1D

p−1+ · · · + l0+ l−1D
−1+ · · · lk ∈ F

is called a formal symmetry of orderN of equation (1) if it satisfies the following inequality
[3, 4, 6]

deg(Lt − [K∗, L]) 6 deg(K∗)+ deg(L)−N. (9)
Here the bracket [A,B] = A · B − B · A denotes the usual commutator of (formal
pseudodifferential) operators. This definition can be easily motivated. Indeed, assuming
thatKn is a symmetry of orderN > 1 and taking the Frechét derivative of equation (3),
we get∂tKn∗ − [K∗,Kn∗] = ∂tnK∗. If we denoteL = Kn and estimate the degree of the
left-hand side, then we arrive at the inequality (9). Thus, the existence of a symmetry of
orderN implies the existence of a formal symmetry of the same order. In contrast to higher
symmetries, the conditions of existence of formal symmetries can be easily obtained in
terms ofK and its derivatives and analysed. These conditions are not influenced by lacunae
in the hierarchy of symmetries and are invariant under changes of variables. If equation (1)
has an infinite hierarchy of symmetries of increasing order, then equation

Lt = [K∗, L] (10)

has a non-trivial solutionL ∈ R{D} (see [3, 4, 6]).
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A formal operatorR ∈ R{D} is called a formal conservation law of orderN if it
satisfies the following inequality [3, 4, 6]

deg(Rt + R ·K∗ +K†∗ · R) 6 deg(R)+ deg(K∗)−N. (11)

In particular, ifρ ∈ F is a conserved density of orderN > m = ordK, thenR = (δρ/δu)∗
is a formal conservation law of orderN − m. If equation (1) has an infinite hierarchy
of conservation laws of increasing order, then it has a formal conservation law of infinite
order, i.e. the following formal operator equation

Rt + R ·K∗ +K†∗ · R = 0 (12)

has a non-trivial solutionR ∈ R{D} [3]. If equation (1) has two conservation laws
with densitiesρ1, ρ2 of ordersm < N1 < N2, then it has formal conservation laws
Rk = (δρk/δu)∗ of ordersNk−m and a formal symmetryL = R−1

1 R2 of orderN = N1−m
[3, 4, 6].

The solvability conditions of equation (10) can be represented in the form of an
infinite sequence of conservation lawsρkt = D(σk), k = −1, 0, 1, 2, . . ., (the canonical
conservation laws) of the original equation (1). For example, the first condition can be
written asρ−1,t ∈ DF , whereρ−1 = (∂K/∂um)−1/m andm = ord(K). This condition is
equivalent to the existence of a formal symmetry of orderm + 1 (a formal symmetry of
orderm always exists because equation (1) is a symmetry for itself). Existence of firstp

canonical conservation laws (i.e. the fact that∂tρ−1, ∂tρ0, . . . , ∂tρp−2 ∈ DF ) is equivalent
to the existence of a formal symmetry of orderm+ p.

Let us consider an equation of the form

ut = uxxx + F(u, ux) (13)

whereF(u0, u1) is a differentiable function of its variables. Then

ρ−1 = 1 ρ0 = 0 ρ1 = ∂F

∂u1
ρ2 = ∂F

∂u
ρ3 = σ1 = D−1(ρ1t ), . . . . (14)

Existence of a formal conservation law can be expressed in the form of a sequence of the
canonical potentials, i.e. functionsφk ∈ DF , k = 0, 1, 2, . . .. In the case of equation (13),
these conditions may be reduced to the requirement that all even canonical densities are
trivial: ρ2n ∈ DF , n = 1, 2, . . ..

For a given PDE it is very easy to check the conditions for the existence of
a formal symmetry and/or a formal conservation law (it is sufficient to check that
δρkt/δu = δφk/δu = 0). They are so restrictive that, in practice, if a PDE satisfies a few
first conditions (the number of the conditions required depends on the order of the PDE),
then it is integrable. Moreover, in many cases these conditions enable us to find complete
lists of integrable equations and classify them [3–7].

3. Concept of quasi-local functions

The whole construction of the symmetry approach is based upon the concept oflocal
functions, i.e. functions belonging to the fieldF . Symmetries, conservation laws,
coefficients of formal symmetries and formal conservation laws are assumed to belong
to F . Sometimes in the (1+ 1)-dimensional case a simple (non-invertible in the classical
sense) change of variables of the formv = φ(u1) could violate the local structure in the
sense that symmetries and conservation laws become dependent on the primitives (indefinite
integrals), i.e. they become non-local while equations remain integrable by the inverse
transform method or via Cole–Hopf type transformations. Extending the fieldF by just the
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adjunction of one primitive (or a finite number of primitives in some cases) and taking the
closure we can come back to exactly the same scheme (within the extended field). Such
cases are called weakly non-local and can be treated via the symmetry approach after a
simple extension of the field [10].

In the (2+1)-dimensional case we have a different picture. If we look at the structure of
higher symmetries and conservation laws of integrable equations we discover that they are
non-local (even equations themselves being rewritten in the evolutionary form are non-local
as a rule). The higher symmetry we take the more complex structure of non-local terms
we find. Consider, for example, the hierarchy of symmetries of the Kadomtsev–Petviashvili
equation

ut1 = ux ut2 = uy ut3 = uxxx + 6uux − 3D−1(uyy)

ut4 = uxxy −D−2uyyy + 2uxD
−1(uy)+ 4uuy

ut5 = uxxxxx − 10uxyy + 5D−3uyyyy + 20uxuxx + 10uuxxx + 30u2ux − 10uxD
−2uyy

−20uD−1(uyy)− 20uyD
−1(uy)− 10D−1(uuy)y

ut6 = uxxxxy − 10
3 uyyy +D−4uyyyyy + 16u2uy + 12uxuxy + 8uyuxx + 8uuxxy

+12uuxD
−1(uy)+ 2uxxxD

−1(uy)− 6D−1(uy)D
−1(uyy)

−4uyD
−2(uyy)− 4uD−2(uyyy)− 2uxD

−3(uyyy)+ 4uxD
−1(uuy)

−2D−1(uD−1(uyy))y . . .

whereD−1 stands for indefinite integralD−1f = ∫ x
f (x ′, y)dx ′, andD−2 corresponds

to the nesting integrationsD−2f = ∫ x ∫ x ′
f (x ′′, y)dx ′′ dx ′, etc. It can be easily shown

that there is not any finite extension of the field of the local functions which would
contain the whole hierarchy of symmetries (or conservation laws). In the case of the
Benney–Roskes–Davey–Stewartson equation{
ut = α(uxx + 2uD−1

y (uv)x)+ β(uyy + 2uD−1
x (uv)y)

−vt = α(vxx + 2vD−1
y (uv)x)+ β(vyy + 2vD−1

x (uv)y)
α, β ∈ C (15)

we are forced to consider nested primitives iny as well (D−1
y f =

∫ y
f (x, y ′) dy ′) and

nested primitives for higher flows. A similar picture takes place for all known integrable
(2+ 1)-dimensional hierarchies.

A trivial idea to extend the differential fieldF by the adjunction of all possible nested
primitives (F → F(D−1

x ,D
−1
y )) seems not to be very fruitful. Doing so, we would find that

any equation (even known to be non-integrable) possesses a formal symmetry, and even
the concept of conservation laws would be lost because any functionf ∈ F(D−1

x ,D
−1
y ) is

a total derivativef ∈ DF(D−1
x ,D

−1
y ) in such a field, i.e. all conservation laws are trivial

(F(D−1
x ,D

−1
y )/DF(D−1

x ,D
−1
y ) = C).

Our generalization of the symmetry approach to the (2+ 1)-dimensional case is based
on an observation that operatorsD−1

x , D−1
y never appear alone! If we introduce operators

2 = D−1
x Dy 2−1 = D−1

y Dx

then many classes of equations† and their hierarchies of higher symmetries and conservation
laws can be rewritten withoutD−1

x , D−1
y .

† A slight generalization of the operator2 is needed for certain classes of equations, like the Darboux (or
resonance three wave) system of equations, but for simplicity here we shall restrict ourselves to a subclass of
equations whose hierarchies can be written in terms of2 and2−1.
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The previously mentioned Kadomtsev–Petviashvili (KP) equation and (15) together with
the hierarchies of higher symmetries and conservation laws can be easily rewritten without
D−1
x andD−1

y , using the operators2 and2−1. Many other known integrable equations
including the modified KP equation

ut = uxxx − 6u2ux + 6ux2u+ 322ux (16)

the (2+ 1)-dimensional generalization of the Degasperis–Magri–Pirani–Soliani equation
found in [11] (2D DMPS equation)

ut = uxxx − 1
2u

3
x + 3 e−u22(eu)x − 3

2(e
2u + e−2u(2 eu)2− 22(e−u2 eu))ux (17)

and the Nizhnik–Veselov–Novikov equation (α, β ∈ C)

ut = α(uxxx + 3ux2
−1(u2)+ 3u2−1(uux))+ β(uyyy + 3uy2(u

2)+ 3u2(uuy)) (18)

fall into that class. Moreover, using the operator2 we can eliminate ally-derivatives
(Dy = 2Dx).

In all these listed examples, the hierarchies of symmetries and conservation laws belong
to a fieldF(2) ⊃ F , which we call the field of quasi-local functions. To define this field,
let us consider a sequence of extensions of the original fieldF . Let 2F = {2f ; f ∈ F},
2−1F = {2−1f ; f ∈ F} andF0(2) = F . The fieldFk(2) is defined as the closure (i.e. the
field and the algebraic closure) of the unionFk−1(2)∪2Fk−1(2)∪2−1Fk−1(2). We have
a filtration of fieldsF = F0(2) ⊂ F1(2) ⊂ F2(2) ⊂ . . ., andF(2) = limk→∞ Fk(2).
Each element ofFk(2) is a function of a finite number of arguments, and each argument
belongs toFk−1(2) or 2Fk−1(2) or 2−1Fk−1(2). The indexk in Fk(2) indicates the
maximal depth of a nesting of the operators2±1 in expressions. The derivationDy in F(2)
is represented byDy = 2Dx .

Example. If we eliminate all they derivatives in the KP hierarchy (usingDy = 2Dx),
we find thatutk ∈ Fk−1(2). Similarly, the right-hand side functions of the modified KP
and 2D DMPS equations belong toF2(2), the right-hand side functions of the Benney–
Roskes–Davey–Stewartson equation belong to the extensionF2(2) of the differential field
F with two indeterminatesu andv.

In the field F(2) the notion of conservation laws makes sense, since the factor
F(2)/DF(2) is non-trivial. A functionρ ∈ F(2) is called a density of a conservation
law if there existsσ ∈ F(2) such thatρt = D(σ). Usual ‘gradient’ definitions
(ρt = Dx(jx) + Dy(jy)) can always be transformed into this form withσ = jx + 2(jy).
Moreover, ifρ is a density of a conservation law, so is2k(ρ) for any k.

In conclusion of this section we would like to mention that the linearizations of integrable
(2+1)-dimensional equations belong toF(2). This fact follows from the results of Zakharov
and Shulmann [12]. They have shown that the dispersion laws of integrable equations must
satisfy certain constraints which imply that the linear part of such equations can always be
written in terms of quasi-local functions. Here we go much further, namely, we assert that
nonlinear (2+ 1)-dimensional integrable equations, their symmetries and conservation laws
can also be expressed in terms of (properly defined) quasi-local functions.
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4. Integrability conditions in the (2 + 1)-dimensional case

The definition of the symmetries of (2+ 1)-dimensional equations is exactly the same as in
the (1+1)-dimensional case (3), but the Frechét derivative now becomes a pseudodifferential
operator

f → f∗ =
∑
n6m

fnD
n fn =

kn∑
s=−kn

fns2
s fn, fns ∈ Fkn(2). (19)

Let us define a ringR{D;2} of formal (pseudodifferential) operators of the form

A = apDp + ap−1D
p−1+ · · · + a0+ a−1D

−1+ · · · (20)

where coefficientsan arequasi-local operators

an =
kn∑

s=−kn
ans2

s ans ∈ Fkn(2). (21)

A set of quasi-local operators we denote byR{2}. The multiplication law inR{D;2} is
uniquely defined by (8),D ·2 = 2 ·D, and

2 · a = a2− (D(a)2−2(D(a)))D−1+ (D2(a)2−2(D2(a)))D−2− · · · . (22)

Under this multiplication,R{D;2} becomes an associative ring (later we shall usually omit
the ·). The degree ofA is equal top, i.e. the maximal exponent ofD. Formal operators of
zero and negative degree form a subringR−{D;2} ∈ R{D;2}. The product of quasi-local
operators belongs toR−{D;2}.

We shall assume that the right-hand sideK, Kn of equation (1) and its higher symmetry
(2) belong toF(2), then Frech́et derivatives ofK, Kn belong toR{D;2}. As before,
orders of (1) and the symmetry (2) coincide with degK∗ and degKn∗. The definition of
a formal symmetry remains the same (see (9)) withL belonging toR{D;2}. It is easy
to see that the existence of a symmetryKN of orderN implies the existence of a formal
symmetryL = (KN)∗ of the same order. As in the (1+1)-dimensional case, the solvability
conditions of equation (10) for coefficients ofL, provides us with integrability conditions
for the PDE expressed in terms of the coefficients ofK∗.

Conditions of existence of a formal symmetry provide us with conditions of integrability.
The conditions look very similar to the one-dimensional case. As an example we shall study
equations of the form

ut = uxxx + g(u, ux;2,2−1) g(u, ux;2,2−1) ∈ F(2) (23)

which contains the KP, modified KP, 2D DMPS and Nizhnik–Veselov–Novikov equations,
etc. The Frech́et derivative of the right-hand side of the equation is of the form

g∗ = D3+ g1D + g0+ g−1D
−1+ · · ·

wheregk ∈ R{2} are quasi-local operators

gk =
∑

gkm2
m gkm ∈ F(2).

In this case a first few integrability conditions have a form very similar to the one-
dimensional case (14).

Proposition 1.Equation (23) has a formal symmetry:
(i) of order six iff

∂g1

∂t
∈ [D,R{2}] (24)
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i.e. ∃σ1 =
∑
m

σ1m2
m such that

∑
m

D(σ1m)2
m = ∂g1

∂t

(ii) of order seven iff it has a formal symmetry of order six and

∂g0

∂t
∈ [D,R{2}] (25)

(iii) of order eight iff it has a formal symmetry of order seven and

∂

∂t
(σ1+ 3g−1)+ [σ1, g1]−1 ∈ [D,R{2}]. (26)

In (26) we denote by [σ1, g1]−1 the coefficient atD−1 in the commutator

[σ1, g1] = [σ1, g1]−1D
−1+ [σ1, g1]−2D

−2+ [σ1, g1]−3D
−3+ · · ·

of quasi-local operatorsσ1 andg1.
Similar to the one-dimensional case, one can define a formal conservation law (a formal

operatorR ∈ R{2} which satisfies the same equation (12)), orders of a conserved density
and formal conservation law, etc. Also, one can prove that if there exists a conservation law
with a density of orderN , then there exists a formal conservation law of orderN −degK∗.

Proposition 2.Equation (23) has a formal conservation law of order four iff

g0 ∈ [D,R{2}]. (27)

Similar to the one-dimensional case, it is not difficult to obtain conditions (criteria) for
the existence of formal symmetries of orders nine, ten,. . . and of formal conservation laws
of orders five, six,. . ., but they look more complicated and will not be used in this paper.
The integrability conditions have the formϕ ∈ [D,R{2}] whereϕ is a given quasi-local
operator. One can analyse such conditions using properly defined variational derivatives
and successive application of the Frechét derivatives.

For example, in the case of the modified Kadomtsev–Petviashvili equation (16) we have

g1 = −6u2+ 62(u)+ 322

g0 = −12uu1+ 6u12 g−1 = 0.

It follows from (24) that g1 should be a density of a conservation law, and indeed
(g1)t = D(σ1) where

σ1 = 6u2
1− 12uu2+ 18u4− 36u22u+ 18(2u)2+ 62u2− 1822(u2)+ 1823u.

Conditions (25) and (27) are satisfied, since the coefficientg0 is a total derivative itself

−12uu1+ 6u12 = [D,−6u2+ 6u2].

Condition (26) gives the next conservation law of order two with the densityσ1 (the term
[σ1, g1]−1 = 6D(σ1)2

2 − 6D(2(σ1))2 is a total derivative itself and therefore can be
omitted).

In the case of the 2D DMPS equation (17), the first condition (24) gives a conservation
law of order 2, the second condition is trivially satisfied because the correspondingg0 is a
total derivative (in accordance with proposition 2), condition (26) gives us a conservation
law of order 4.

Thus, if we start with an integrable equation, then the solvability conditions for a formal
symmetry provide us with conservation laws of the equation. Like the (1+ 1)-dimensional
case, these conditions may serve as a test for integrability and help to isolate integrable
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cases for a given equation. As an example we consider the following equation (one more
(2+ 1)-dimensional generalization of the Korteweg–de-Vries equation)

ut = uxxx + u2−1ux + λux2−1u (28)

where λ is a constant parameter. The Frechét derivative of the right-hand side of this
equation is of the formF∗ = D3+ g1D + g0 with

g1 = u2−1+ λ2−1(u) g0 = 2−1(ux)+ λux2−1. (29)

Condition (24) is obviously satisfied for anyλ with

σ1 = σ2−1+ λ2−1(σ ) σ = uxx + u2−1(u)+ λ− 1

2
2((2−1(u))2). (30)

The coefficientg0 is a total derivative for anyλ, therefore the conditions (25) and (27)
are satisfied. It follows from the condition (26) and (30) thatσ should be a density of
a conservation law. The first termuxx is a trivial density (it is a total derivative), the
second termu2−1(u) is a conserved density for anyλ, but the last term gives the condition
λ = 1, because∂t (2−1(u))2 does not belong toDF(2) for any λ. Thus λ = 1 is a
necessary condition for integrability of equation (28). The same condition was obtained by
the Painlev́e method in [13]. Moreover, equation (28) is known to be integrable ifλ = 1
[14].
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