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The invertible differential substitutions which conserve the standard Poisson brackets and act on Hamiltonians in an appropri- 
ate way are considered. These canonical auto-Bicklund transformations proved to be a very simple and efficient tool in the theory 
of solitons. In particular, they allow one to prove a general involutivity theorem and to build up simple formulae for soliton-like 
solutions. 

We shall consider local t ransformations acting, in 
general, on the vector functions of several indepen- 
dent  variables. The property of locality means that 
the t ransformation may be written down as 

u' = ~ [ u ]  = ~ ( u ,  Ux, u,,, ..., u . . . . .  ) ,  (1)  

where ~ depends on u and its derivatives up to an 
order m taken at the same point. We call them dif- 
ferential substi tut ions of order m. It is quite sur- 
prising that in contrast to the scalar case there exist 
invertible differential substi tut ions of nonzero or- 
der. For example the first order substi tut ion 

u ' = a ( u ) u x + v ,  v ' = u  (2)  

is evidently invertible with u = v ' ,  v = u ' - a ( v ' ) v ~ .  

As usual we shall denote by d ,  assotiated with ( 1 ) 
the matrix operator acting in the tangent space. 
Namely, if a function u in (1)  depends on an ad- 
dit ional parameter  r then this operator arises as the 
result of  differentiation of (1)  with respect to the 
parameter, 

u,=¢ , (u , )  

= (tp.+¢.xDx +~a.yDy + . . .+  ~a.,~Dx +. . . )  ( u , ) .  
(3) 

Two properties of the differential substitutions are 
basic in our discussion, 

J[ lul ] [u] (4) 
h[~[u]]-h[u]eKer6/6u. (5)  

Here J is a skew symmetric matrix differential op- 
erator j T _  _ j  and by the definit ion of the formally 
adjoint  operator one has 

~ T  . : T  rx  . : T  r x  ..~T _1_ .,..k D2x o ~mT + ... ,-----~'m -- L~x * ~ Rx -- LJy*~'my 
(6) 

In formula (5)  Ker ~/gu denotes the kernel of vari- 
at ional differentiation which is defined for a scalar 

f u n c t i o n f = f [ u ]  = f ( u ,  u~, up .... u . . . . .  ) as usual by 

8 f  = f  _ Dx(f.x ) _ Dy (f.~) +... + D2(f .= ) + .... 8u 
(7) 

Elsevier Science Publishers B.V. 3 9 7 



Volume 174, n u m b e r  5,6 PHYSICS LETTERS A 22 March 1993 

Properties (4) and (5) of transformation ( 1 ) in the 
sequel will provide, respectively, the invariance of 
the Poisson bracket related to the matrix operator J 
and the invariance of the Hamiltonian system as- 
sociated with h[u]  (see eqs. (22), (19) below). 

At the beginning we consider just how much in- 
formation can in fact be extracted from the invari- 
ance condition (4). We shall now suppose that u=  
(u, v) v and we will discuss the two standard sym- 
plectic structures related to 

 o(00 ,8, 
One can prove the following 

Proposition 1. The invertible differential substi- 
tution of order one satisfies the invariance condition 
(4) with J = J t  iff it can be reduced to 

u '=a(U)Ux+OtV,  v ' = o t - l u + f l ,  ec, fl~C 

either by transposition u ,--, v or by u' ,--* v' or by both 
together. 

The next example shows what a transformation can 
do if condition (4) is violated. 

Example  i. Let us consider the first order 
substitution 

U ' =  - -  V ' = - - V + U U ' = - - V + U  v x  . 
Ux ' t tx  

One obtains by differentiation that v~,= uu'~. Hence 

r t 

U----- vx  
- -  ---7 U'x ' V = - - V ' + U '  v x  

U x  

and there exists the function h [ u ] = uv~lu~ which is 
invariant under this transformation. 

One may prove in addition to proposition 1 that 
in the case J=Jo  any first order substitution obeying 
(4) should be in fact the point transformation 

u ' = U ( u , v ) ,  v ' = V ( u , v ) .  

For this we have the classical formula 

O ( u ' , v ' )  
4"J°~*x=J°det O( u, v ~  " (9) 

Summing up, one may verify easily, using proposi- 
tion 1, that any invertible transformation 

u' =~0(u, v, Ux, vx ) ,  v' =~'(u, v, u~, vx) 

obeying (4), (8) can be reduced either to the first 
order substitution (2) or to the preserving area point 
transformation. It would be very interesting to gen- 
eralize proposition 1 for the multi-field case. One 
important generalization of (2) will be given at the 
end of this paper (see eq. (41)). 

The main source of known invertible second order 
substitutions provides the shift transformation 

(U,V)=(qn ,  q n - l ) "  ( U ' , V ' ) = ( q n + l , q n )  (10) 

defined by the Toda chain equations and their gen- 
eralization. We now give a few examples. Applica- 
tion of (10) to the Toda chain 

qnxx =exp(qn+ t --qn) -- exp(qn --q,_ ~ ) ( 1 I ) 

yields the substitution 

u ' = u + l o g [ U x x + e x p ( u - v ) ] ,  v ' = u .  

For this substitution 

~,Jo~V,=exp( u - u  ' + v' -V )Jo  . (12) 

Thus the invariance condition (4) is satisfied up to 
the point transformations. By comparison of (9) with 
(12) one can choose the new coordinates 

u=exp (q , ) ,  v = e x p ( - q , _ l )  

(u' =exp(q,+ t ), v' = e x p ( - q , )  ) 

and find the canonical transformation 

u ' = U x ~ - U - l U 2  +U2V, v ' = u  - l ,  (13) 

which is generated by a shift in the Toda chain. It is 
useful to note that the above discussed substitution 
(2) is also generated by the shift (10) in the chain 

a(qn)qnx=qn+~--q,,_~ . (14) 

A two-dimensional generalization of (13) 

u ' = u x y - u - t u x u ~ + u 2 v ,  v ' = u  -~ (15) 

is connected with the shift in the well-known two-di- 
mensional Toda chain 

q,~v =exp(qn.  I -qn)  - exp (qn - q n - l  ) • 

This gives an example of the invertible differential 
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substitution in the case of  two independent vari- 
ables. The reader can readily verify that this shift 
transformation (15) is also canonical, i.e. the in- 
variance condition (4) holds for ( 15 ). 

The properties of  superpositions of transforma- 
tions ( 1 ) have great importance in the symmetry ap- 
proach. Here we give a useful formula for the power 
of the substitution u' = ~(u) defined by ( 15 ). Let us 
choose (Uo, vo), uo=u(x, y) ,  vo=O as the initial state 
and call u~, v,, n= 1, 2, ..., the result of  the iterations 
of transformation ( 15 ). Then 

(u.,v.)=~"(u,O), 
-~ (16) U n ~ W n / W n - I  , D n ~ D n - - I  , 

where Uo= wo= u ( x, y ), wt = uu,~-  u~uy and for gen- 
eral n > 0 

fined properties of J related to the Jacobi identity are 
here irrelevant) and ~ be the differential substitu- 
tion obeying (4). Then the mapping u ' =  ~[u] trans- 
forms the solution of (19) into a solution of the same 
equation if the Hamiltonian satisfies condition (5). 

We are now going to prove our main result. Let us 
denote 

Ker #=  {fl f [  ~(u)  ] - f [  u ] = 0}, 

K ~ r # = { f l f [ ~ ( u ) ] - f [ u ] e K e r f / f u } .  (21) 

It follows immediately from (19) that the Hamil- 
tonian function h is the conserved density, i.e. 
hteKer f / fu .  We now indicate the conditions which 
insure that any element of K~r # is a conserved den- 
sity for the Hamiltonian equation (19). 

w,=det(O~OJru) , i,j=O, l .... , n .  (17) 

This formula provides the solution of the recursion 
problem 

0~,0~,(¢.) =exp(O._l  -20, ,  +¢~._ t ) ,  

0 , = 0 ,  n < 0 ,  ¢o=U(X,y ) .  (18) 

Namely one obtains from (18) that exp(¢~ ) = wj and 
by induction that e x p ( ¢ , ) =  w,, n=  1, 2, ... (see ref. 
[ l ] ) .  

Now we proceed to the discussion of the second 
condition (5) which has been formulated at the be- 
ginning of  this paper. Firstly, we note that one may 
construct a formally Hamiltonian evolution equation 

fh 
u,=J~-uu (19) 

by using any scalar function h=  [u] =h(u ,  u;,, uy, 
u ~  . . . .  ) and that the deformation of  (19) under 
transformation ( l ) is defined in virtue of (3),  (7) 
by the following formula, 

-, ., 5h' = j ,  fh '  ¢ 
_ t _ _  ( 2 0 )  u , - ~ ,  . J ¢  . ~ f . ,  . 

Here the new Hamiltonian density h' ( u ' ) = h ( u )  is 
well defined if the transformation may be inverted. 
The foregoing formula proves 

Theorem 1. Let the'conditions of proposition 2 
hold and K e r ~ c K e r f / f u .  Then geKfr~=:- 
gte Ker 5/5u. 

Proof. Let us call 

f={g,  h}= ( f g / f u ) T J ( u ) f h / f u .  (22) 

It follows from (19) and (22) that g t - f e K e r f / f u .  
Now we have to verify that f e  Ker ~-'. In virtue of (4) 
the bracket (22) is invariant under the substitution 

X f h [ ~ ( u ) ]  / f g [ ~ ( " ) ]  j(.) 
\ fu fu 

. t f h [ ~ ( u ' ) ]  u' 
j ( . , )  = ¢ t , , 1  • - \ fu' / flu' ' 

Since g, heK~r 4 one may replace g [4 (u ) ]  and 
h [~(u) ]  by g[u] and h[u] in the left-hand side of 
the above relation. This yields f [ u ]  =f[u'  ]. Thus 
fe  Ker ~ and the proof is completed. 

The result just proved means that 

{g, h}EKer f / f u  Vg, heK~r~ .  (23) 

If J defines the symplectic st~cture and the Jacobi 
identity holds then (23) implies commutativity of 
the corresponding vector fields J fg / fu ,  J f h / f u  (see 
ref. [ 2 ] ). Thus the following statement is valid. 

Proposition 2. Let J be skew symmetric (more re- Corollary. Let in addition to the conditions of 
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theorem 1 the Jacobi identity hold. Then any evo- 
lution differentiations of  type ( 19 ), (5)  commutate.  

Now we consider simple examples which should 
elucidate our discussion of  discrete symmetries. 
Though this discrete symmetry approach may be ac- 
counted as self-contained it appears to be more con- 
venient to incorporate this approach in the well- 
developed theory o f  solitons. 

It can be verified directly that substitution ( 13 ) is 
the discrete symmetry of  the nonlinear Schr~idinger 
coupled system 

iut=u~,+2uEv, - i v t = v ~ + 2 v E u .  (24) 

Namely (u', v') satisfies (24) as well as (u, v). 
Moreover, it can be proved that the following rela- 
tion holds (cf. (5 ) ) ,  

h j [ u ' , v ' l - h A u ,  v l=DxQAu,  v l ,  j = 0 , 1 , 2  . . . . .  

(25) 

Here ho=uv, ht =vux, h2=u2v2-uxv~, ... are the den- 
sities o f  the conservation laws for (24) and Qj are 
the densities of  the conservation laws for the Toda 
chain ( 11 ). The shifted variables q~+_ i, q~+_2 .... are 
expressed in terms of  Qj by derivatives o f  u = exp (qn), 
v= exp ( - q~_ ~ ). For example 

Qo =q,~ = (In u)~,  

Q~ = ~q2  +exp(q~ - q ~ - l  ) + q,~x~ 

= (In u ) ~ + ½ ( l n  u)2+uv ,  

Q2 = (In u)~(ln U)x~+ ~ (In u)~ +2trUx. 

We may now apply the above discussed general the- 
ory to substitution ( 13 ). The densities hj o f  the con- 
servation laws of  (24) satisfy (5)  by (25).  There- 
fore substitution ( 13 ) is a discrete symmetry not only 
for (24) but for any equation 

,ShAu) D°u=J  5u , j=O, 1,2 . . . . .  (26) 

where the matrix J=Jo (proposition 2). Further- 
more, the commutativity of  the differentiations (26) 
(i.e. DoDtk=DtkDo) is an immediate consequence 
of  (25) (corollary to theorem 1 ). One needs only to 
verify that 

f[  ~(u ) ] =f[ u ] ~ f =  const .  ( 27 ) 

That is an easy problem for substitution ( 13 ). 
Next we give a quite elementary exposition of  the 

Hirota type formula for the N-soliton solution o f  
(24).  One can choose as starting point any solution 
( Uo, Vo) of  (24) and obtain the new one by ( 13 ). We 
set Vo=0. Then the function Uo satisfies the linear 
equation iuot=Uo~x and we have by (16),  (17) the 
following explicit formulae for the iterations of  (13),  

/2 -1  Un~Wn/Wn--I , V n ~  n--I 

w, =det[di~+:Uo(X, t) ] , i , j = 0  ..... n .  (28) 

The formula of  the N-soliton solution corresponds to 
the following special case, 

2N 
Uo(X, t ) =  ~ ckexp(2kx--i22t) , 

I 

Gc~ • = I-I (2J--2k) -2 -  (29) 
k#7 

Here the set 2j, j =  1, ..., 2N, is supposed to be sym- 
metric under reflection: 2j ~ 2j, = - 2 7  relative to the 
axis R e 2 = 0 .  In the case (29) choosing n = N i n  (28) 
one obtains that vn=u* and therefore ium= 
u, ,~+ 21 u~ 12u~. A slight modification in (29) leads 
to N-soliton solutions for other equations (26).  It is 
interesting to notice that the choice of  the function 
Uo as the sum of m different exponentials results after 
m iterations in the reversed initial state (urn=0, 
v,,¢-0). It has been shown in ref. [3] that the pe- 
riodicity condition Uo = u~, Vo= v~ leads to finite-gap 
solutions o f  (24) (see also ref. [4] ). 

The class of  PDEs with discrete symmetries is rea- 
sonably large. In particular, in ref. [ 3 ] one can find 
an exhaustive, in a certain sense, list of  the systems 

Ut=Uxx + f ( u ,  V, II x, Vx) , 

- v , = v ~ , + g ( u ,  v, ux, vx) , (30) 

which are invariant under second order substitu- 
tions u' = ~(u, ux, u~) .  Most o f  these systems can be 
put in the Hamiltonian form (19) with J either as 
in proposition I or 

J=exp[O(u,v)]Jo,  0 ~ e x p ( 0 ) = 2 .  (31) 

In the case J=Jt,  

h= UxU+Olu2uZ+~(U2U+ U2U) + f l ( U 2 +  V 2)  , 

where a,  fl, yEC. The corresponding discrete sym- 
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metry is defined by the shift in the chain (14) with 
a-I(q)=aq2+yq+~O. In the case (31) the Hamii- 
tonian has in general the form h = e x p ( - O ) ×  
( u,,v,, + au,, + bv,, + c ). 

The Landau-Lifshitz model corresponds to a spe- 
cial choice of the solution of  the Liouville equation 
in (31): exp (0 )=  ( u - v )  z. By that 

exp (0) h = u,,v,, + 2au2v 2 + fl( u2v+ uv z) 

+Tuv+6(u+ v) + 2~ . 

The discrete symmetry is generated by the shift (10) 
in the chain 

q,.~, + ~P' (q.) + [P(q,)  + q L ]  

× [ ( q , , + , - q . ) - t - ( q , - q . _ , ) - ' ] = O ,  (32) 

where 

P(q) =~tq4 +.I?q3 + yq2 + rq+~ , 

P' (q) = 4otq3 + 3]/q2 + 2),q+ 6.  

A family of generalizations of (24) is generated by 
a solution of the Liouville equation of the following 
form, 

O(u,v)=O(u-v) , 

0 ' 2 e x p ( 0 ) = 4 + 6 e x p ( 0 ) ,  64:0.  

In this ease the substitution is defined by the shift 
(10) in the chain 

0 
q,.~=P(q,,.~) ~ [0(q,,  q,_l)+O(q,,+,,  q,)]  , 

P(q) = - ~q2 + otq+/~. ( 33 ) 

It can be proved that property (27) still holds for 
substitutions generated by shifts in (32), (33). 
Therefore theorem 1 may be used for the above dis- 
cussed generalizations of the nonlinear SchriSdinger 
system. Formula (33) suggests the invariant form of 
the generalized Toda chains related to the symplectic 
structure (31 ). For example, consider the chain ( 32 ) 
with P=0 .  One can start by any solution of the Liou- 
ville equation 0 .oexp(0)=2  and check out the in- 
variance of the chain 

2 q,.~ + O q ~  ~ [ O ( q . , q . _ , ) + O ( q , + , , q . ) l = O ,  

0.v exp (0) = 2 

under the point transformations q" = Q(q.) .  
Next, we would like to account briefly (cf. ref. [ 5 ] ) 

the matrix generalization of substitutions (2), (15). 
The following formula generalizes the Toda shift 
(13), 

u ' = u ~ , - u x u - l u x + u v u ,  v '=u - t .  (34) 

In this formula u, v are noncommutative variables 
which we suppose to be N × N  nondegenerate ma- 
trices. One may verify directly that the invariance 
condition (4) holds with the matrix J which is a 
2N× 2N analog of Jo: 

J = ( ~  - I 0 ) .  (35) 

Though 

u' v ' - u v = D x ( u x u  - l )  

the trace operation is needed for the generalization 
of (25). In particular for h=Tr [u~vx- (uv)  2] one 
obtains that 

h' - h = D x  Tr[ u' v x - U x V -  ~ ( UxU-t ) 3] . 

The matrix analog of (24) related to this Hamilto- 
nian density h has the following form, 

iu t=u~+2uv 'u ,  - i v , = v ~ , + 2 v u v .  (36) 

Naturally, this system may be put in the Hamilto- 
nian form (19) 

[u] .P ShlSul 
v =JLfh /~vJ"  (37) 

t 

Let us notice that the above "matrix variational de- 
rivatives" are well defined only for functionals which 
may be written down as a trace of some N× N ma- 
trix. Namely for f l u ]  =TrF[u] the matrix 5f/ fu  was 
defined from the equation df[ u ] / d r  = Tr (u ,gf / fu) .  
By these conditions the analog of the bracket (22) 
takes the usual form 

~vJ'L~g/gv_l/" (38) 

One may easily check that the second order substi- 
tution (34) corresponds to a shift in the matrix Toda 
chain 

W - 1  W " - - I  (w,~w~lL,=w,+,  . -- , ,w._l . (39) 

401 



Volume 174, number 5,6 PHYSICS LETTERS A 22 March 1993 

Another matrix chain 

w,~=w,,( w,,+ l --wn_l )w,, (40) 

generates the first order substitution 

u '=u- luxu- l  +v, v '=u.  (41) 

This substitution (cf. proposition I ) satisfies the in- 
variance condition (4)  with 

J---(~ 10)D x (42 ,  

and defines the variational discrete symmetry for the 
matrix evolution system of  equations 

ut=Ux~+2(uvu)x, v t = - v ~ + 2 ( v u v ) x ,  (43) 

which corresponds to h=Tr[u,,v+ (uv) 2] in (37).  
A large family o f  2 + 1 integrable Hamiltonian sys- 

tems can be introduced and investigated by means 
o f  the two-dimensional generalization o f  the above 
discussed canonical differential substitutions. For 
example, along the same lines as in the 1 + 1 case (see 
ref. [ 3 ] ), the two-dimensional generalization (15) 
o f  the Toda shift (13) results in the Davey-Stew- 
artson coupled system of  equations (see ref. [6 ] ) 

iut=u,~, +urr+u(DTIDr+D~lDx)(UV) , 

- i v t=v~+v~+v(D~lDr+D;- IDx) (uv ) .  (44) 

This system is not unique because the variety of  
symmetries of  the two-dimensional Toda chain gen- 
erates also more elementary but not so symmetrical 
systems (cf. ref. [7] ). It can be verified straightfor- 
wardly that the Davey-Stewartson system (44) is 
invariant under substitution (15) but in applica- 
tions o f  formulae (16),  (17) one should overcome 
the ambiguity related to the equality D~- ~ Dxvxy = Vx~ 
on which the invariance is based. The four-dimen- 
sional self-duality system can also be included in the 
theory. One can find an explicit form of  the differ- 
ential substitutions for these equations in ref. [ 8 ]. 
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