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Abstract

We present an integrability test for discrete equations on the square lattice,
which is based on the existence of a generalized symmetry. We apply this test
to a number of equations obtained in different recent papers. As a result we
prove the integrability of seven equations which differ essentially from the Qy
equation introduced by Viallet and thus from the Adler—Bobenko—Suris list of
equations contained therein.

PACS numbers: 02.30.1k, 02.30.Ks
Mathematics Subject Classification: 39A14, 70G65, 70S10, 37K10

1. Introduction

As is well known, the generalized symmetry method allows one to classify integrable equations
of a certain class and to test a given equation for integrability [24, 25]. In the case of 1 + 1
partial differential equations, it has been used to develop a computer PC-package DELiA,
written in Turbo PASCAL by Bocharov [6]. This program can be used to prove integrability
and compute symmetries of given evolutionary partial differential equations. The symmetry
approach has also been applied with success to study the integrability of differential difference
equations [3, 41]. Here we apply, using the theoretical results contained in [22], the method to
partial difference equations defined on a quad-graph. We will consider autonomous equations
of the form

g(un,ms Un+1,ms Un,m+1> un+1,m+l) = O, (11)

where n, m are arbitrary integers, i.e. autonomous equations which have no explicit dependence
on the point (n,m) of the lattice and consequently are invariant with respect to n and
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m translations. Following [22], we use as the integrability criterion the existence of an
autonomous five-point generalized symmetry:

Un,mt = g(”n+1,mv Un—1,ms> Un,m> Un,m+1, un,mfl)v (12)

where ¢ denotes the group parameter. Due to the complexity of the discrete case, we limit
ourselves to the simplest nontrivial case given by symmetries of the form (1.2). Moreover we
assume that the symmetry is autonomous as so is the equation. As we shall see, autonomous
symmetries of the form (1.2) are general enough to cover a wide class of integrable equations.
Theoretically, however, an integrable equation may have a symmetry depending on more
lattice points and having lattice-dependent coefficients.

We assume that nontrivial nonlinear partial difference equations which have generalized
symmetries of the form (1.2) are integrable. However, there might be classes of nonlinear
equations contained in (1.1) which are integrable but have no symmetry of the form (1.2).

We define as trivial a nonlinear lattice equation (1.1) which is factorizable or reducible by
summation to a simpler equation, maybe non-autonomous, which depends on a lower number
of lattice points. Example of trivial equations are

&= w(un,m’ un,m+l)w/(un+l.mv un+l,m+l) = O,
&= a)(un+1,mv un+1,m+1) - w(un,mv un,m+1) = 09

with w and ’ given functions of their arguments.
Symmetry-related integrability tests can also be obtained considering approaches different
from the one presented in this paper.

(1) One can construct integrability tests based on symmetries which are given by lattice-
dependent equations, possibly related with master symmetries. An example of such
a symmetry is given by lattice-dependent Volterra-type equations studied in [21, 29].
Lattice-dependent discrete equations possessing such symmetries have been recently
presented in [38].

(2) An integrability test can also be obtained considering Bicklund transformations instead
of generalized symmetries. These have been used, for example, to study equations of
KdV/sine-Gordon type (see [1], for instance).

Alternative methods for testing and classifying difference equations not strictly related to
symmetries are:

(1) The 3D-consistency method firstly introduced as a kind of Bianchi identity related to the
Bianchi commutativity theorem [31]. As a property of maps it was first proposed in an
article by Nijhoff, Ramani, Grammaticos and Ohta [30]. It has been used with success by
Adler, Bobenko and Suris to classify some classes of equations on the quad-graph [1, 2].

(2) Grammaticos, Ramani and Papageorgiou [8] proposed in 1991 the singularity confinement
criterion. Later, it was shown that the singularity confinement was not sufficient to prove
integrability and Viallet and Hietarinta [14] introduced the algebraic entropy, slow growth
of complexity, as a way to test both S- and C-integrable equations.

(3) Most recently, the study of the growth of the so-called characteristic algebra has been
applied to the case of difference equations and has provided a way to identify and classify
integrable equations on the lattice [10, 11]. This method can also be used for the study of
linearizable equations [9].

(4) The existence of integrals of (1+1)-dimensional partial difference equations, in both
directions, provides a way to test and classify linearizable partial difference equations [4].
The equations which satisfy this test have been called Darboux integrable equations.
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A recent review of techniques used to show integrability of difference equations can be found
in [13].

In section 2, we review the necessary theoretical results contained in [22]. Then we explain
how, using those results, we can test any given equation (1.1) for integrability. In section 3, we
apply this testing tool to a number of equations which can be found in the recent literature on
this subject [2, 12, 15, 18, 20]. In section 4, we collect together and discuss all the equations
of the form (1.1) which we have shown to satisfy the generalized symmetry test. In particular,
we write down seven integrable equations which are not contained in Qy [36] and thus are not
related to the equations of the Adler—Bobenko—Suris (ABS) list [1].

2. Theoretical results

Asequation (1.1) and its symmetry (1.2) are taken to be autonomous, in all generality, applying
the translation invariance, we can consider them at the pointn = m = 0:

Eo,0, U1,0, Uo,1,u1,1) =0, 2.1

u0,0,t = 80,0 = G(U1,0, U—1,0, U0,0, U0,1, U0,—1)- (2.2)

Equation (2.1) must satisfy the following conditions:
(Eupos Euros Eugys Eury) # 0, (2.3)

where indices in (2.3) denote partial derivatives. These conditions are not sufficient to rule out
trivial equations. The equation

(uo,0 +ur,0)(uo,1 +u+1)=0

provides an example of equation which is degenerate but satisfies (2.3).
We require that equation (2.1) be re-writable in the form

ury = Y, uoo, uor), 24

where
(fury fugs s fiai”) #0 2.5)

and the apex (') indicates that the function f is obtained from (2.1) by explicitating the
function u in the point (1, 1). Conditions (2.5) are necessary conditions to prevent triviality of
equation (2.1).

It is well known [19, 34, 35] that all the equations (2.1) classified by Adler, Bobenko and
Suris have two symmetries of the form

10,0,, = ®(u1,0, 0,0, U_1,0), 10,0,, = W(uo,1, uo,0, to,—1), (2.6)

where (@, Pu_, g Yugy» Yuo_,) # 0. Obviously, if (2.6) is valid, we can construct a
symmetry upo, = ¢ + W of the form (2.2) with

Guro> Gu_19> Gugrs Guo ) # 0. 2.7

One can also prove in all generality for a symmetry of the form (2.2) (see details and references
in [22]) that its rhs must be of the form

G = ®(uy,0, uo,0, U—1,0) + W(uo,1, Uo,0, o,—1)-

So to obtain a coherent result we need to add to the generalized symmetry equation (2.2)
conditions (2.7), from now on called non-degeneracy conditions.



J. Phys. A: Math. Theor. 44 (2011) 145207 D Levi and R T Yamilov

In [37], the author considered affine linear equations of the form (2.1) and (2.3), where
the function & possesses the Klein symmetry:

E(uo,0, U1,0, Uo,1, U1,1) = EEW1,0, Uo,0, U1,1, U0,1),

2.8
E(uo,0, U1,0, Uo,1, U1,1) = £EWo,1, U1,1, Uo,0, U1,0)- (2.8)

We will call equations possessing symmetry (2.8) the Klein-type equations. It has been proved
in [37] that Klein-type equations possess two nontrivial generalized symmetries of the form
(2.6), i.e. they satisfy our test.

The class of Klein-type equations contains the Qy equation [36], see the appendix. A
generic Qy is equivalent to Q4 [1] up to Mobius transformations, see e.g. [37]. The definition
of the class of Klein-type equations is constructive and easy to check. Moreover, Klein-type
equations are invariant under Mobius (linear-fractional) transformations:

Yipm+6
and it is easy to check if an equation cannot be Mdbius transformed into the Qy equation or
into an equation of the ABS list.
Equation (2.2) is a generalized symmetry of equation (2.4) if the following compatibility
condition is satisfied:

d(u, — f4D)

=0.
dr lur1=f0D, uo,0,=80,0]
Explicitly the compatibility condition reads
[81.1 = (81,081 + 80,0900+ 80.18u0,).f "Vl = pon = 0, (2.10)

where g, = T} sz 80.0, and 71, T, are the shift operators acting on the first and second indices,
respectively, ie. TlgO,O = £1.0 and T>80.0 = &o.1-

To be able to check the compatibility condition between (2.1) and (2.2), we need to define
the set of independent variables in terms of which (2.10) can be split into an overdetermined
system of independent equations. In this work we choose the functions

U0, l/t(),j (211)

as independent variables. Then, using (2.4), all the other functions u; ; can be explicitly
written in terms of the independent variables (2.11). So we require that equation (2.10) is
satisfied identically for all values of independent variables. Taking into account the form of G,
equation (2.10) depends on the variables u; j, u_y 1, u1,—1, 42,1, 41 2, and this is the reason why
(2.10) turns out to be a rather complicated functional-difference equation for the functions
FUD and go o appearing in (2.2) and (2.4).

In [22] we proved the following theorem.

Theorem 1. If (2.4) possesses a generalized symmetry of the form (2.2), then its solutions
must satisfy the following conservation laws:

(T1 — Dy = (Tr — Dago, (2.12)
where
if Gu,, #0, then
po = log £V, a5l = 0V (20, 1.0, ,0); (2.13)
if Gy ,, #0, then
f(l,l)
poo = log s, a5y = 0P (u20. 1,0, ,0); (2.14)

uo,1



J. Phys. A: Math. Theor. 44 (2011) 145207 D Levi and R T Yamilov

if Gu,, # 0, then
6]33()) log fu(ol,ll)v P(()?()) = PP (ug5, uo 1, to,0); (2.15)

if Guo_, # 0, then
(1,1

4 o, 4 4
61(()8 log (01?1), P(()) PP (ug, ug.1, 1o0)- (2.16)
uio

Let us analyze in detail theorem 1 when k& = 1. In this case we just require G, , # 0,
while the dependence of G on the other variables is not important In this case theorem 1 states
that there exists a conservation law with a function p0 0 Completely defined by (2.4) while q(l)
is an arbitrary function of u, o, 4,0, to,0- The other three cases are similar.

Therefore, theorem 1 provides four integrability conditions in the form of conservation
laws. In the case of a non-degenerate symmetry (2.2), (2.7), all these integrability conditions
must be satisfied.

Let us note that from the existence of generalized symmetries, we can easily derive many
integrability conditions of this kind. Such conditions have been written down in [26]. However,
the other conditions are in general more complicated, and more difficult to use in practice. Work
is in progress to check if these further integrability conditions, obtained requiring the existence
of a recursion operator for the symmetries, allow us to obtain new integrable equations of this
class or if they just correspond to the existence of higher symmetries.

If the integrability Conditions given in theorem 1 are satisfied, then there must exist
functions qél()), qéz(;, p(()3()), Po 0 ) local in their argument. Once we know all such functions, we
can check if some autonomous five-point symmetries might exist. In fact in such a case we
can construct the four partial derivatives of G [22]:

gul,o = exp (_q(—ll) ())’ gu—l.o = exXp (q(zl) 0) (2.17)
Guo, = exp (—p§)). Guo, = exp (p§))- (2.18)

These partial derivatives must be compatible
gul,Oa”—LO = g“—l,(%“l,()’ guo,l,MoA-l = gun,-l,uo,l . (2.19)

Equation (2.19) is an additional integrability condition. If this further integrability condition
is satisfied we can construct G in the form

G = ®(uy,0, ug,0, u—1,0) + ¥ (uo,1, to,0, to,—1) + v(uo,0), (2.20)

where @ and W are known functions of their arguments while v is an unknown arbitrary
function which may correspond to a Lie point symmetry of the equation. The function v can
be specified by considering the compatibility condition (2.10), the last and most fundamental
integrability condition.

The first problem is to check the integrability conditions given in theorem 1. In the case of
differential difference equations we had a similar situation, i.e. the integrability conditions were
given by conservation laws depending on arbitrary functions of a limited number of variables.
However, such problem was easier to solve as all discrete variables were independent and we
could use the variational derivative to check them [22]. Here the calculation of the variational
derivative is not sufficient to prove if a given expression is a conservation law.

So, in the following, we present a scheme for solving this problem for any given equation
of the form (2.4), i.e. we show how we can solve equations (2.12)—(2.16) to obtain qé.l()), qé.z(;,

p((f()), p(()A()) as local functions of their arguments. We will split the explanation into two steps.
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Step 1. First, we consider the integrability conditions (2.12) corresponding to k = 1, 2. The
unknown functions on the rhs of (2.12) when k = 1,2 contain the dependent variable u;
which, from (2.4), depends on us g, #1,, #;,1 and thus is not immediately expressed in terms
of independent variables, but gives rise to extremely complicated functional expressions of
the independent variables. We can avoid this problem by applying the operators Tfl, T{l to
(2.12). In this case, we have

k k k X
P((),é - P(,B,o = qff,l - qif,o = 0®(u 1, uo1,u_1.1) — Q% (0, uo0, u_1,), (2.21)

k k k k
P((),),l - P(,;,,l = 61(,1),0 - 61(,1),,1 = 0%y 0, u00,u-1,0) — QP (11, uo 1, u_1,-1).

(2.22)

Here pl(k]) are known functions expressed in terms of (2.4). The functions qi(,l}) are unknown,
and (q(_k]),,, q(_k])’_l) contain the dependent variables u; 1, u_1 1, u1,—1, u—1,—1. Our aim is to

derive from (2.21) and (2.22) a set of equations for the unknown function qikl)’o.
To do so let us extract from (2.1) three further expressions of the form of (2.4) for the
dependent variables contained in (2.21) and (2.22):
u_ry = Vw0, w00, 1),
ur—1 = fE Vo, uoo, o 1), u—i 1= fT V@0, u00, uo-1). (2.23)

All functions @7 have a nontrivial dependence on all their variables, as is the case of f('1,
and are expressed in terms of independent variables. Let us introduce the two differential
operators:

FA.D FELD

uo,0 uo,0
A= aMo,o - 1, aul‘o - (&) 814,]‘0: (224)

ui,0 U-_1,0

fu((}bfl) fu(ofol,fn
B = auo,o - ﬁ U0 Tfl)a”*m’ (225)
uio u-1,0

chosen in such a way as to annihilate the functions ¢*  and ¢ namely A¢g® =0
y 91,1 qd_1,-1» Yy Aq_ 4 s

Bq(fIL1 = 0. Applying A to (2.21) and B to (2.22), we obtain two equations for the unknown

k) .
q_1,0-

Aq(_kl)!O = &b, Bq(_kl)_O =&, (2.26)
where r®D, r*2 are some explicitly known functions of (2.4). Considering the standard
commutator of A and B, [A, B] = AB — BA, we can add a further equation

(A, Blg"), = r®Y. (2.27)

Equations (2.26) and (2.27) represent a linear partial differential system of three equations
for the unknown q(_kl)yo = O™ (uy 0, u00,u_1,0). For the three partial derivatives of q(_k,).o,
this is just a linear algebraic system of three equations in three unknowns. In most of the

examples considered below, this system is non-degenerate and thus it provides one and only
one solution for the three derivatives of qikl).o. In these cases, we can find in a unique way the

partial derivatives of qé{%. Then we can check the consistency of the partial derivatives and,

if satisfied, find qé{% up to an arbitrary constant. Finally, we check the integrability condition
(2.12) with k = 1, 2 in any of the equivalent forms (2.21) or (2.22).

6
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The non-degeneracy of the system (2.26), (2.27) depends on (2.4) only. So if we have
checked the non- degeneracy for k = 1, we know that this is also true for k = 2 and vice versa.
So both functions qo 0, qo 0 are found in a unique way up to a constant of integration.

If the system (2.26), (2.27) is degenerate, the functions ‘Io 0 qéz(; are defined up to some
arbitrary functions. In this case, the checking of the integrability conditions (2.12) may be
more difficult.

In principle the coefficients of the system (2.26), (2.27) may depend, in addition to the

natural variables ug o, i1,0, 4_1,0, €ntering in g 1. 0, on the independent variables ug 1, up,—1. In

such a case, we have to require that the solution q o does not depend on them. In this case,
we have to split the equations of the system (2.26), (2 27) with respect to the various powers of
the independent variables ug 1, uo 1, if (2.4) is rational, and obtain an overdetermined system

of equations for q(_kl),o. Moreover, overdetermined systems of equations are usually simpler to
solve. There will be some examples of this kind in section 3.

Step 2. Let us consider now conditions (2.12) with k = 3, 4. In this case we have a similar
situation. By appropriate shifts we rewrite (2.12) in the two equivalent forms:

(k) (k) (k) (k)
P1,—1 — Po,—1 = 90,0 — 90,-1

= P® i1, ur0,u1,-1) — PP (uo 1, uop, uo-1), (2.28)
(k) (k) (k) (k)
Po—1 = P-1-1=9-10 " 9-1,-1
= PO o1, u00, uo—1) — PO (u_y1,u_10,u_1-1). (2.29)
We can introduce the operators

1,1 1,—-1
Fui s fioi”

A= 8Mo,o - (1,1) “uo.1 - a,-1 aun__] P (230)
uo,1 0,1

N v i

B = auo.o = e Y T T AT 0 8u0,,17 (2.31)
uo,1 uo,—1

such that A p(k) =0and B p(k) _1 = 0. Then we are led to the system
Apélf)_l = pkD) BP((){()_] = kD) [A, B]p((f) — &3 (2.32)

for the function pékll depending on ug 1, U0, 4o,—1, Where #®D are known functions
expressed in terms of @/,

After we have solved (2.12)—(2.16) we can construct a generalized symmetry. When
systems (2.26), (2.27) and (2.32) are non-degenerate, we find & and W, given by (2.20), up to
at most four arbitrary constants. Two of them may be specified by the consistency conditions
(2.19), while the remaining constants are specified using the compatibility condition (2.10)
together with the function v. In practice, we always look for symmetries of the form (2.6).
Such symmetries are defined uniquely up to multiple factors and the addition of functions of
the form v (u¢ o) corresponding to the rhs of point symmetries ug o, = v(u,0). We write down
only the generalized symmetry as we are not interested in the point symmetries.

If one of the systems (2.26), (2.27) or (2.32) is degenerate, then ® and W on the rhs of
a generalized symmetry (2.20) may be found up to some arbitrary functions. Those arbitrary

7
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functions must be specified using the compatibility condition (2.10). However, in almost all
degenerate examples considered below, (2.4) turns out to be trivial and it can be rewritten in
one of the following four forms:

(T £ Dw(ug g, uo,1) =0, (T, £ Dw(uy g, ugp) = 0. (2.33)

Equations (2.33) can be integrated once and give equations depending on a reduced number
of lattice variables.

In the next section we test equations which depend on arbitrary constants and thus
solve some simple classification problems. We look for such particular cases that satisfy our
integrability test and are not of Klein type (2.8) or transformable into Klein-type equations by
n, m-dependent Mobius transformations.

3. Examples

Here, we apply the test to a number of nonlinear nontrivial partial difference equations
introduced by various authors using different approaches to prove their integrability [2, 12,
15-18, 20, 28]. It should be stressed that all equations below are affine linear, i.e. they can be
written in the form (2.1) and (2.3), where 32€/du? ,, = 0 for all four variables.

Example 1. This will be a simple illustrative example discussed in detail. We consider the
equation

(ur0+ Do — 1) = (1,1 — D(uos +1). (3.1

Up to a rotation (change of axes), (3.1) is equivalent to the equations presented in [17] and
[28].In [18, 20, 22], its L—A pairs and some conservation laws are presented. Two generalized
symmetries of the form (2.6) have been constructed in [22]. So (3.1) satisfies our integrability
test, but nevertheless, it is instructive to try out the test with this equation.

The study of this equation splits into two different steps.

Step 1. Let us consider the integrability condition (2.12) with k = 1. The corresponding
system (2.26), (2.27) reads

uro+1 u_10—1 2u,0
Quog — ———9u, o — 7 Gu_, = ,
00 Uup,0 — e Uup,o + 1 1o 1— u(z).o
Uio — 1 M_1’0+1 2140’()

quo,o - ‘Zu,m =

2 9
1-— ug o

(u1,0u0,0 + Dqu,, — (1 ,0u00+ Dqu_,, =0,

Up,0 + 1 Guro Up,0 — 1

where ¢ = qill) o and by the index we denote the argument of the derivative. This system is
non-degenerate, and its solution is

2u0,0
Quio = qu1p =0, Quo = 7,7~
—Upo
Hence, g3y = —log(u3, — 1) + c|, where ¢ is an arbitrary constant. g together with

p((f()) = log ';‘jﬁ:ll satisfy relation (2.12) and provide a conservation law for (3.1).

Equation (2.12) with £ = 2 can be solved in a simpler way. As pff& = —p(()f())+log(— 1), the

solution of (2.12) with k = 2 is given by qé?& = —q(()}(; + ¢, with ¢, another arbitrary constant.
As the corresponding system (2.26), (2.27) is non-degenerate, there is no other solution.

8
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Now we look for @, the rhs of the symmetry in (2.6). As follows from (2.17), a candidate
for such a symmetry is given by

2
0,0 = (ugo — 1)(uro+ Bu_1,0) + v(ugo).

Here o, 8 are nonzero arbitrary constants, and v(ug o) is an arbitrary function of its argument.

Rescaling #;, we can set in all generality « = 1. Substituting this into the compatibility
condition (2.10) we obtain 8 = —1, v(upp) = 0. This symmetry is nothing but the well-
known modified Volterra equation [41]

o0, = (ug— 1) (w10 — u_1,0). (3.2)

Step 2. Let us consider the integrability conditions (2.12) with k = 3, 4. In this case the
corresponding system (2.32) is degenerate. So we have to modify the procedure presented in
the previous section and applied above in the case when k = 1, 2. For k = 3 this system reads

(10,1 +10,0) Pug, — (0,0 + 10,—1) Puy_, = 2,
(uao — 1) Puyy + (o,110.0 + 1) puy, + (o otto,—1 + 1) pu,_, =0,

where p = p(§311. Its general solution is

up,1 +uo0 . ”% 0o—1
p=Q(w)+log———— with o= . . (3.3
uo,0 + 1o, —1 (0,1 + uo,0)(1o,0 + 1o, —1)

The integrability condition (2.12) with k = 3 is satisfied iff Q2 (w) = y — log w, where y is an
arbitrary constant. The case k = 4 is quite similar, and we easily find the second generalized
symmetry of (3.1):

1 1
uo.0. = (ugo— 1) < — ) ) (3.4)

Uuo,1 +uoo0  Uo,0 +Uo,—1

Step 2 of this example is not standard. In all the following discrete equations, either the
systems (2.26), (2.27) or (2.32) are non-degenerate or the equations themselves are trivial. As
a result we have proved the following statement.

Theorem 2. Equation (3.1) satisfies the generalized symmetry test and possesses the
symmetries (3.2) and (3.4).

Example 2. Let us consider a known equation closely related to (3.1) and studied in [16, 18,
23,27]

uy,1(uo1 +c)(ur o — 1) =ugouro+c)uo — 1), (3.5

where ¢ # —1, 0. In particular, its L—-A pair can be found in [27]. If ¢ = —1, it is trivial. If
¢ = 0, using the point transformation

2

1 - Un.m

Un,m , (3.6)
we can reduce it to (3.1) for &, ,,. So (3.5) generalizes (3.1). Thus, it will not be surprising that
this equation satisfies our test. The calculation is quite similar to the one shown in example 1,
step 1. We easily find two generalized symmetries of the form (2.6):

10,0,1, T 1
e o -
1g,0(uo,0 — 1)

, 3.7
uooU_1,0+c(uoo+u_ro—1)
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uo’(), 1
—2 (- 1) .
10,0(Uo,0 + ) uo,0Uo,—1 — (Uo,0 + Uo,—1 +C)

As a result we obtain

(3.8)

Theorem 3. Equation (3.5) satisfies the generalized symmetry test and possesses the
symmetries (3.7) and (3.8).

Example 3. A further example is given by the equation
uyug,o(uro — D(uor + 1) + (i o+ D(uoy —1) =0 (3.9)

taken from [18]. It is an equation which possesses five non-autonomous conservation laws of
the form

(Tl - l)pn,m(un,m’ un,m+l) = (TZ - 1)qnm (un,m’ un+l,m)’ (310)

where p,.m, qn.m depend explicitly on the discrete variables n, m. In [18], the authors also
calculated the algebraic entropy for (3.9) and demonstrated in this way that the equation should
be integrable.

This example does not satisfy our test. The system (2.26), (2.27), corresponding to the first
of the integrability conditions (2.12), is non-degenerate, and we find from it qé}& in a unique
way. However, this function does not satisfy condition (2.12). The same is true for all four
integrability conditions. This means that all four assumptions of theorem 1 are not satisfied.

Theorem 4. Equation (3.9) does not satisfy any of the four integrability conditions (2.12)-
(2.16). This equation cannot have an autonomous nontrivial generalized symmetry of the form
(2.2).

Equation (3.9) might have, however, a non-autonomous generalized symmetry. The
extension of the method to non-autonomous generalized symmetries for partial difference
equations is an open problem which is left for future work.

Example 4. Let us consider the equation

(1 +uoour,0) vy +up 1) = (I +ugjur,1)(Vugo + u1,0), (3.11)

where the constant v is such that v> % 1. When v = %1 the equations are trivial, as they
are equivalent to (2.33). Equation (3.11) has been obtained in [20] by combining Miura-type
transformations relating differential difference equations of the Volterra type. In [32] Miura-
type transformations have been found relating this equation to integrable equations of the form
(2.1). Equation (3.11) satisfies our test, and we find two generalized symmetries:

u? —v)(vud, —1 1 1
oy = =000 ) ) e
10,0 uiouoo+1  wuoou_10+1
uZ, —v)(vud, —1 1 1
= B i ). e
10,0 uo1uo,0 — 1 wugouo—1 —1
In the particular case v = 0, (3.11) reduces to
1 1
U —Ugo=———"—""7, (3.14)
uyo  Uo1

and (3.12), (3.13) to its generalized symmetries. Equation (3.14), up to point transformations,
can be found in [8, 17, 18]. As a result of this example we can state the following theorem.

10
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Theorem 5. Equation (3.11) satisfies the generalized symmetry test and possesses the
symmetries (3.12) and (3.13).

Example 5. A further interesting example is provided by the equation [12]

2(uo,0 +ur,1) +uro+uo +y@uoour +2uyouo + 3(moo +ur )Mo+ uo 1))

+ (& + & uoour,1 (1,0 +uo,1) + (52 — E)uy ouo,1 (uo,0 +u1,1)
+Cuoour, U101 =0, (3.15)

where y, &, &4 and ¢ are constant coefficients. This equation is obtained as a subclass of the
most general multilinear dispersive equation on the square lattice, Q,, whose linear part is a
linear combination with arbitrary coefficients of ug o + u; 1 and u; o + 1o 1. Equation (3.15) is
contained in the intersection of five of the six classes of equations belonging to Q. which are
reduced to an integrable nonlinear Schrodinger equation under a multiple scale reduction.

Using the transformation u,,, = 1/(i,m» — y) and redefining the original constants
entered in (3.15):
a=&+E& -5y, B=&—&—4y° §=¢+12y° —dyd,

we obtain for i, ,, a simpler equation depending on just three free parameters:
(fo,ott1,1 + o) (1,0 + do1) + (21,0601 + B)(loo +l1,1) +3 = 0. (3.16)

If the three parameters are null, (3.16) is a linear equation in iig o = 1/fi¢,0, and thus trivially
integrable.

For (3.16) the test is more complicate, as the system (2.26), (2.27) depends on the
additional variables 7o |, @1p,—;. It is written as a polynomial system and setting to zero the
coefficients of the different powers of #i( ; and ity _;, we obtain a simpler system of equations
for q(_kl)yo. The same is also true in the case of system (2.32).

Equation (3.16) is a simple classification problem, as it depends on three arbitrary
constants, and we search for all integrable cases, if any, contained in it. By looking at its
generalized symmetries we find two integrable non-linearizable cases:

(D) a=28#0and 8 =0,ie & = 3& +3y2, ¢ = 12y&;
(2) B=2a#0and s =0,i.e. & = 6y> —3&, ¢ = 12y (y? — &).

In case 1, using the transformation &, ,, = uy m(— 1) B2 we obtain (3.11) with v = 1/2. In
case 2 we can always choose o = 1 and the equation reads

(uo,our,1 + 1) (ur,0 +uo1) + 2(uy oo, + 1) (uo o +ui,1) = 0. (3.17)
By applying the procedure presented in the previous section we find the symmetries

U0 — U_10
uou_1,0— 1

Up,1 — Ug,—1

. (3.18)
uo, 1uo,—1 — 1

uo,0,6, = (u(z),o — 1) uop,0,6, = (uao — 1)
This last example (3.17) seems to be a new integrable model. More comments on this will be

presented in section 4. This result can be formulated as the following theorem.

Theorem 6. There are two nontrivial cases when (3.16) satisfies the generalized symmetry
test. The first one is given by the relations « = 2 # 0, 6 = 0, and the equation is transformed
into (3.11). In the second case, an equation can be written as (3.17) which possesses the
symmetries (3.18).

11
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Example 6. This example is also an equation with arbitrary constant coefficients, obtained by
Hietarinta and Viallet [15] as an equation with good factorization properties and considered
to be an equation worth further study:

(uo.0 — uo1) (10 — ur ) + (o0 — ur1)ra+ (uoy —ur0)rs+r =0. (3.19)
The authors claim that (3.19) is integrable for all values of the coefficients, as it has a quadratic
growth of the iterations in the calculation of its algebraic entropy.

Here we see that if ry = r3 = r = 0, the equation is trivial. So we consider only those
cases when the triple of parameters r4, r3 and r is different from zero.
Let r4+r3 = v = 0 in (3.19). We apply an n, m-dependent point transformation
Upm = dpm + (n +m)ry and obtain for i, ,, the equation
2
(uo,0 — uo,1)(u10 —u1)) +r—ry =0

of Klein type, more precisely a particular case of the Qy equation. However, it is obviously
trivial whenever r = rf. Ifr #£ rf, we can rewrite it as

(T1 + D[ log(uoo — uo,1) — 3 log (r; —r)] =0,
i.e. the equation is trivial in this case too.

The other possible case is when r4 + r3 = v # 0. By the transformation u,, ,, = vii,, ,, we
obtain the following two-parameter equation:

(0,0 — uo,1 +a)(ur,0 —ur 1 +a) +up1 —uro+b =0, (3.20)
where
r4g = av, r3 = (1 —a)v, r= (b+a2)v2.

This equation has two generalized symmetries which we can construct using our procedure

10,0, = (1,0 — uo,0 —a — b) (oo —u_10 —a —b), (3.21)
1 — 1 —yo_
uo,0,, = ( yO’O)( Yo 1) + 1, Ynm = 2(Mn,m+1 - Mn,m) —2a+ 1, (322)
Y0,0 t Y0,—1

showing its integrability. This result can be formulated as

Theorem 7. In the case ry +1r3 = 0, (3.19) is equivalent to a trivial equation. In the case
rqy + 13 # 0, it can be rewritten in the form (3.20). Equation (3.20) satisfies the generalized
symmetry test and possesses the symmetries (3.21) and (3.22).

Example 7. The next example is also taken from [15]:

Uo,0U0,1C5 + U1,0U1,1C6 + 0,0l 1,0C1 + Uo,1141,1C3 + (Uo,0U1,1 + U1 oU0,1)C2 = 0. (3.23)

This equation is proven to be integrable for all values of constants c; by checking its algebraic
entropy. Also in this case we have a kind of classification problem once we exclude, up to
some simple transformations, all Klein type and trivial subequations.

Let us observe at first that if cs = ¢ and ¢; = c¢3, (3.23) is of Klein type, and if moreover

c1 = ¢s = 0, it is trivial. We can construct some point transformations which leave (3.23)
invariant, but transform the coefficients among themselves. By the transformation

Unm = U ns (3.24)
Cs <> ¢, Cg <> 3, and by the transformation

Unm = 1/lnm, (3.23)

12
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¢cs <> cg, €| <> c3. In both cases ¢, remains unchanged. Moreover, the n, m dependent
transformation

N nom .
Unm = WpmK1 K", ki #0,i=1,2, (3.26)

leaves the equation invariant with the following transformation of the coefficients:

&s = ¢s/ki, C6 = CeK1, &1 = ci/ka, &3 = c3k2, & = o2

So if at least one of the coefficients ¢; (i # 2) is different from zero, using the
transformations (3.24) and (3.25), we can make c¢s5 # 0. Let us assume that also ¢ # O.
If either ¢ or c¢3 is equal to zero then, using the transformations (3.24) and (3.25), we can
make cg = 0. If both ¢ and c; are either zero or different from zero, using the transformation
(3.26), we can make ¢; = c¢3 and ¢s = cg, i.e. we obtain a Klein-type equation. So the only
possible remaining case is when c¢5 # 0, cg = 0 and without loss of generality we can set

es =1, c6 = 0. (3.27)

The non-degeneracy conditions (2.3) give two restrictions ¢; # 0 or ¢; = 0, cjc3 # 0. In
these two cases, the equation can be nontrivially rewritten in the form of (2.4). If ¢, # 0 and
c1 = c3 =0, (3.23) is trivial, as it is equivalent to

uio 1
(L+D)|leo—+=)=0.

Uuo,0 2
So at the end we get two admissible cases:
c=0: ciez # 0, (3.28)
c#0: ciorcs #0. (3.29)

Any equation (3.23), (3.27) satisfying conditions (3.28), (3.29) possesses two generalized
symmetries. The first symmetry depends on the number ¢ c3 — c%. If

cics —cs #0, (3.30)
the condition (3.28) is satisfied automatically. The symmetry reads
10,0 2
uo,0.n = (U1,0 — cu,0) ( - C) , c=—>5. (3.31)
U_1,0 cicz3 —c¢

In the case when cjc; = c%, as ¢ # 0 due to condition (3.28), condition (3.29) is satisfied
automatically. In this case

cics=c3#0 (3.32)

and the symmetry reads
2

4o,0
Uup,0,4 = U1+ . (333)
U-1,0
The form of the second symmetry depends on the number cc;3. If
cie3 #0, (3.34)
then both non-degeneracy conditions are satisfied, and we have the symmetry
exeser (uomo,—1 +ud o) + (c3 + cser)uo(uo,1¢3 + uo—1c1)
uo,0,t, = . (335)

Up,163 — Up,—1C1

13
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If cijc3 = 0, then we cannot have ¢; = 0 due to condition (3.28). So ¢, # 0, and we
use condition (3.29). We have here two cases for which both non-degeneracy conditions are
satisfied. First of them is

c3 =0, cicy # 0, (3.36)
and the corresponding symmetry has the form

U,0,1, = (Mo,l + uo,o%) (ull()i)’()l + E—;) . (3.37)
The second case is

¢ =0, ce3 £ 0, (3.38)

and the symmetry reads

oo €3 c3
uo0, = | — +— ) | Uo,—1 tUo0— | - (3.39)
up,1 2 (o))

Theorem 8. For (3.23) we have the following.

(1) If it is not equivalent to a Klein-type equation, then it can be rewritten in the form (3.27)
using transformations (3.24) and (3.25).

(2) Nontrivial equations (3.23) and (3.27) must satisfy conditions (3.28) and (3.29).

(3) Equations (3.23) and (3.27) with the restrictions (3.28) and (3.29) satisfy the generalized
symmetry test for any values of cy, ¢, 3.

(4) The first symmetry of this equation is of the form (3.31) in case (3.30) and of the form
(3.33) in case (3.32);

(5) The second symmetry is of the form (3.35) in case (3.34), of the form (3.37) in case (3.36)
and of the form (3.39) in case (3.38).

The resulting equations (3.23) and (3.27) satisfying conditions (3.28) and (3.29) will be
written down in a simpler explicit form in section 4. One of these equations, in a slightly
different form, can be found in [33], where its L—-A pair is given. There it is stated that
hierarchies of generalized symmetries and conservation laws exist.

Example 8. The last example is taken from an article by Adler, Bobenko and Suris [2], where
an extended definition of 3D-consistency is discussed and the so-called deformations of H
equations are presented. As an example, let us consider here one of them, namely,

(uo,0 — u1,1)(U1,0 —uo,1) = (@ — B)(1 — euyouo,1), (3.40)

where @ # B and € are constants. Equation (3.40) is a generalization of the well-known
discrete potential KAV or H; equation which is reobtained when € = 0.

Let us use the integrability condition (2.12) with k = 1 and obtain the system (2.26),
(2.27). The first equation of this system depends on the additional variable u( ;. We rewrite the
equation in polynomial form and obtain a fourth degree polynomial in ug ;. The coefficients
of this polynomial provide us with five more equations for q(_ll)ﬂ. Using these equations, we
easily obtain as an integrability condition that ¢ = 0. The other integrability conditions are
similar, and none of them is satisfied if € # 0.

Theorem 9. Equation (3.40) with € # 0 satisfies none of the four integrability conditions
(2.12)—(2.16). This equation cannot have an autonomous nontrivial generalized symmetry of

the form (2.2).

14
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The result is not surprising, as (3.40) is 3D-consistent on the so-called black-white lattice.
This means that to check 3D-consistency we have to use (3.40) together with another equation,
i.e. (3.40) is conditionally 3D-consistent. Generalized symmetries might exist in a similar
indirect sense when we consider the complete 3D-consistent system. The following n, m-
dependent equation

(un,m - un+1,m+1)(un+1,m - un,m+l) - (05 - ﬂ)
1+ (_1)n+m 1— (_l)n+m
+e(a— B) Tunﬂ,mun,mﬂ + f“n,munﬂ,mﬂ =0
(341

is obtained in [38] instead of (3.40). Equation (3.40) is obtained when n+m is even, while if
n+m is odd we have a different equation. An n, m-dependent L—A pair and n, m-dependent
generalized symmetries have been constructed in [38] for (3.41). Such n, m-dependent
generalized symmetries could be possibly constructed, starting from its L—A pair.

4. General picture

We have applied our test to a number of discrete equations on the square lattice and have
constructed generalized symmetries for some of them. Such equations have automatically a
few simple conservation laws. Here we collect together all these equations satisfying the test
in order to discuss and compare them.

Discrete-differential equations of the Volterra type

U = O (Uka1, Uk, Uk—1) 4.1

play an important role in this discussion. The main representative of this class is the well-
known Volterra equation. A complete list of integrable equations of the Volterra type has been
obtained using the generalized symmetry method in [39], see the review [41] for details. As
(4.1) are autonomous, they will be written down below at k = 0.

The most interesting example of an equation of the class (4.1), apart from the Volterra
equation, is the equation

) r 1 or 42
uo_ul—u,l 28141’ ()

wherer = r(uy, up) is an arbitrary bi-quadratic and symmetric polynomial in its two arguments
with six constant coefficients. This is an integrable discretization found by Yamilov in [39],
from now on abbreviated as the YdKN equation, of the well-known Krichever—Novikov
equation. Two different representations of (4.2) can be found in [39] and [41]. The generic
YdKN equation (i.e. its main, non-degenerate component) can be obtained as the continuous
limit of the Q4 equation [5]. This limit preserves the 3D-consistency condition and thus the
YdKN equation is a symmetry of the Q4.3

It has been observed in [19] that generalized symmetries (2.6) of any equation of the ABS
list are of the form (4.2), i.e. they are subcases of the YAKN equation. In [19], it has been
explained that equations of the ABS list can be interpreted as auto-Bicklund transformations
of their symmetries, i.e. of YAKN-type equations. Moreover particular cases of the generalized
symmetries of the YAKN equation are generalized symmetries of the equations of the ABS
list.

All generalized symmetries mentioned in the previous section can be identified, up to
point transformations u, , = w(#, ), with an equation of the complete list of integrable

3 Communication of the referee.
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equations of the Volterra type (4.1), presented in [41]. Following [19], we are going to use
here this relation between Volterra-type equations and discrete equations on the square lattice.
Let us present here some of the reasons why it is convenient to use this connection.

(1) One can always interpret, as has been done in [19], discrete equations on the
square satisfying our test as Bécklund transformations for their symmetries. Backlund
transformations of integrable equations are integrable equations too, as they are
characterized by a Lax pair as the nonlinear equations themselves.

(2) If we know the hierarchy of generalized symmetries for a Volterra-type equation,
we automatically obtain the hierarchy of generalized symmetries for its Bécklund
transformation.

(3) Classification of integrable Volterra-type equations up to Miura-type transformations can
be found in [41]. This suggests the Miura-type transformations relating different discrete
equations on the square lattice.

(4) Is is not so easy to check whether two discrete equations are different up to Mobius
transformations. A relatively easy way to do it is by comparing their symmetries®, i.e.
equations (4.1), as generalized symmetries for these equations have been constructed in
a unique way up to point symmetries. We can even do that for n, m-dependent Mobius
transformations.

In [37], it is shown that generalized symmetries (2.6) for Klein-type equations are always
given by particular cases of the YAKN equation. The two symmetries may be different, but
both are particular cases of the YAKN equation. As a result we have the following picture:

YdKN equation:  Klein-type equations = Qy equation O ABS list,

i.e. Klein-type equations are auto-Bécklund transformations for particular cases of the YAKN
equation. The Klein-type equations are essentially equivalent to the Qy equation, see the
appendix, which includes in its turn the ABS list [37]. This picture is true only in the
autonomous case. In general, the ABS equations may be lattice dependent and are not included
in Qy. Moreover, generically Qy is just equivalent to Q4 up to a Mobius transformation’. Qy, due
to its special parametrization of the coefficients, possesses a Lax pair characterized by copies
of the Lax operator while this is not the case for Qy. The ABS list includes a number of well-
known nonlinear partial difference equations, see a review in [1]. A hierarchy of generalized
symmetries for the YAKN equation has been constructed, using a master symmetry [3], see
also a detailed discussion in [19]. In this way we obtain generalized symmetries for all Klein-
type equations. An alternative way for constructing symmetries for Klein-type equations can
be found in [37]. Many subcases of the YAKN equation can be transformed, using Miura-type
transformations, into the Volterra or Toda lattice equations [41].

Let us write down in table 1 the nontrivial non-Klein-type equations satisfying the test,
together with their generalized symmetries. We present those equations in a simpler or slightly
different form convenient for this section.

Equation (T1) of table 1 is nothing but (3.5) of example 2 with its symmetries. If c = —1,
it is degenerate. If ¢ = 0, the transformation (3.6) gives (3.1) with both its symmetries, as is
explained in example 2.

Equation (T2) of table 1 is obtained from (3.11) of example 4. If in (3.11) we set v = 0,

then we have (3.14). By the lattice-dependent point transformation u,, ,, = i%(—l)m we

transform (3.11) into (T2) by defining k = 211%' In order to obtain its symmetries, we rescale
t; and t,. The case when k = 0 is trivial is in the sense of (2.33). If k = —2, the transformation

4 An alternative way to compare discrete equations is by the use of the invariants of Mobius transformations [2].
3 Communication of the referee.
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Table 1. The nontrivial non-Klein-type partial difference equations analyzed in section 3 and their
generalized symmetries written in the form (2.6). In the last column we give the number of an
example from section 3 where the corresponding equation is considered.

Equation  Difference equations D(uy,0, U0, U-1,0) Example
no W (uo,1, Uo,05 Uo,—1) No.
_ _ u0,0(10,0—1) _ u0,0(10,0—1)
T1 uri(uo1 +c)(ug—1) = uy,0u0,0+c(uy,0+uo,0—1) uo,ou—1,0+c(uo 0+u—1,0—1) 2
ug,o(u1,0+¢) (o1 — 1)
c#—1 10,0 (10,0+¢) _ 10,0(10,0+¢)
ug, 10,0 —(uo,1+up,0+c) ug,0u0,—1—(uo,0+uo,—1+¢)
4 24,2 1 1
T2 (o1 =D o+t =)= @y + @ =g+ D) (b = k)
(I —uy,0u0,1) (oo +ur,1 +)
4 _2y,,2 L 1
K #0 o+ 2 —kDudy+1) (uovmo 7»40,0%_1)
T3 3(uo,our,1u1 00,1 — )+ 2up,0 L0 5
E . , g VU 0+—1,0
_ _ ug,1 —Uo,—1
ugott1,1 — Uy oo,1 =0 2u0,0 o, 141001
T4 (o0 — uo,1 + 1/2) (10— (1,0 —ugo — 1/2) (w0 —u—10—1/2) 6
_ _ (uo,1—=10,0)(uo,0—uo,—1)+1/4
up, +1/2)+M0q1 btl,o—O o1 —t0 ]
TS5 uoo(ur o+ uo 1+ (1,0 + o) (,,uoioo + 1) 7
)+ =0 (g, +uoo) (22 +1
Up) +Uoto1 = Uo,1 +Uo0) \ 77,
”%An
T6 (ur,1 — u1,0) (o1 — uo0)+ o+ = 7
_ (ug,1—10,0) (40,0 —t0,—1)
Uo.1to.p =0 ug,1 =10, -1
(&) 10,0 c
T7 Uo,1t1,1 + Uoo(Ui o+ uo 1) + (M1,0+Mo.ocgfl> (,MU +C%71> 7
(uo,our,1 +uyoup1)c2 =0 ;
5 1 202(“0,1140.71+u3,0)+(6§+1)uo,0(u0.1+Mo.71)
@ F ug,1—g,~1
2
TI* o+ Dige — 1) = (10 = 1) o = w10 1
(1 — Do, + 1) @, -H(—t— - —1 2
L1 0.1 0,0 uo,1+uU0,0  UO,0+UO,—1
* — - _ 1 .t
T2 Ui —Hoo = 35 ~ ) o0 (ul.ouo,o” Mo.oufl,oﬂ) 4
1 1
Uo.0 (uo,wo,o—l ug,0u0,—1—1 )

is undefined. However, the symmetries are compatible with the equation for any value of the
constant .

Equation (T3) of table 1 is obtained from (3.17) of example 5 by applying the
transformation u,, ,, = ';_l

+1°
Equation (T4) of table 1 is derived from (3.20) of example 6, using the lattice-dependent
point transformation

Upm = dpm+D+a—1/2)n+(a—1/2)m,

which allows a = 1/2,b = 0.
Equations (T5)—(T7) of table 1, together with the example

uo,1 (U0 + U1, +uyo) +ugour; =0, 4.3)

10,0
1,01, = (U1,0 +uo,0) +1),

U_1,0

10,0
Uo,0,, = (— + 1) (o, —1 + uo,0),

Uo,1

4.4
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are obtained from example 7, i.e. (3.23) and (3.27) satisfying conditions (3.28) and (3.29). We
consider all possible cases and remove some constants by using transformations of the form
(3.26). Equation (4.3) together with its symmetries (4.4) is transformed into (T5) of table 1 by
the transformation u,, ,, = i, _, which is not standard for this paper. For this reason, (4.3) is
not included in table 1.

Equations (T1*) and (T2*) of table 1 are particular cases of (T1) and (T2), respectively,
as shown in examples 2 and 4. However, these equations are interesting and well known as
themselves and are included in table 1 to provide a more complete picture.

Comparing the generalized symmetries, we can easily show that the main seven equations
of the table are different. More precisely, we have the following statement.

Theorem 10. Up to (n, m)-dependent point transformations u, m = Wpm@n.m), (T1)~(T7) of
table 1 are different from Klein-type equations and from each other.

The proof is more or less obvious. We will give below some special comments only in the
case of (T1) and (T3) of table 1.

The second symmetries of (T4), (T6) and (T7) of table 1 are particular cases of the YAKN
equation. In these cases, we have no problem finding further generalized symmetries. This
result shows that we can also obtain for the YAKN equation auto-Bécklund transformations
which are not equations of the Klein type.

From the point of view of its generalized symmetries, (T3) of table 1 is close to a Klein-
type equation. Indeed, using the lattice-dependent point transformation u,, ,, = fi, ,,i"*", we
obtain from its symmetries the equations

uyo+u_1,0

Uo,0,1 = 2Mo,ou—u, 10,01, = 2Mo,ou o
1,0 — U_1,0 0,1 — Uo,—1

Up,1 +uo,—1

which are both of the YdKN type as in the case of Klein-type equations. By such a
transformation this equation becomes, however, explicitly lattice dependent

3(’/ln,ml'tn+1,m+1l'tn+1,mlftn,m+l - 1) = (_1)n+m (un,mun+l.m+l - un+1,mun,m+l)-

So this equation is not a Klein-type equation, but it provides n, m-dependent Bicklund
transformation for a YdKN-type equation. Generalized symmetries for this equation can
be obtained, starting from the YdKN equation, but those symmetries may be explicitly n, m-
dependent due to the involved transformation.

Let us consider the following integrable Volterra-type equations (4.1):

o = (auf + Pug +y) (g — u_y), (4.5)
1 1

10 = (oug 2 — 4.

7 (au0+ﬂuo+y)<ul+u0 uo+u1>’ 4.6)

with «, B and y constant coefficients. Up to linear point transformations, (4.5) contains two
nonlinear equations: the Volterra equation if « = y = 0, § = 1 and the modified Volterra
equation if @ = 1, B = 0. Equation (4.6) can be called a twice modified Volterra equation,
as there is a Miura-type transformation from (4.6) into the modified Volterra equation [40].
Generalized symmetries of equations (4.5) can be constructed in many different ways, see e.g.
[41]. Generalized symmetries for (4.6) can be obtained, using a master symmetry found in [7].
The additional equation (T1*) of table 1 provides us examples of symmetries of both types
(4.5) and (4.6).

The three-point symmetries of (T2) of table 1 have the form (4.6). Also the symmetries
of (T1) of table 1 (in the generic case ¢ # 0) can be rewritten in the form (4.6), using Mobius
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transformations (2.9). However, we cannot rewrite them both as (4.6), using the same Mobius
transformation. In particular (T1) cannot be written in the symmetric form as in the case of
(T2). So (T1) and (T2) of table 1 are different. Their generalized symmetries can be taken
from (4.6).

All the other generalized symmetries are related to the following integrable Volterra-type
equations

iy = (u1 —u0+8)(u0—u,1+8), (47)
o = (17" + 8) ("7 +6), 4.8)
i1y = et17h0 4 g0t 4.9

where § is constant. In fact, the first symmetry of (T4) of table 1 is of the form of (4.7). The
first symmetry of (T6) of table 1 is obtained from (4.9) by point transformation #; = e“*. The
other symmetries are obtained from (4.8): both symmetries of (T5) and the first symmetry of
(T7) of table 1 are obtained, using the transformation i, = e"*.

Equations (4.7)—(4.9) are slight modifications of (4.5). Indeed, using the transformations

o = uy — g+, (4.10)
g = 17" 4.8, @.11)
fig = e, 4.12)

respectively, we transform (4.7)—(4.9) into equations of the form (4.5). As the transformations
(4.10)—(4.12) are very simple, we can use these transformations, together with the symmetries
of (4.5), to construct generalized symmetries for (4.7)—(4.9).
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Appendix. Klein symmetries and Qy

Let us consider the most general multilinear equation (2.1)

uo, 01,010, 141,1k1 + U100, 1U1,1Kk2 + o otto,1141,1k3 + oot 1 0U1,1k4 + U 0U1,010,1K5
+uo,0u1,0ks + uo,0u0,1k7 + Uo,0lt1,1ks + U100, 1k + w1 ou1 1k1o + o, 111,1k11
+uo,0k12 + ui,0k1z + uo 1k1a +ui 1kis +kig =0 (A.1)

Imposing the discrete symmetries

E(uo,0, u1,0, o1, u1,1) = EU1,0, Uo,0, U1,1, Uo,1) = E(Uo,1, U1,1, U0,0, U1,0), (A.2)

we obtain the Qy equation

uo, 01,010, 141,1k1 + (U1,0Uo,111,1 + Uo,0U0,111,1 + Uo,0U1,041,1 + UooU1,0U0,1)k2
+ (uo,ou1,0 + uo,111,1)ke + (to,otto,1 + u1,0u1,1)k7 + (uo,ott1,1 + u1,0Uo,1)ks
+(u0,0+u1,0+u0,1 +u1,1)k12+k16 =0. (A3)
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By direct calculation, we can check that the Qy equation is invariant under an n, m-independent
Mobius transformation.
A Klein-type equation satisfies the following discrete symmetries:

Eo,0, 1,0, Uo,1, U1,1) = T EW1,0, U0,0, U115 Ho,1) = T2E (U0, 1, U1,1, 10,0, U1,0), (A4)

where 71 = %1, m, = %1. In addition to the equation Qy, we have three other possible cases.
If 7y = 1 and m, = —1, we obtain

(w100, 1U1,1 + Ug,0lto, 1 U1,1 — Uo,0U1,0U1,1 — Uo,0U1,0U0,1)K2

+(uo,ot1,0 — uo,11,1)ke + (o0 + 1,0 — o1 — u1,1)ki2 = 0. (A.5)
The case when m; = —1 and m, = 1 is equivalent to the previous one up to transformation
Un.m = ﬁm,n-
If 7y = —1 and m, = —1, we obtain

(w100, 1U1,1 — Uo,0U0,1U1,1 — Uo,0U1,0U1,1 + Uo,0U1 0l0,1)K2
+(uo,ou1,1 — ur,otto,1)ks + (o0 — Ur,0 — to,1 +u1,1)ki2 = 0. (A.6)

Equations (A.5) and (A.6) are invariant under Mobius transformations, thus showing that this
property is valid for all Klein-type equations.
Let us consider (A.5). If k, = kj» = 0, the equation is degenerate:

(T — 1) (uo,ou1,0ke) = 0.

If either k; or k), is not zero, we can make k, # 0 by using the transformation u,, ,, = 1/, -
Then, using uy, ,, = iy m + ke/(2k2), we make k¢ = 0. Equation (A.5) with k¢ = 0 is reduced
by the lattice-dependent transformation u,, ,, = i, , (—1)™ to the Qy type equation

(u1,0u0,111,1 + U0 oMo, 1U1,1 + U, 0U1,0U1,1 + Uo,0lt1,010,1)k2
+(uoqo+u1,0+uo,] +I/t1,1)k]2 =0. (A7)

Consider (A.6). If k, = k1, = 0, the equation is degenerate:
(T> — 1) (kgu1,0/u0,0) = 0.

If at least one of k», ki, is not zero, we can make k, # 0, using transformation u,, ,, = 1/, -
Then, using u, ,, = iy m + ks/(2k2), we make kg = 0. Equation (A.6) with kg = 0 is reduced
by the lattice-dependent transformation u,, ,, = i, ,, (—1)"*" to (A.7).

So the Klein-type equations are effectively equivalent to Qy.
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