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In this paper we construct a set of five conditions necessary for the existence of
generalized symmetries for a class of differential-difference equations depending
only on nearest neighboring interaction. These conditions are applied to prove the
existence of new integrable equations belonging to this class19@¥ American
Institute of Physics.S0022-248807)02411-0

I. INTRODUCTION

Nonlinear differential-difference equations are always more important in applications. They
enter as models for many biological chains, are encountered frequently in queuing problems and
as discretizations of field theories. So, both as themselves and as approximations of continuous
problems, they play a very important role in many fields of mathematics, physics, biology, and
engineering.

Not many tools are available to solve such kinds of problems. Apart from a few exceptional
cases the solution of nonlinear differential-difference equations can be obtained only by numerical
calculations or by going to the continuous limit when the lattice spacing vanishes and the system
is approximated by a continuous nonlinear partial differential equation. Exceptional cases are
those equations that, in one way or another, are either linearizable or integrable via the solution of
an associated spectral problem on the lattice. In such cases we can write down a denumerable set
of exact solutions corresponding to symmetries of the nonlinear differential-difference equations.
Such symmetries can be either, depending just on the dependent field and independent variable,
and are denoted as point symmetries, or can depend on the dependent field in various positions of
the lattice, and in this case we speak of generalized symmetries. Any differential-difference equa-
tion can have point symmetries, but the existence of generalized symmetries is usually associated
only to the integrable ones.

Few classes of integrable nonlinear differential-difference equations are krioamd are
important for all kind a of applications, both as themselves and as a starting point for perturbation
analysis® However, not all cases of physical interest are covered, and so it would be nice to be
able to recognize if a given nonlinear differential-difference equation is integrable or not, so it can
be used as a model of nonlinear systems on the lattice or as a starting point of perturbation theory.
A way to accomplish such a goal can be obtained using the so-called formal symmetry approach
introduced by A. Shabat and collaborators in Uee e.g., review articlés) by which the
authors classified all equations of a certain class that possess few generalized symmetries of a
certain kind. Such an approach has been introduced at first to classify partial differential equations,
but then the procedure has been extended to the case of differential-difference eduétions.
such an approach, one introduces conditions under which one can prove the existence of at least
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one (or more generalized symmetries. These conditions are basic tools to start the procedure of
classification, i.e. to look for the form of the nonlinear differential difference equations, which is
compatible with these conditions. This process gives rise to classes of equations. These conditions
can be used as they are; for examples, they have been used in the poeyrafi to discover if
an evolutionary scalar equation is integrable.

The class of nonlinear differential-difference equations we will consider in the following is
given by

un,t(t):fn(unfl(t)aun(t)aunJrl(t))v (1-1)

whereu,(t) is a complex-dependent field expressed in terms of its dependent variabdeging

over the complex numbers while is varying over the integers. Equati¢h.l) is a differential
functional relation that correlates the “time” evolution of a function calculated at the poiot

its values in its nearest neighboring poifitst- 1, n—1). A peculiarity of the choice of Eq1.1)

is the fact that the right-hand side of it not just a function, i.e. it is not the same for all points in
the lattice but for each point of the lattice one hasaapriori different right-hand side. In fact, we
can think of Eq.(1.1) as an infinite system of different differential equations for the infinite
number of functionsu,. By proper choices of the functiorfs,, Eq. (1.1) can be reduced to a
system ofk coupled differential difference equations for theunknown uﬁ1 or to a system of
dynamical equations on the lattice. In fact, for example, by imposing periodicity conditions on the
dependent field in the lattice variables one is able to rewrite(Eq) as a coupled system of
nonlinear differential difference equations. Let us assumefthahdu, are periodic functions of

n of periodk, i.e.

k—1
fn(un_lm,un<t>,un+1<t>)=go PK_; 1 Um-1(t), Urn(), Uy 1(1)),

k-1
_ ki
un—zo Ph—jUh,

=

where we have defined the projection oper&?ﬁrsuch that for any integen such thain=km
+j with 0<j<k-—1, we have

then Eq.(1.1) becomes the system:
g, = F (Ul (1), Ul (1), uby(D),

ud = FHud(t),uk (1), u3(1),

1.3
ul = Ty 200, Ul (), UG (D).
Of particular interest is the case of periodicky 2, when we have
u%’tzf Oum- 1, U Up), (L4

1 _¢1,,,0 ,1 .0
U = F7 (U, Unyy U 1)
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A subclass of Eq(1.4), of particular relevance for its physical applications, is given by dynamical
systems on the lattice, i.e. equations of the type

Xn,ttzg(XnJrl_XnvXn_anl)- (1.9

Equation (1.5 is obtained from Eq.(1.4) for uf,’:)(n,t, U= Xn+1—Xxn by choosing f°
=g(ut,ul_)) andfl=u®—ul, ,. Then, by choosing

9(z,z')=e*—¢e?,
Eqg. (1.1) reduces to the Toda lattice equation,
Xn n=eXn+l_Xn—eXn_X"*1. (16)

In terms of the projection operatét.2), Eq. (1.6) can obviously also be written in polynomial
form as

un,t:(P§+1un+Pﬁ)(unJrl_unfl)v (1.7

the polynomial Toda Lattice.

In the present paper, the general theory of the symmetry approach in the differential-
difference case is discussed in detail for the first time and an explicit dependemcées antro-
duced. In the previous literature, in the framework of the formal symmetry approach, only
n-independent differential difference equations were considered; the following classes of equa-
tions were completely classified:

un,t:f(unflvunvunJrl) (1-8)

(Volterra-type equations, see Rej. &d

un,tt:f(un,t-unflaunaun+1) (1.9

(Toda-type equations; see Rej. Reference 2 is a one page paper in Russian in which only the
classification theorem is formulated with a few examples. A detailed version of Ref. 2 can be
found only in the unpublished work.It should be remarked that the classification of ch&in8)
is also briefly discussed in Ref. 7. Theoretically, in our class, we can consider chains that can be
expressed as systems of 2,3,4p-independent equations, and chains that are systems of an
infinite number of different equations. In fact, if in the case of the class of equatio8san
equation is defined by a functidn in the case of1.1) we have an infinite seftf,} of a priori
quite different functions. So, this paper is a further step in the development of the general theory
of the formal symmetry approadheaders can find elements of a previous version of the general
theory in Refs. 3 and)7

Section Il is devoted to the construction of a certain number of conditilessimpler ones
necessary to prove that an equation of the dlash has generalized symmetries and higher-order
conservation laws. Section Il is devoted to a discussion of the results presented in Sec. Il espe-
cially in connection with the reductiond.4) and (1.5). The obtained conditions are applied in
Sec. IV to a few examples of interest. In particular, we will study three classes of systems of
nonlinear differential equations on the lattice:

(1) Un,t= B(Un) (U1 = Un—1); (1.10
this class of equations includes the well-known Volterra equation;

(2) un,t:Pﬁ+1eun+1gn(un+l_un—l)+Pﬁ)\n(un+1_un—l)- (1-11)
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This equation describes a class of dynamical equations,

Uk+17 Uk Uk+17 Uk Uk Uk-1
Uktt:eXF{ )G - , (1.12
€k+1 €k+1 €k
where
Uk+17 Uk -1
Uzkz—Ek1 v Uk 1= 0kt Ook-1= Gy ANok= €iqs (1.13
+

having a four-dimensional group of point symmetries and including the Toda lattice as one of its
members? Here Pﬁ is the projection operator of period 2, as introduced in @8Q), g, is an
arbitrary analytic function of its argument ang are arbitraryn-dependent constants.

(3) Unt=@n(Unsy1—Up—1). (1.149
By setting
eom(z)=b,z, b,#0, ¢5,_1(2)=F,(2)#0, Vn, (1.19
and rewritingu,,=w,, U,_1=v,, one gets from1.14 chains of the form
Mywnt=vni1=0Un,  Unt=Fnlon—on-1), (1.1
which correspond to a dynamical system of the following form:
ann,tt:Fn+1(wn+1_wn)_Fn(wn_wn—l)- (1.1
If we set
Fn(z)=B,z%+C,z, (1.18

and definey,= w,, andx,= w,,_1, Egqs(1.17), (1.18 reduce, by an appropriate choice of the
constants3,,, C,,, andM,, to the system

"__

Mayn=f(Xnr1=Yn) =9(Yn=Xn),  M1Xq=0g(Yn=Xn) = F(Xn=Yi-n), (1.19
with
f(2)=€B,z’+koz, 0(2)=€B1Z°+k 2,
which describes the evolution of diatomic chathand explicitly reads as

M 1Xn,tt: kl(yn_xn) - kz(xn_ynfl) + E[ﬁl(yn_Xn)Z_IBZ(Xn_Ynfl)Z]v (20)

M 2Ynu™ Ko(Xn+1—=Yn) —Ki(Yn—Xn) + G[IBZ(XnJrl_Yn)Z_ Bl(yn_xn)z]-

As a last example, at the end of Sec. IV, we will use the obtained conditions to study the
integrability of ann-dependent generalization of a discrete analog of the Krichever—Novikov
equation:

Uy = p(un)un+1un—1+q(un)(un+1+un—1)+r(un) ’ (1.21)
' Unt1—Up—1

where

J. Math. Phys., Vol. 38, No. 12, December 1997

Downloaded 07 Feb 2009 to 131.111.145.114. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



6652 D. Levi and R. Yamilov: Conditions for the existence of higher symmetries

p(uy) = aui+2Bu,+y, (1.223
r(Up)=yui+28uU,+ o, (1.22B
a(u,) = Bui+\up+ 6. (1.220

Equation (1.21) depends on six arbitrary complex constants and is invariant under linear—
fractional transformations, as under those transformations only the coefficients of the polynomials
p, g, r are changed, but not the polynomials themselves. Equétti@d) was obtained for the first

time in Ref. 2 when classifying discrete evolutionary equations of the far8). It satisfies all the

five integrability conditions, has an infinite set of higher local conservation laws and should have
an infinite set of generalized symmetrigmit nobody has yet proved.tt is the only example of

a nonlinear chain of the forr(l.8), up to now obtained, which cannot be reduced to the Toda or
Volterra equations by Miura transformations. By carrying out the continuous limit, in the same
way as one does to obtain the Korteweg—de Vries equation from the Volterra equation, we get the
Krichever—Novikov equatiof?

3uf R
__+ ,
2 Uy Uy

(1.23

Ut = Uyxxx—

whereR(u) is an arbitrary fourth degree polynomial of its argument with constant coefficients.

The complete classification of all the classes of equations of the ftrin that satisfy the
conditions obtained in Sec. Il is left to a future work. Few conclusive remarks are contained in
Sec. V.

II. CONSTRUCTION OF THE CLASSIFYING CONDITIONS

If Eq. (1.1 is to represent an evolutionary difference equation, then the funéfjamust
depend in an essential way from the poims-(1), the nearest neighboring points with respect to
the pointn in which we compute the “time” evolution. This implies that we must add to @dl)
the condition

all +#0 all +0 f (2.1
y , or any n. .
Up+1 dUn—_1 Y

Before considering in detail the problem of costructing generalized symmetries 1d.Bq.we
will introduce few definitions necessary for the future calculations.

A function g,, depending on the set of fields,, for n varying on the lattice, will be called a
rectricted function and will be denoted by the symbol RF if it is defined on a compact support, i.e.
if

On=0n(Un+; 1un+i—1a---vUn+j+1aUn+j), i=j, (2.2

andi andj are finite integer numbers. If there exist, in the range of the possible values of
valuesk andm such that

agk &gm
#0, #0, 2.3
I+ I @3

then we say that the functiog,, has a length —j+ 1. For exampleg,, could be given by the
function

gn:nun+l+un+[1+(_1)n]unfl;
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theni=1, j=—1 and the length of, is equal to 3 even if only the even functions are depending
onun_.
Let us define the shift operat@ such that

Dgn(un+i a---vun+j):gn+l(un+i+1a---run+j+1)-

Then we can split the RF into equivalent classes.
Definition Two RF,

an(Un-i---Untj,)  @nd by(Unyi .. Uns )
are said to beequivalent
an~by,
iff
a,—b,=(D-1)c,, (2.4

wherec, is a RF.

If, for example, we havea,=u,+u,, it is immediate to see tha, is equivalent to a
functionb,=2u,, asa,—b,=u,1—u,=(D—21)u,.

Let us notice that any function that is equal to a total difference is equivalent to zero, i.e.
a,=(D—-1)c,~0. If a RFa, of lengthi—j+1(i>) is equivalent to zero, then there will exist,
by necessity, a RE, of the lengthi —j such thata,=(D—1)c,. As

an(un+i v---iun+j):Cn+1(un+i a---:Un+j+1)_Cn(un+i—1v---iun+j)y

one can easily see that

Ja, _ acn+l(un+i v---1un+j+1)
IUp 4 IUn i ,
and consequently,
9a, 0 25
IUp 4 aunﬂ . .

In the caseé =],
an(Un+i)= Cn+1(un+k1+1 yees aun+k2+1) - Cn(un+klv e -un+k2)-

As for k2<i¢9an/aun+k2=—acn/&un+k2=0, then cn=dn(un+kl,...,un+i). For k;=i also
aan/ﬁun+kl+1=0, thend,, cannot depend on,, ., for anyk, and consequently,

da,
dun+i

=0, (2.6
i.e., a, is aninvariant function, where by it we mean a function that depends onlyon

We can moreover define théormal” variational derivative of a RFa,, of lengthi—j+1 as

n—j
ﬂan &ak

—= —. 2.
Jdu,  k=n-i Jdup 27
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If a, is linear inu,,, thenda, /du, is an invariant function, but if it is nonlinear, theia,/du,
=0n(Upsns...Un_n), Where for somek dg,/du,.n#0 and for someam d9,,/du,,_ny#0. Con-
sequently, this quantity is strictly related to the notion of a variational derivative, and this is the
reason for its name. It is immediate to prove thadjfis a RF equivalent to zero, then the formal
variational derivative ofa, is zero. The vice versa is also true, i.e.Jd,/du,=0, thena, is
equivalent to zero. In fact, using ER.7) we haved?a,/du,,; dU,4;=0, which implies that
a=bn(UntiyeUnyjs) FCn(Unyiz1,-Ungj) ~dn(Unsi—1,...,Unyj), i.€.,@, is equivalent to a
RF of lengthi—j. Carrying out recursively this reasoning, we arrive at the conclusionathat
~F,(u,) with F/ =0, i.e.a, must be an invariant function, i.e., equivalent to zero.

Given a nonlinear chaifil.1), we will say that the RFg,(Un,...,Unsj) iS @ generalizedor
highep local symmetry oforder i (more precisely, of left order) of our equation iff

Un, 7= On(Un+i :---,Un+j), 2.9
is compatible with(1.1), i.e. iff
ﬂtﬁf(un)ZﬁTﬂt(un). (29)

Explicitating condition(2.9), we get

af, af, of,
ﬁtgn:arfn:m Un+1,F 20~ Un -+ ETN Up—1,
n+ n n—
ot ot of,
— 4+ — -1 — f*
T IUn+1 b dun  dup_y b 9n fngn’
ie.,
(6—13)9n=0, (2.10

where byf* we mean the Frechet derivative of the functign given by

o 0 ity
" dUp Uy dUp—

D l=fMD+fP+f VDL (2.11

Equation(2.10 is an equation fog,, once the functiorf,, is given, an equation for the symmetries.
In this work we limit ourselves to local symmetries, i.e. symmetries that are given by RF.
A nonlocal extension can be carried out by introducing, for example, a newufieldD —1)v,,
=Uu,, i.e.v,= —Ellnu,- or vn=2?:_fxuj (compare Ref. )t Extension in such a direction will be
carried out in future work.

Given a symmetry we can construct a new symmetry by applying a recursive operator, i.e. an
operator that transforms symmetries into symmetries. Given a symmgtof Eqg. (1.11), an
operator

m

L= 2 10(1)DJ, (2.12

]:—oo
will be a recursive operator for E@l.1) if g,, given by

an:Lngnv (2.13

is a new generalized symmetry associatefltd). Equation(2.10 and Equatior{2.13 imply that
J. Math. Phys., Vol. 38, No. 12, December 1997
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A(Lp)=Ln—[f} ,Ln]=0. (2.14
Moreover, from(2.10 it follows that
AGE)=a.(f%). (2.15
In fact, from(2.10 we get

79
Ba=d(g)=2> 5= farks
k Un+k

and consequently we have

=N aZgn IGn &fn-%—k
Bf=> —— D™= ————f,, D™+
: % IUp+m %( U4k IUnpim nk %( Uk IUnim

D™=a,(gn)+anfh .
(2.16

Equation(2.15 is then obtained by introducin@.16) into the Frechet derivative dR.9). Equa-
tion (2.15 implies that, as its right-hand sidehs) is an operator of the order[kee(2.11)], the
highest terms on the left-hand sidls) must be zero.

We can define aapproximatesymmetry oforder i andlength m the operator

Gy= 2 ggk)Dk!

k=i—-m+1

such that the highesh terms of the operator,

i+1

AG)= > a¥Dk

k=i—m
are zeros. Taking into account EQ.15, we find that we must havie- m+2>1 if the equation
A(G,)=0 (2.17

is to be satisfied.

From these results we can derive the first integrability condition, which can be stated in the
following theorem, whose proof is contained in Appendix A.

Theorem 1: If Eq. (1.1) has a local generalized symmetry of order2, then it must have a
conservation law given by

on log fV=(D-1)q'", (2.18

whereq(" is a RF.

In this way we have shown the existence of the fa@honicalconservation law. The next
canonical conservation laws could be obtained in the same way, by assuming the existence of a
higher symmetry, so that we are allowed to consider an approximate symmetry of higher length.
These canonical conservation laws would, however, be very compli@hgdwill depend on the
order of the generalized symmekignd very difficult to reduce to simple expressions not depend-
ing on its order. So we prefer to follow an alternative approach that requires the existence of two
higher symmetries. This procedure can be carried out, as we already know one canonical conser-
vation law.

J. Math. Phys., Vol. 38, No. 12, December 1997
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Let us now assume that there exist two &Fandg, that generate symmetries of ordesnd
i+1, respectively. In correspondence to these symmetries, we can construct two approximate
symmetriess, andG of ordersi andi + 1, respectively, and fronR.1), g(') andgn('“) will be
different from zero for alh [see(A3), Appendix A]. Starting fromG,, andG,,, we can construct
the operator

Gn=G, 1G,. (2.19
As from (2.14) we have
AG H==-G,'A(G)G, Y, ALKy =A(Ly)Kn+LAK,),
we obtain
A(Gn) =G [~ A(G) G +A(G,)]. (2.20

Let us notice that, a&,, is an approximate symmetry, its inverse will be an operator with an
infinite number of terms. Consequen®y,, though it is an approximate symmetry of order 1 and
lengthi (the lowest of the lengths @&, andG,) is represented by an infinite sum. This shows that
under the hypothesis that two local higher symmetries exist, we can restrict ourselves to consider
approximate symmetries of order 1. In such a vy =f (), and forq‘" the following simple
formula can be obtained)V=g(®— (. we can now state the following theorem, proved in
Appendix B.

Theorem 2: If Eq. (1.1) satisfies condition§2.1) and it has two generalized local symmetries
of orderi andi+1, with i =4, then the following conservation laws must be true:

apF=(D-1)q¥ (k=1, 2, 3,

af, af,

(2)_ g 2N
p'Y=log PT Py =0y +aun (2.2))
p<3>_q<2>+1( (2)y2.4 RAUNATEE
n 2 Upsq U,

whereq® (k=1, 2, 3) are some RFs.

So, if Eq.(1.1) has local generalized symmetries of high enough order, we can construct a few
conservation laws depending on the function at the rhs of( EQ).

One can divide the conservation laws into conjugacy classes under an equivalence condition.
Two conservation laws,

=(D-1)q,, rn,t:(D_l)Sna
are equivalentif
Pn~Tn- (2.22

A local conservation law ifrivial if p,~0. If p,~r,(u,), withr/#0 at least for soma, then we
have a conservation law akroth order while if

pnwrn(unJrNa---yun)a N>0,

and

J. Math. Phys., Vol. 38, No. 12, December 1997
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ar

FTRETIN

for at least soma, the conservation law is ajrder N.

An alternative way to define equivalence classes of local conservation laws is via the formal
variational derivative. Let us denote Ipy, the formal variational derivative of the density, of a
local conservation law, i.e.

- _op,
pn 5un‘

(2.23

If the local conservation law is trivial, thgs, =0, if it is of zeroth order, theip,=p,(u,)#0 for
at least some while if it is of orderN, then

’5n:’5n(un+Na-"'un""’un’N)’

where

Jp Jp,
Pn 0, Pn 40,
IUp+N dUp-N

for at least som@. Then, for any conserved denspy, by direct calculation, we derive that the
following relation is valid:

pn,twﬁp’n anO- (224)

By carrying out the formal variational derivative of E.24), taking into account that in a
summation the following equality is valid:

a’b’n+k _ aﬁn
dUp aun+k’

we get that the formal variational derivatiyg of a conserved density, satisfies the following
equation:

(0 + 51 Pa=0, (2.25
where the transposed Frechet derivative pfs given by

i1 D+ ﬂ—i— o1

f:T: ou du Jdu D 1:f51111)D+f§10)+f§11—)1D71- (2.26
n n n

Let us consider the Frechet derivative®f for a local conservation law of ordé¥. In such
a case, we have

N ~
- - ~ Jp
Pr= 2 PaUDF P=-— (2.2
k=-N IUn+k
We can construct the following operator:

B(Sh)=ShitSh fr+fh S, (2.29

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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|
Si= 2 s(HDl. (2.29
J=—»
Taking into account2.10 and(2.25, one can easily prove that

Pn=Sn0n- (2.30

Let us construct
B(Py") =20 by(1)DX, (2.3
whereb®(t) are some RFs, then from E¢.29 it follows that
bp/=Pat + 24 (B "+ i Pat 1), (2.32

and then by differentiating E¢2.25 with respect tas, ., we can rewrite Eg(2.32), after a long
but straight forward calculation, in the form

b—— % P*fni
no j Pot] 5un(9un+k’

(2.33
and thus prove, a$, depends just om, andu,., thatb(® are different from zero only for
—2=<ks=2.

In such a way, for a sufficiently high-order conserved dengijty we can require that

B(p,)=0, (2.34

is approximately solved. If the firsh<<N—1 terms of the Frechet derivative pf, satisfy Eq.
(2.34), then we say that we have an approximate conserved densitidef N andlength m

Let us mention here that sometimes fhesolution of(2.25), is called a conserved covariant,
while Hn=S,jl and the solutions 0f2.34) are called, respectively, a Noether operator and an
inverse Noether operatdt. The Noether operator maps conserved covariants into symmetries
while the inverse Noether operator maps symmetries into conserved covariants. This corresponds
to the familiar relation between symmetries and conservation laws in Lagrangian or Hamiltonian
mechanicgNoether’s theorem In some casebl,, can be the Hamiltonian operator for our equa-
tion and the inverse of formul&.30),

opn
gh=Hp, 30, (2.35

will be local.
Taking all the results up to now obtained into account, we can state the following theorem,
which will be proved in Appendix C.
Theorem 3: If the chain(1.1) satisfies condition$2.1), it has a conservation law of order
N=3, and condition2.18 is satisfied, then the following conditions must take place:
rl=md-1)sK (k=1,2), (2.363

with
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FDlogl — fO/D], 1@ =g 2 (2.360

wheresl® are RFs.

Ill. DISCUSSION OF THE CONDITIONS

First of all let us notice that the request that nontrivial local conservation laws exist is more
restrictive than that of the existence of symmetries. In fact, there are many instances in which
generalized symmetries do exist, but not nontrivial conservation laws. This may be the case for
many c-integrable equations, i.e. nonlinear equations that can be transformed into linear ones by
an invertible transformatiof.

If one compares Theorem 1 and Theorem 2 of Sec. Il, one can think that among conditions
(2.18 and(2.21) with k=2, 3 there is a difference of importance, as conditi¢h21) require the
existence of two generalized symmetries, while for condif@A8 only one generalized symme-
try is sufficient. However, we could obtain conditiof’&s21) with k=2,3, assuming that only one
symmetry of ordei=4 exists, but calculations in the proof would be more difficult. For example,
in the case&k= 2, following the notation of Appendix A, we can define
(i—-1) n+i—1

~ gn _ (2)
S T 2, P

Then, fori=3, it follows that
n+i—1

g(i—2)
T > oV |~o,

&tgn_kgn(pg%r)ifl_ p(nZ)):(D_l) HE;r:wigf(kl)_ frh

and hence we get the wanted result:
gn( p§12+)i71_ p§12))~01 &tgnwi&tpg) :

Conditions(2.21) required only that n(l)¢ 0. An analogous set of conditions could be derived
if we requested that justﬁ_l)qﬁo for all n. They can be derived in a straightforward way,
considering expansions in negative power®gfinstead of positive, as we have done up to now.
This derivation is left to the readers as an exercise. This set of conditions also will have the form
of canonical conservation laws:

apF=(D-1)q\¥, (3.2)

and conserved densities will be symmetric to the one@@&1). For example,

of
A1) — _ n
o Iog( (9Un1>' (3.2

Let us notice, moreover, thatkf(!) andH(? are two solutions of2.34 of different order, the
operator

Kn=(HE) THP (33
satisfieg2.14), and thus it is a recursive operator. Consequently, if we start from two approximate

solutions of(2.34), i.e. two Frechet derivatives of formal variational derivatives of conserved
densities, we can, usin@.34), get an approximate symmetry. So, one can derive all the conditions
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(2.21), (2.36, (3.1), assuming the existence of two higher-order local conservation laws. In the
case of condition$3.1), one should use the same form&3), but (H E,l))*l will be a series in
positive powers of the shift operatér:

+ o0
(Hgl))_lzk:Z_N hgk)Dk.

This proves the statement written at the beginning of this section that conservation laws are “more
fundamental” than symmetries, as from conservations laws we get symmetries.
If we compare condition§2.21), (2.36), (3.1), we can see, for example, that

FD= - O, (3.4

i.e. the first of condition$2.36) implies thatp{'~p{Y, i.e. the first canonical conservation laws

of (2.21) and(3.1) are equivalent. The same result could be obtained for the second condition of
(2.32. In particular, the set of conditior(8.1) can be derived, starting from conditio(&21) and

(2.36. However, these conditions are of great importance in themselves, as there might be equa-
tions of interest that satisf2.21) and(3.1), but not(2.36).

The solution of the conditions, be those obtained by requesting the existence of the general-
ized symmetries or those of local conservation laws, provide the highest-order coefficients of the
Frechet derivative of a symmetry or of the formal variational derivative of a conserved density.
Those coefficients are the building blocks for the reconstruction of the symmetries or of the formal
variational derivatives of the conserved densities. In fact the knowledgﬁ‘)ef d9n /U, 4 With
k=i, i—1,..., for a few values df, gives a set of partial differential equations fgy with respect
to its variable, whose solution provides the needed symmetry. In the same way we can reconstruct
variational derivatives of conserved densities. There is, however, a more direct way to obtain
conserved densities. In fact, if we know the highest coefficients,ofthe solution of Eq(2.14),
we can obtain several conserved densities by the following formula:

pl=regll) (j=1.2,.)

(see Appendix B

Equation(1.1) with the conditiong2.1) can be splitted into two different classes. In fact, Eq.
(2.2 with k=1 can be written in the form

(1) d 511) f &pgl)f + apg]:gl

Pn.t s n+1 au,, n au,,

f,=d,~0,

®p=Pp(Ups2,Uns1,Un,Un_q).

As @, is a RF equivalent to zero, we have

PD, I niq af,
= + =0, Vn, (3.5
Mnig dUp_g M lnry PM U,
where
1
Y
TR TR,

Conditions(2.1) and (3.5 imply that there are only two possibilities:
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pn=0, Vn, (A)
pn#0, Vn. (B)

Both classes are not empty. The Toda and Volterra equation belong to(&lpssile the
discrete analogue of Krichever Novikov equafibielongs to clasgB). One can prove the
following statement for chains of the cla@®): if a chain(1.1) satisfies(2.1) and(2.21), then this
chain has conservation laws of the orders 2, 3, 4, which will be given just by the canonical
conservation law$2.21). In fact, it is obvious that the first of conservation lai@2s21) has order
2. So, let us conside2.21) with k=1, 2 and use them to obtain informations abgf}, q{?.

The funct|onq(1) depends om,,, ¢,...,u,_» and

aq(l) optV
. — = — 0 = (3.6
n—-2 n—-1

The functiong{?) depends oni,. ;,..,u,_3 and

(2) (2)
ﬁqn — ap —-1)_ pn f( l)f( 1)
aun_s aun_z n72 aun 1 n-1'n-2-
Now one easily can show that
o7 o,
=—pafi 7., =pn fa 1'fa 2, (3.7

JUp+1 dUn—2 IUp4q dUn— 3
wherer,=q®+ 3(p{®) 2+ (afy_1/duy) (9fn/duy_q)~p'>). Taking into account Eq(2.1) the
functions(S 7) are different from zero for ang, thus showing that the conservation lai@s21)

for k=2, 3 are of the orders 3 and 4, respectively.

The same formula3.7) show that in the case of chains of the clé&$ canonical conserva-
tion laws(2.21) have orders less than 2, 3, 4, respectively. For example, for the Toda(&@&in
(1.7), formulas(2.2]) give three inequivalent nontrivial conservation laws of order 0. In the case
of the chain

unt:(un+1_un)llz(un_un—l)llzy (3.9

all three canonical conservation laws are trivial.

If the chain satisfies all five conditions and the conservation laws are all of low order, than in
case(A) the chain might be linearizable. In the case of E8), such a transformation is,
=(u,.1—Uuy) 2 and leads to the linear equation

200 t=Un+1"Un-1- 3.9

It is worthwhile to show here how all five conditio2.21), (2.36) can be rewritten in explicit
form. Such explicit conditions can be easily verified using the computer and thus they can be the
starting point for the construction of a program of the kindafia° to check the integrability of
differential-difference equations of the forh.1).

A condition isexplicitif it has the formA,,=0, ¥ n, whereA, is a function depending only on
f, and its partial derivatives with respect to a}, ;. Let us define the functions

) 19
K—_—_ 5pk W—_—_ (K =
l:)n 5Un &tpn ’ Rn 5un M k 1,2,
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and
(3)_ g 3 _qLp@
Pn dPn” —0n Pp

The five explicit conditions are given by
pl=0, RI=0, V,, k=1,2,3; I=1,2. (3.10

The functlonsp(l) r(l) are already explicit and from them one can derive all partial deriva-
tives 9q\M/auy i, dst )/(9unJrI [see, e.g.(3.6)] and then expresgp!?, r?) in an explicit form.
For example, fron{2.3@ we have

<1> (1)
rﬁf)—&r - ar, - ZL
dup, dUp_1 up,

Let us now consideP®. On one hand we have

dfn i
dUpyg dUp

af,
+| ab+ 22 ap?.

07tp$13): Jy q(nz)

Using (2.21) with k=2, one can find all the partial derivatives q;ﬁz) and consequently get an
explicit expression foratq(z) Using (2.21) with k=1, we can obtain not only the functions
aq'L)./au, but also all differences'?, —q'?). Consequently, as

(1)

aq d
su (ARapi) — ol PP =3 = apl+ 3 (o alt) 5o g, 310
n

we can easily write down the explicit form &> .

Let us end this discussion by looking into the connection between the symmetries and con-
servation laws for Eq(1.1) and those belonging to the reduced cé%e3). For simplicity of
exposition we just present the results in the case of periodicity 2, wher€lHyjreduces to Eq.

(1.4).

Generalized symmetries and conservation laws for(Eg) can be defined in the same way

as those for Eq(1.1). For example, a local conservation law of Efj.4) is of the form

Crt=Ani1— Ay, (3.12
whereC,,, A, are RFs of variableg?®, u?, u%, ,, ul.,,... . Let usconsider conservation laws of
order N for N>1. For such a conservatlon law to exist, we need it to be represent&s}, by
~hn(ul, Ut ul, , ull ), with

#*h,, #*h,,
Jup AUn.y AUy gy
ah,, ah,,

Uy Up,y Uy Uy
There is the following one-to-one correspondence between #d8.and the systen(1.4): u®
1 0 1
=Uzn41, Uy=Uzp, fn =foni1s fn:f2n-

The same transformation allows one to rewrite the generalized symmetries. Let us see what
happens to the conservation lawsplf;=0q,.1—0y, iS a conservation law ofl.1), then
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Ch=pP2n+1tP2n, An=0zn, (3.13
gives a conservation law fdf..4). Given the conservation la¥.12, we have
p_2n+1:Cnv p_2n:0a q_2n+1_q_2n:Anv (3.19

and thus equivalent conservation laws are turned into equivalent ones. In fact, if we pags, from
to C, and then back te,, we have

EZ Pﬁ+1(pn+ pn—l)N(Pﬁ+1+ Pﬁ)pnz Pn.
It can be checked that if we use formul@s13), then ordC,~ 1/2 ord p, ; in the case of transition
(3.14), ord p,~2 0ordC,,. For example, the Toda chaifl.6), written in the form(1.4), has
conserved densities,
log up, up 2ud+(up)? uR(UR gt U+ 3(Up)®,
while in the form(1.17) the conserved densities are
Poe110g Uy, Potn, 2Py iU+ Poud,  Upe g+ 3Pus.
IV. APPLICATIONS

In the following we will find out about the integrability of differential difference equations of
the form (1.1 by going through all examples considered in the Introduction, following the enu-
meration given there.

(1) In the casg1.10 the first canonical conservation lai&.18 implies that

4, log B,~0, (4.2

Bn(Un+1—Un—1)~BiUns1— Bni1Un~0. (4.2
So B, must be am-independent constant:
Bn=AU3+B,u,+C,. (4.3
Inserting this result intd4.2), we get that
(B,_1—B,.1)U,~0, i.e. B,=B+(—1)"B,
and thus the first canonical conservation law gives
Q4= 2AUnUn_ 1+ B(Un+Up_1) = B[(—1)"up+ (= 1)" uy_4]. (4.9

Introducing(1.10 and(4.4) into the second canonical conservation law, we get, after a straight-
forward but lengthy calculation, that

P~ (Cn 1= Cry 1) (AUR+Byly).
It follows, in particular, that ifA+0, then

C,=C+(—1)"C. (4.5
J. Math. Phys., Vol. 38, No. 12, December 1997
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Using the last canonical conservation law, one can proveGhatust have always the for@.5),
and thus the most general chain of the forhnl0Q that satisfies all five conditions is

Unt=[AUZ+(B+(—=1)"B)up+C+(=1)"CI(Up+ 1~ Un-1), (4.6
which depends on five arbitrary complex constants.

By obvious point transformations, we can reduce any nonlinear chain of the(4oto one
of the following chains: the Toda chaii.7), or

Unt=Un(Un+1—Un-1), (4.7)
the Volterra equation, or
Un,t=(Cn=UA)(Uns1—Un_1), 4.9
where
C,=1 or C,=0 or C,=P2,,, (4.9

corresponding to three modifications of the Volterra equation. Unlike the discrete version of the
Krichever—Novikov equatioiil.21), (1.22), all the chaing4.7)—(4.9) can be reduced to the Toda
chain by Miura transformations. For example, in the case of the Volterra equation, we have the
transformation

Up=P2, Uns 1Un+ P3(Ups1+Up), (4.10

which brings any solutioru, of the Volterra equation into a solutiom, of the Toda chain.
Transformations of the modified Volterra equatiods8), (4.9) into the Volterra equation are
given by the formula

ﬁn:(cn+un)(cn+l_un+1)- (4.1

Consequently, due to transformatiot10), (4.11), together with point transformations, any
nonlinear chain of the fornt4.7)—(4.9) possesses local conservation laws of an arbitrary high
order. This means, in particular, that the chaisg)—(4.9) satisfy not only classifying conditions
(2.21), (2.36 but also all other conditions of higher order we could derive using approximate
symmetries and conserved densities.

(2) We now classify chains of the forrfil.11). Equation(2.1) reduces to the following
conditions:

of,
Uniq

=P2, e"+1(g,+0,)+ P2\, #0, (4.12

of,
dUn_1

=P2, eUn+1g’ + P2\, #0. (4.13

This means, in particular, that,# 0 for evenn. As \, do not exist in our equation far odd, we
can take them arbitrary far odd and then assume thgi+ 0 for all n. Analogously, we have to
require thatg; #0, g,+9g,#0 for all n. We can then formulate the following theorem.
Theorem: A chain of the form(1.11) satisfies the classifying conditiofi®.21), (2.36 iff it is
related by a point transformation of the fouR= a,,u,+ 8, to one of two following chains:

nt=Pas1(EXp Uy 1 —€XpUn_1)+P2(Uny1—Un_q), (4.143
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Upnt1—Up—1

un,tzpﬁJrl eXP( +P§an+1anfl(un+1_un—1)1 (4.14b

n

with a,= an+ B, wherea and 8 are arbitrary constants.
To prove this theorem we consider at first the conditith86). As we have(3.4),

(1) _ O’)fn _p2 ’ 2
n’=log ——=P;,,(U,;1+log(g,+9;))+P; log A, (4.15
5Un+1
~ (1) _ (3fn _p2 ’ 2
pn _|09 _&u 1 _Pn+1(un+l+|Og gn)+Pn IOg )\na (4-16)
n—
then
ri=P2,;H.,  Hp=log(g,+9;)—log g; .
Hence

P2, H'=0, ie. P2, H,=aw,+b,, (4.17

wherev,=u,.1—U,_1, anda,, b, are somen-dependent constants. Consequently, we must
havea,_;=a,; for all n. As a, =0 [see(4.17)], anday,_1=2a,, 1, We have that

a,=P2, ,a, (4.18

wherea is a pure constant. So, the conditidﬁ)~0 implies(4.17 and(4.18. We find, moreover,
that

siV=c,+(D—1)(aP?, ,u,_1)~2aP?u,,
and as in this casef,/du,=0, thenr(?=4,s"). Consequently,
r(@~2aP? f,=2aP\,u,~2aP2, ;(Ap_1— Ans1)Un,
and the last condition gives, for ail,

aP2, (\p-1=Npy1)=0. (4.19

Let us pass over to the first canonical conservation law. It follows f{®#) that this condition is

equivalent to the condition,p,("'~0. Sincep, Y~ P2u,+ P2, , log g/ [see(4.16], then
o ~Pafa+ Pria(1og gp)' (fra—foo1)
~PrhavntPhiiNns10n:1(10g 97)" +Pikpun(log gny 1)
Applying the operatop?/du, ,du,_, to it, we obtain
P71 n+1(l0g g})" —PAX,(log gp.1)" =0,
which means that for ath we must have
P3.1(log g,)"=0, ie. PZ.qloggh=Countdy, (4.20

wherec,, d, are somen-dependent constants.
J. Math. Phys., Vol. 38, No. 12, December 1997
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By comparing(4.17) and(4.20 we obtain an explicit formula fog,,. As for any functiond,
the formulaP?, ; exp(P2, ,6,)=P2., exp 6, is valid:

P7+19n="Pi.; exp(log 9/) =P}, exaPi,; log gy,
and consequently from E¢4.20 we get
P2, ,0,=P2,, explcun+dy). (4.21)
Using (4.17) we are led to the following formula fog,,:
P2, .0,=P2,, exp((a+c,)v,+b,+d,)— P2, ; explcw,+dp,). (4.22
Moreover, the consistency betwe&h21) and(4.22 implies that we must have
Pr+1(1+¢)=Phis(a+cy)expavy+by),
from which it follows that
a(a—1)=0, (4.23
P2, 1(1+cy)a=0. (4.24)

Condition (4.23 implies that eithem=1 or a=0. Let us, at first, consider the caae 1.
Condition (4.24 gives P2, ;c,=—P2,,, and then it follows from(4.19 that =\ »=X,
where is a constant different from zero. Taking into account formid22, we get that the
obtained chain is of the form

nt— Pﬁ+1(exqun+l+ an) - eerunfl_l' ﬁn))‘l' (un+l_ unfl)Pﬁ)\:
whereqa,, B, are somen-dependent constants.

This chain can be further simplified, using simple point transformations. If we apply first the
transformatiorti,= (P2, ;A + P?)u, and then,=u,+ P2a,_;, we can reduce it to the form

un,t: Pﬁ+1(exp~ln+1_ eXF(unfl'*’ '}’n))"‘ (Un+1_ unfl) Pﬁa
wherey, are somen-dependent constants. Moreover, we have
(2) 2 _

Py, ~2Pn exp(Un)(1—exp yn+1)-
As P2, expy,=P2,, for all n, the chain takes the fori.148. There are no problems to check
that all the five classifying conditions are satisfied 6r14g. Let us consider now the case=0.
It follows from (4.22 that

Pﬁ-%—lgn: Pﬁ-*—l eXF(CnUn"_ dn)(exp bn_ 1)!

so that the function exp,—1 cannot be zero for odd, asg,# 0. This means we can redefidg
so that(1.1]) takes the form

Unt= Pﬁ+1 eXF{(l"_Cn)un+1_Cnunfl+dn]+(un+l_ unfl) Pﬁ)\n . (4-25)
Let us notice that ¥ ¢,, andc, are different from zero for alh, as(2.1) must be valid.

As in the previous case, the chdih25 can be simplified, using point transformations of the
form U,= a,u,+ B,, and we get the following chain:
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U
Up=fn=P2,, expa—n+ P2bvn, (4.26)
n

wherev,=u,.1—U,_1 anda,, b, are somer-dependent constants different from zero for any
To fix a, and b, we will use two of the condition§2.21) that will give us two other
constraints. It is easy to see thaf)=P2, ;(v,/a,) + 8,, and then

) ) 1 1
(71pn Nunpn+1(anl_Bn+1)a Bn:bn - )
Ap-1 QAp+1
from which it follows that
P7.1(Bn_1—Byi1)=0. 4.27)
Now
(1) 2 b, 2 br—1 2 2 2
Qn = const- Py an_1 UntPhyg a_ Un-17F Piy1Bno1Unt PiBrun-1~2unPp 1 An,
n— n
:bn—l_ bn-*—l
" a,_, apso’
and thus
2 2 Un
Pr ~2Ph1An expa_-
n
So we get the second constraint:
P+ 1A.=0. (4.28

IntroducingFBn such thabnzgnan+lan,1, we obtain from(4.28 that Pﬁan Pﬁb, whereb is a
constant different from zero. Therefore

Pibn=bP2a, 18, 1. (4.29
Taking into accoun{4.27) and using(4.29, we obtain
P?. 1(8ns2—2ay+ay_2) =0.
From this it follows that, fom odd, a, will have the form
a_1=C(2k—1)+d,

wherec, d are constants. As our cha{#.26 does not contain ang, with evenn, we can set
a,=cn+d for all n.
The chain(4.26 with b, satisfying(4.29 has the form

_p2 Un 2
Unt=Phi1 expa— +bPran185-10n,
n

i.e. coincides with(4.14h up to the constanth. This constant, however, can be easily removed,
using an obvious point transformation.
If we go over to the clasél.12), we see that in cas@.14a
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=1, G=l-expl(vk—vk-1)—(Vkr1— VW),

and this is nothing but the Toda moddl.6) for the functionv,. The chain(4.14b is a new
example of integrabléandn-dependentequation. In this case, the chain equation can be rewritten
as, setting for semplicityg,=ay,_1)

Vit = XM Cr 1 (Vir 1= 01) = Cr—1(vi—vi—1) |- (4.30
It belongs to the clasél.12), as
Gk(fk)=exp(okly),  Ok=Ck-1€k, Ck+1€k+1— Ck-16k=1.
As ¢y is linear ink, Eq. (4.30 can be written as
Uk tt=EXP(Cyt 1Uk+1~ 2CkUk+ Cy—1Vk—1),

and by an obvious point transformation, we can removecthand will have the potential Toda
equation:

Ukt = eXP(Uk+ 1~ 20k HUk-1), (4.31
which reduces to the Toda by the following transformation:
VK= Ujy 1~ Uk -

This implies that Eq(4.30 is completely integrable.

(3) In the case of the classification probldh14) we present here just the final results. If
integrability conditiong2.21), (2.36) are satisfied for a chain of the forth.14), then such a chain,
up to a point transformation of the form,=au,+b,, t=ct, must have the form

2 Un)  An 2
Un=Ppi,l €x a +a— +Pran+180-1Un, (4.323
n n
where
Un=Un+17 Up-1, (4.320
a,=an+pB+0, Vn, \,=vyn+4. (4.329

It turns out that there exists a complicated and not obvious transformation:

Un
Un=P?, 1€ eXF{ e_) +PA(€n+1Un+1— €q—1Un_1—271), (4.33
n

which turns(4.32 into the polynomial Toda chaifl.7). This shows that4.32) is integrable. Two
of its three canonical conservation laws are nontrivial. More precisely,

P2
1 1 1 n 2
o~ 2ap?), o=y, pP~0,
An+18n-1

Un

€n

3 2) _ 2 2 2
pg )Npg )_2Pn+1an eX% + Pn(an+1un+l_an—1un—1) )

wherep{" andp{? are densities of conservation laws of the orders 0 and 2.
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The chain(4.32 depends essentially on the spatial variables point transformations do not
allow us to remove this dependence. This dependence is nonliuedike local master
symmetried’).

Local conservation laws d#.32 are constructed using the transformat{@r83, which is of
the formu,= ¢n(Un11,Un—1). If pn=(D—1)q, is of (1.7), via (4.33 we obtain a local conser-
vation law of(4.32. As a result, we have local conservation laws4f32 of ordersm=3 (we
already have written down two local conservation laws of the orders 0 anbhdeed, let us
consider a conserved density @.7) of orderM,

pn:pn(un+ia---1un+j)r i—j=M=1,

where %p,/dun.; dun,;#0 for at least somen. Using (4.33, we are led to the conserved
density,

pn(un+i+1a---run+j—1):pn(¢n+i a---v‘ﬂn-%—j)r

of (4.32. It is easy to see that, ¥1=1, then

25 2
J°Pn _ J°Pn I i &‘/’nﬂ
IUntiv1 ‘9un+j—1 I+ &’pn-%-j IUntiv1 &un+j—1

#0, Vn.

Then the local conservation law ¢4.32 is of the orderm=M + 2. So, the new chaif¥.32 has
local conservation laws of an arbitrary high order. In general, these local conservation laws depend
on the timet. If y=0, the transformatioi4.33 does not depend anbut, however, still depends
onn.
Let us rewrite Eq(4.32 as a dynamical system. If we introduce

U=Ug+ (ad—By)t?,

and denote,=a,,_,, we are led to an integrabl@n the sense that we can construct solutjons
lattice equation of the forni1.17)

u Ugsq1—U Ug— Uy
ot =exp K k—expﬁ, ck=ak+b+#0, Vk. (4.39
Ci+1Ck Ck+1 Ck

Equation(4.34 can be reduced directly to the potential Toda equatBl) by the following
transformation:

Uy

=(D-1)

Uk
—+ N
CikCr+1 Ck
Such a transformation is not invertible and transform point symmetries in potential symmetries
(i.e., it does not provide local conservation Jane can see that the cha#h34) is a direct and
very close generalization of the exponential Toda model. Surely it has physical applications and,
in any case, this chain seems interesting in itself.
Let us now consider the following generalization of the discrete analog of the Krichever—
Novikov equation(1.21), (1.22), obtained by introducing into Eq1.22 arbitrary n-dependent
coefficients, i.e.

Pn= U3+ 2B5Un+ vn, (4.353

~ ~
0n=BnUn+ AU+ 6y, (4.35h
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Fn=YnU2+2 SUn+ o, . (4.350
Let us definef,,, the rhs 0f(1.21), as

; ~Qn 1 9Qp :6n71+£§6n71

n=———=

_Un 2(9Un+1 Un 2 (?Un_l,

wherev,=U,,1—U,_1 is the denominator of1.21), and

_2 = _ 2
Qn=Uns1Pnt2Un10ntrn,  Qn=Pns1Un+20n1Un+Tnyg.

One can easily prove that

Q.- Q
ﬁtpf']l)"’zM_F hn(un+lyun :un*l)wo’
Un+1Un
and consequently
Qn=0Qn-

This condition can be rewritten as a condition for the coefficients appearing in the equation; its
solution gives

apy1=apn=a, Appr1=Ap=N,  op=op=o, (4.363
Bni2=PBns  Yn+2=¥n»  Oni2= 6n, (4.36b
Bn=PBn+1, ’;’n:7n+1a On=0n+1- (4.360

1 2 1 2

are identically satisfied, we can say that it is integrable. We have conservation laws of the orders
2 and 3 with the following densities:

Qn 1 #Q,

Unt+1Un 2 dUppq dUy

piM'~log Q,—2logv,, pP~-2

Transformations of the type

and

u,=1Mu,
(and, therefore, any linear—fractional transformation with two-periodic coeffigidotaot change
the form(1.22), (4.395, and the condition$4.36), but, in general, would allow us to remove only

one of three two-periodic constan,, v,, J,. This implies that one has written down an
integrable two-field extension of the Krichever—Novikov equation.
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V. CONCLUSIONS

In this paper we have constructed a set of five conditions necessary for the existence of higher
symmetries and conservation laws for differential difference equations of the (ddss By
applying these conditions to a few subcases of particular interest, we have been able to prove that
this class of equations contains new integrable nonlinear equations related to thel T/pda to
the discrete Krichever—Novikov equati¢h.21). In this way we have proved the validity of these
conditions for stating the integrability of equations of the fdrtil). We have, moreover, shown
that these conditions are, in a certain sense, not only necessary but also sufficient as, whenever
they are satisfied the equation is integrable. So they can be used as a very convenient test for the
integrability of equations of the forifl.1). The explicit form of these conditions, presented in Sec.

ll, allows us to check them easily, even using a computer.

The complete classification of the equations of the f¢tm) is left to a future work together
with the extension of the method for the case of difference—difference equations, the extension of
the class of symmetries from that of the restricted function to unrestricted ones and to the case of
potential symmetries.
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APPENDIX A: PROOF OF THEOREM 1

For a sufficiently high-order symmetry, i.e>1, the highest terms of
[
gr=2> gy'Dk,
k=]
will satisfy the following equation:

i i 1 i 1
> gD+ X gPfmpkm-> > Mgl Dkm=o, (A1)
1=2 k m=-1 k m=-1

where the sum is over thosesuch thatk+m>1, as otherwise the lhs ¢Al) is different from
zero. In(Al) the coefficients of any power & must vanish; so the highest coefficient, that of
D'*1, reads as

o)1 311 Vgil =0, (82
As, due to(2.2), f(M+#0, Vn, we have

n+i—1

gv=II &, (A3)

k=n

where we have, with no restriction, set to unity the arbitrary integration constant.

Let us consider now the coefficient @f'; this comes from more than one terfk=i, m
=0 ork=i—1, m=1) and involves the time evolution a{’. It can be cast in the following
form:
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g Ohid) gy v ”gl o0
o) MEARD M & (A9
from which we derive
(i-1) n+i-1
,log gi'=(D~1) n?? e 2, (A5)

Introducing(A3) onto the Ihs of(A5), we get

n+i—1 n+i—1
d, log an fV= gﬂ dlog f Y ~ig, log fV~0 c.v.d.
APPENDIX B: PROOF OF THEOREM 2
From Theorem |, we deduce that we have an approximate symmetry ofietrder
Gy=0y'D+gy"+g, "D T+g PD R (BD
where, from(A3),
glV=f1, (B2)
Instead of(A5) we have
g, log fV=(D-1)(g¥ ) (B3)

[see the coefficient dD in the equatiomA(G,) =0 with A defined by(2.14]. Consequently, the
function on the rhs of the first canonical conservation law is

qgl)_g(o) f| (0) ,
from which we get
gy =f " +ai. (B4)
Let us now consider the coefficient B in the equatiomA(G,,) =0:
gy =(D-DIfa(gh V=] (B5)

Equation(B5) is the second canonical conservation law with the lhs giveBay:

2
=

gO=f©@1qm  q@=f @) (gl V-t D). (B6)
From (B6) we get
e AL ®7)
This last relation is obtained in a simpler way using the following lemma.
If Hy=h{’D'+h{~YD'~"1+... is an approximate symmetry, which satisfies the finsti
+2 terms of the equatiohl, (=[f% ,H,], then

re{H,)=h", (B8)
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will be a conserved density.
In fact,

d, re{H,)=regH,)=regf: H,]. (B9)
The coefficient oD° of [f¥ ,H,] can be obtained only from terms of the type
[rnD™s,D~"],

which are equivalent to zero.

As any power of an approximate symmetry is also an approximate symmetry of the same
length, we can construct a new conserved density, calculating the resi(ﬁfe tf such a case,
after a long but straightforward calculation, we get

res Gy =reg (g, D +gy gy D)7

=g 00 1+ (93 + 0y Vet ~ 2070 g Y
+(0)7~ 20+ (o) + 21 P =29

As, from the previous lemma, resG2~0,

op'¥~0c.v.d.

APPENDIX C: PROOF OF THEOREM 3
Let us assume that we have a solution of
SntSn i +1175,=0, (&)

whereS, is an approximate conserved density,

N
Si= > siDX, (C2)
k=N—-m+1

of orderN=3 and lengthm=2. In such a case, introducin@?2) into (C1), the coefficient of
DN*1in (C1) reads as

i faint fari She1=0. (€3
As f(“D0 for anyn, it follows thats(\)+0 for anyn. Then we get
—fafari =savalsn”, (CH

and thus, by taking the logarithm of both sides, we are led to

(D=log[ — f(M/f {711, (CH
From (C4) and (C5) we get
st =S safatifade  fatho 1 (C8)
wheres, is such that
'§n fn(l)_’_fn(_lrs'n-%—lzo- (C7
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The coefficient at ordeDN of (C1) gives
dplog (Speafaih - fiho )+ O+ 10 ~0,
from which
(N—1)4, log f Y+ 4, log's,+2f (O ~0.

As condition(2.18 is satisfied, and Io§n=§$” [compare(C7) and the first of the conditions
(2.32], we are led to

(2= 55+ 2,0 cv.d,
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