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In this paper we construct a set of five conditions necessary for the existence of
generalized symmetries for a class of differential-difference equations depending
only on nearest neighboring interaction. These conditions are applied to prove the
existence of new integrable equations belonging to this class. ©1997 American
Institute of Physics.@S0022-2488~97!02411-0#

I. INTRODUCTION

Nonlinear differential-difference equations are always more important in applications.
enter as models for many biological chains, are encountered frequently in queuing problem
as discretizations of field theories. So, both as themselves and as approximations of con
problems, they play a very important role in many fields of mathematics, physics, biology
engineering.

Not many tools are available to solve such kinds of problems. Apart from a few excep
cases the solution of nonlinear differential-difference equations can be obtained only by num
calculations or by going to the continuous limit when the lattice spacing vanishes and the s
is approximated by a continuous nonlinear partial differential equation. Exceptional case
those equations that, in one way or another, are either linearizable or integrable via the solu
an associated spectral problem on the lattice. In such cases we can write down a denumer
of exact solutions corresponding to symmetries of the nonlinear differential-difference equa
Such symmetries can be either, depending just on the dependent field and independent v
and are denoted as point symmetries, or can depend on the dependent field in various pos
the lattice, and in this case we speak of generalized symmetries. Any differential-difference
tion can have point symmetries, but the existence of generalized symmetries is usually ass
only to the integrable ones.

Few classes of integrable nonlinear differential-difference equations are known1–5 and are
important for all kind a of applications, both as themselves and as a starting point for pertur
analysis.6 However, not all cases of physical interest are covered, and so it would be nice
able to recognize if a given nonlinear differential-difference equation is integrable or not, so
be used as a model of nonlinear systems on the lattice or as a starting point of perturbation
A way to accomplish such a goal can be obtained using the so-called formal symmetry ap
introduced by A. Shabat and collaborators in Ufa~see e.g., review articles7–9! by which the
authors classified all equations of a certain class that possess few generalized symmetr
certain kind. Such an approach has been introduced at first to classify partial differential equ
but then the procedure has been extended to the case of differential-difference equation2–4 In
such an approach, one introduces conditions under which one can prove the existence of
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one ~or more! generalized symmetries. These conditions are basic tools to start the proced
classification, i.e. to look for the form of the nonlinear differential difference equations, whic
compatible with these conditions. This process gives rise to classes of equations. These co
can be used as they are; for examples, they have been used in the programDELIA10 to discover if
an evolutionary scalar equation is integrable.

The class of nonlinear differential-difference equations we will consider in the followin
given by

un,t~ t !5 f n„un21~ t !,un~ t !,un11~ t !…, ~1.1!

whereun(t) is a complex-dependent field expressed in terms of its dependent variables,t varying
over the complex numbers whilen is varying over the integers. Equation~1.1! is a differential
functional relation that correlates the ‘‘time’’ evolution of a function calculated at the pointn to
its values in its nearest neighboring points~n11, n21!. A peculiarity of the choice of Eq.~1.1!
is the fact that the right-hand side of it not just a function, i.e. it is not the same for all poin
the lattice but for each point of the lattice one has ana priori different right-hand side. In fact, we
can think of Eq.~1.1! as an infinite system of different differential equations for the infin
number of functionsun . By proper choices of the functionsf n , Eq. ~1.1! can be reduced to a
system ofk coupled differential difference equations for thek unknownum

k or to a system of
dynamical equations on the lattice. In fact, for example, by imposing periodicity conditions o
dependent field in the lattice variables one is able to rewrite Eq.~1.1! as a coupled system o
nonlinear differential difference equations. Let us assume thatf n andun are periodic functions of
n of periodk, i.e.

f n„un21~ t !,un~ t !,un11~ t !…5 (
j 50

k21

Pn2 j
k f j

„um21~ t !,um~ t !,um11~ t !…,

un5 (
j 50

k21

Pn2 j
k um

j ,

where we have defined the projection operatorPn
k such that for any integerm such thatn5km

1 j with 0< j <k21, we have

Pkm
k 51, Pkm1 j

k 50 ~ j 51,2,...,k21!, ~1.2!

then Eq.~1.1! becomes the system:

um,t
0 5 f 0

„um21
k21 ~ t !,um

0 ~ t !,um
t ~ t !…,

um,t
1 5 f 1

„um
0 ~ t !,um

1 ~ t !,um
2 ~ t !…,

~1.3!

••• •••

um,t
k215 f k21

„um
k22~ t !,um

k21~ t !,um11
0 ~ t !….

Of particular interest is the case of periodicityk52, when we have

um,t
0 5 f 0~um21

1 ,um
0 ,um

1 !,
~1.4!

um,t
1 5 f 1~um

0 ,um
1 ,um11

0 !.
J. Math. Phys., Vol. 38, No. 12, December 1997
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A subclass of Eq.~1.4!, of particular relevance for its physical applications, is given by dynam
systems on the lattice, i.e. equations of the type

xn,tt5g~xn112xn ,xn2xn21!. ~1.5!

Equation ~1.5! is obtained from Eq.~1.4! for un
05xn,t , un

15xn112xn by choosing f 0

5g(un
1,un21

1 ) and f 15un
02un11

0 . Then, by choosing

g~z,z8!5ez2ez8,

Eq. ~1.1! reduces to the Toda lattice equation,

xn,tt5exn112xn2exn2xn21. ~1.6!

In terms of the projection operator~1.2!, Eq. ~1.6! can obviously also be written in polynomia
form as

un,t5~Pn11
2 un1Pn

2!~un112un21!, ~1.7!

the polynomial Toda Lattice.
In the present paper, the general theory of the symmetry approach in the differe

difference case is discussed in detail for the first time and an explicit dependence onn is intro-
duced. In the previous literature, in the framework of the formal symmetry approach,
n-independent differential difference equations were considered; the following classes of
tions were completely classified:

un,t5 f ~un21 ,un ,un11! ~1.8!

~Volterra-type equations, see Ref. 2! and

un,tt5 f ~un,t ,un21 ,un ,un11! ~1.9!

~Toda-type equations; see Ref. 3!. Reference 2 is a one page paper in Russian in which only
classification theorem is formulated with a few examples. A detailed version of Ref. 2 ca
found only in the unpublished work.11 It should be remarked that the classification of chains~1.8!
is also briefly discussed in Ref. 7. Theoretically, in our class, we can consider chains that
expressed as systems of 2,3,4,...,n-independent equations, and chains that are systems o
infinite number of different equations. In fact, if in the case of the class of equations~1.8! an
equation is defined by a functionf , in the case of~1.1! we have an infinite set$ f n% of a priori
quite different functions. So, this paper is a further step in the development of the general
of the formal symmetry approach~readers can find elements of a previous version of the gen
theory in Refs. 3 and 7!.

Section II is devoted to the construction of a certain number of conditions~the simpler ones!
necessary to prove that an equation of the class~1.1! has generalized symmetries and higher-or
conservation laws. Section III is devoted to a discussion of the results presented in Sec. I
cially in connection with the reductions~1.4! and ~1.5!. The obtained conditions are applied
Sec. IV to a few examples of interest. In particular, we will study three classes of system
nonlinear differential equations on the lattice:

~1! un,t5b~un!~un112un21!; ~1.10!

this class of equations includes the well-known Volterra equation;

~2! un,t5Pn11
2 eun11gn~un112un21!1Pn

2ln~un112un21!. ~1.11!
J. Math. Phys., Vol. 38, No. 12, December 1997
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This equation describes a class of dynamical equations,

vktt5expS vk112vk

ek11
DGkS vk112vk

ek11
2

vk2vk21

ek
D , ~1.12!

where

u2k5
vk112vk

ek11
, u2k215vkt , g2k215Gk , l2k5ek11

21 , ~1.13!

having a four-dimensional group of point symmetries and including the Toda lattice as one
members.12 Here Pn

2 is the projection operator of period 2, as introduced in Eq.~1.2!, gn is an
arbitrary analytic function of its argument andln are arbitraryn-dependent constants.

~3! un,t5wn~un112un21!. ~1.14!

By setting

w2n~z!5bn z, bnÞ0, w2n219 ~z!5Fn~z!Þ0, ;n, ~1.15!

and rewritingu2n5wn , u2n215vn , one gets from~1.14! chains of the form

Mnvn,t5vn112vn , vn,t5Fn~vn2vn21!, ~1.16!

which correspond to a dynamical system of the following form:

Mnvn,tt5Fn11~vn112vn!2Fn~vn2vn21!. ~1.17!

If we set

Fn~z!5Bnz21Cnz, ~1.18!

and defineyn5v2n and xn5v2n21 , Eqs ~1.17!, ~1.18! reduce, by an appropriate choice of th
constantsBn , Cn , andMn to the system

M2yn95 f ~xn112yn!2g~yn2xn!, M1xn95g~yn2xn!2 f ~xn2yi 2n!, ~1.19!

with

f ~z!5eb2z21k2z, g~z!5eb1z21k1z,

which describes the evolution of diatomic chains13 and explicitly reads as

M1xn,tt5k1~yn2xn!2k2~xn2yn21!1e@b1~yn2xn!22b2~xn2yn21!2#,
~20!

M2yn,tt5k2~xn112yn!2k1~yn2xn!1e@b2~xn112yn!22b1~yn2xn!2#.

As a last example, at the end of Sec. IV, we will use the obtained conditions to stud
integrability of ann-dependent generalization of a discrete analog of the Krichever–Nov
equation:

un,t5
p~un!un11un211q~un!~un111un21!1r ~un!

un112un21
, ~1.21!

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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p~un!5aun
212bun1g, ~1.22a!

r ~un!5gun
212dun1v, ~1.22b!

q~un!5bun
21lun1d. ~1.22c!

Equation ~1.21! depends on six arbitrary complex constants and is invariant under lin
fractional transformations, as under those transformations only the coefficients of the polyn
p, q, r are changed, but not the polynomials themselves. Equation~1.21! was obtained for the firs
time in Ref. 2 when classifying discrete evolutionary equations of the form~1.8!. It satisfies all the
five integrability conditions, has an infinite set of higher local conservation laws and should
an infinite set of generalized symmetries~but nobody has yet proved it!. It is the only example of
a nonlinear chain of the form~1.8!, up to now obtained, which cannot be reduced to the Toda
Volterra equations by Miura transformations. By carrying out the continuous limit, in the s
way as one does to obtain the Korteweg–de Vries equation from the Volterra equation, we
Krichever–Novikov equation:14

ut5uxxx2
3

2

uxx
2

ux
1

R~u!

ux
, ~1.23!

whereR(u) is an arbitrary fourth degree polynomial of its argument with constant coefficien
The complete classification of all the classes of equations of the form~1.1! that satisfy the

conditions obtained in Sec. II is left to a future work. Few conclusive remarks are contain
Sec. V.

II. CONSTRUCTION OF THE CLASSIFYING CONDITIONS

If Eq. ~1.1! is to represent an evolutionary difference equation, then the functionf n must
depend in an essential way from the points (n61), the nearest neighboring points with respect
the pointn in which we compute the ‘‘time’’ evolution. This implies that we must add to Eq.~1.1!
the condition

] f n

]un11
Þ0,

] f n

]un21
Þ0, for any n. ~2.1!

Before considering in detail the problem of costructing generalized symmetries to Eq.~1.1!, we
will introduce few definitions necessary for the future calculations.

A function gn depending on the set of fieldsun , for n varying on the lattice, will be called a
rectricted function and will be denoted by the symbol RF if it is defined on a compact suppo
if

gn5gn~un1 i ,un1 i 21 ,...,un1 j 11 ,un1 j !, i> j , ~2.2!

and i and j are finite integer numbers. If there exist, in the range of the possible valuesn,
valuesk andm such that

]gk

]uk1 i
Þ0,

]gm

]um1 j
Þ0, ~2.3!

then we say that the functiongn has a lengthi 2 j 11. For example,gn could be given by the
function

gn5nun111un1@11~21!n#un21 ;
J. Math. Phys., Vol. 38, No. 12, December 1997
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theni 51, j 521 and the length ofgn is equal to 3 even if only the even functions are depend
on un21 .

Let us define the shift operatorD such that

Dgn~un1 i ,...,un1 j !5gn11~un1 i 11 ,...,un1 j 11!.

Then we can split the RF into equivalent classes.
Definition: Two RF,

an~un1 i a
,...,un1 j a

! and bn~un1 i b
,...,un1 j b

!

are said to beequivalent,

an;bn ,

iff

an2bn5~D21!cn , ~2.4!

wherecn is a RF.
If, for example, we havean5un1un11 , it is immediate to see thatan is equivalent to a

function bn52un , asan2bn5un112un5(D21)un .
Let us notice that any function that is equal to a total difference is equivalent to zero

an5(D21)cn;0. If a RFan of length i 2 j 11(i . j ) is equivalent to zero, then there will exis
by necessity, a RFcn of the lengthi 2 j such thatan5(D21)cn . As

an~un1 i ,...,un1 j !5cn11~un1 i ,...,un1 j 11!2cn~un1 i 21 ,...,un1 j !,

one can easily see that

]an

]un1 i
5

]cn11~un1 i ,...,un1 j 11!

]un1 i
,

and consequently,

]2an

]un1 i ]un1 j
50. ~2.5!

In the casei 5 j ,

an~un1 i !5cn11~un1k111 ,...,un1k211!2cn~un1k1
,...,un1k2

!.

As for k2, i ]an /]un1k2
52]cn /]un1k2

50, then cn5dn(un1k1
,...,un1 i). For k1> i also

]an /]un1k11150, thendn cannot depend onun1k for any k, and consequently,

dan

dun1 i
50, ~2.6!

i.e., an is an invariant function, where by it we mean a function that depends only onn.
We can moreover define the‘‘formal’’ variational derivative of a RFan of lengthi 2 j 11 as

]an

]un
5 (

k5n2 i

n2 j
]ak

]un
. ~2.7!
J. Math. Phys., Vol. 38, No. 12, December 1997
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If an is linear inun , then]an /]un is an invariant function, but if it is nonlinear, then]an /]un

5g̃n(un1N ,...,un2N), where for somek ]g̃k /]uk1NÞ0 and for somem ]g̃m /]um2NÞ0. Con-
sequently, this quantity is strictly related to the notion of a variational derivative, and this i
reason for its name. It is immediate to prove that ifan is a RF equivalent to zero, then the form
variational derivative ofan is zero. The vice versa is also true, i.e., if]an /]un50, thenan is
equivalent to zero. In fact, using Eq.~2.7! we have]2an /]un1 i ]un1 j50, which implies that
an5bn(un1 i ,...,un1 j 11)1cn(un1 i 21 ,...,un1 j );dn(un1 i 21 ,...,un1 j ), i.e.,an is equivalent to a
RF of lengthi 2 j . Carrying out recursively this reasoning, we arrive at the conclusion thaan

;Fn(un) with Fn850, i.e.an must be an invariant function, i.e., equivalent to zero.
Given a nonlinear chain~1.1!, we will say that the RFgn(un1 i ,...,un1 j ) is a generalized~or

higher! local symmetry oforder i ~more precisely, of left orderi ! of our equation iff

un,t5gn~un1 i ,...,un1 j !, ~2.8!

is compatible with~1.1!, i.e. iff

] t]t~un!5]t] t~un!. ~2.9!

Explicitating condition~2.9!, we get

] tgn5]t f n5
] f n

]un11
un11,t1

] f n

]un
un,t1

] f n

]un21
un21 ,

t5F ] f n

]un11
D1

] f n

]un
1

] f n

]un21
D21Ggn5 f n* gn ,

i.e.,

~] t2 f n* !gn50, ~2.10!

where byf n* we mean the Frechet derivative of the functionf n , given by

f n* 5
] f n

]un11
D1

] f n

]un
1

] f n

]un21
D215 f n

~1!D1 f n
~0!1 f n

~21!D21. ~2.11!

Equation~2.10! is an equation forgn once the functionf n is given, an equation for the symmetrie
In this work we limit ourselves to local symmetries, i.e. symmetries that are given by
A nonlocal extension can be carried out by introducing, for example, a new fieldvn : (D21)vn

5un , i.e. vn52( j 5n
` uj or vn5( j 52`

n21 uj ~compare Ref. 7!. Extension in such a direction will be
carried out in future work.

Given a symmetry we can construct a new symmetry by applying a recursive operator,
operator that transforms symmetries into symmetries. Given a symmetrygn of Eq. ~1.11!, an
operator

Ln5 (
j 52`

m

l n
~ j !~ t !D j , ~2.12!

will be a recursive operator for Eq.~1.1! if g̃n , given by

g̃n5Lngn , ~2.13!

is a new generalized symmetry associated to~1.1!. Equation~2.10! and Equation~2.13! imply that
J. Math. Phys., Vol. 38, No. 12, December 1997
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A~Ln!5Ln,t2@ f n* ,Ln#50. ~2.14!

Moreover, from~2.10! it follows that

A~gn* !5]t~ f n* !. ~2.15!

In fact, from ~2.10! we get

Bn5] t~gn!5(
k

]gn

]un1k
f n1k ,

and consequently we have

Bn* 5(
m

]Bn

]un1m
Dm5(

m,k

]2gn

]un1k ]un1m
f n1k Dm1(

m,k

]gn

]un1k

] f n1k

]un1m
Dm5] t~gn* !1gn* f n* .

~2.16!

Equation~2.15! is then obtained by introducing~2.16! into the Frechet derivative of~2.9!. Equa-
tion ~2.15! implies that, as its right-hand side~rhs! is an operator of the order 1@see~2.11!#, the
highest terms on the left-hand side~lhs! must be zero.

We can define asapproximatesymmetry oforder i and length m, the operator

Gn5 (
k5 i 2m11

i

gn
~k!Dk,

such that the highestm terms of the operator,

A~Gn!5 (
k5 i 2m

i 11

an
~k!Dk,

are zeros. Taking into account Eq.~2.15!, we find that we must havei 2m12.1 if the equation

A~Gn!50 ~2.17!

is to be satisfied.
From these results we can derive the first integrability condition, which can be stated

following theorem, whose proof is contained in Appendix A.
Theorem 1: If Eq. ~1.1! has a local generalized symmetry of orderi>2, then it must have a

conservation law given by

]n log f n
~1!5~D21!qn

~1! , ~2.18!

whereqn
(1) is a RF.

In this way we have shown the existence of the firstcanonicalconservation law. The nex
canonical conservation laws could be obtained in the same way, by assuming the existen
higher symmetry, so that we are allowed to consider an approximate symmetry of higher l
These canonical conservation laws would, however, be very complicated~they will depend on the
order of the generalized symmetry! and very difficult to reduce to simple expressions not depe
ing on its order. So we prefer to follow an alternative approach that requires the existence
higher symmetries. This procedure can be carried out, as we already know one canonical
vation law.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Let us now assume that there exist two RFgn andg̃n that generate symmetries of orderi and
i 11, respectively. In correspondence to these symmetries, we can construct two appro
symmetriesGn andG̃n of ordersi and i 11, respectively, and from~2.1!, gn

( i ) and g̃n
( i 11) will be

different from zero for alln @see~A3!, Appendix A#. Starting fromGn andG̃n , we can construct
the operator

Ĝn5Gn
21G̃n . ~2.19!

As from ~2.14! we have

A~Gn
21!52Gn

21A~Gn!Gn
21, A~LnKn!5A~Ln!Kn1LnA~Kn!,

we obtain

A~Ĝn!5Gn
21@2A~Gn!Ĝn1A~G̃n!#. ~2.20!

Let us notice that, asGn is an approximate symmetry, its inverse will be an operator with
infinite number of terms. ConsequentlyĜn , though it is an approximate symmetry of order 1 a
lengthi ~the lowest of the lengths ofGn andG̃n! is represented by an infinite sum. This shows th
under the hypothesis that two local higher symmetries exist, we can restrict ourselves to co
approximate symmetries of order 1. In such a waygn

(1)5 f n
(1) , and forqn

(1) the following simple
formula can be obtained:qn

(1)5gn
(0)2 f n

(0) . We can now state the following theorem, proved
Appendix B.

Theorem 2: If Eq. ~1.1! satisfies conditions~2.1! and it has two generalized local symmetri
of order i and i 11, with i>4, then the following conservation laws must be true:

] tpn
~k!5~D21!qn

~k! ~k51, 2, 3!,

pn
~1!5 log

] f n

]un11
, pn

~2!5qn
~1!1

] f n

]un
, ~2.21!

pn
~3!5qn

~2!1
1

2
~pn

~2!!21
] f n

]un11

] f n11

]un
,

whereqn
(k) (k51, 2, 3) are some RFs.

So, if Eq.~1.1! has local generalized symmetries of high enough order, we can construct
conservation laws depending on the function at the rhs of Eq.~1.1!.

One can divide the conservation laws into conjugacy classes under an equivalence con
Two conservation laws,

pn,t5~D21!qn , r n,t5~D21!sn ,

areequivalentif

pn;r n . ~2.22!

A local conservation law istrivial if pn;0. If pn;r n(un), with r n8Þ0 at least for somen, then we
have a conservation law ofzeroth order, while if

pn;r n~un1N ,...,un!, N.0,

and
J. Math. Phys., Vol. 38, No. 12, December 1997
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]2r n

]un ]un1N
Þ0,

for at least somen, the conservation law is oforder N.
An alternative way to define equivalence classes of local conservation laws is via the f

variational derivative. Let us denote byp̃n the formal variational derivative of the densitypn of a
local conservation law, i.e.

p̃n5
dpn

dun
. ~2.23!

If the local conservation law is trivial, thenp̃n50, if it is of zeroth order, thenp̃n5 p̃n(un)Þ0 for
at least somen while if it is of order N, then

p̃n5 p̃n~un1N ,...,un ,...,un2N!,

where

] p̃n

]un1N
Þ0,

] p̃n

]un2N
Þ0,

for at least somen. Then, for any conserved densitypn , by direct calculation, we derive that th
following relation is valid:

pn,t; p̃n f n;0. ~2.24!

By carrying out the formal variational derivative of Eq.~2.24!, taking into account that in a
summation the following equality is valid:

] p̃n1k

]un
5

] p̃n

]un1k
,

we get that the formal variational derivativep̃n of a conserved densitypn satisfies the following
equation:

~] t1 f n*
T! p̃n50, ~2.25!

where the transposed Frechet derivative off n is given by

f n*
T5

] f n11

]un
D1

] f n

]un
1

] f n21

]un
D215 f n11

~21!D1 f n
~0!1 f n21

~1! D21. ~2.26!

Let us consider the Frechet derivative ofp̃n for a local conservation law of orderN. In such
a case, we have

p̃n* 5 (
k52N

N

p̃n
~k!Dk, p̃n

~k!5
] p̃n

]un1k
. ~2.27!

We can construct the following operator:

B~Sn!5Sn,t1Sn f n* 1 f n*
TSn , ~2.28!

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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Sn5 (
j 52`

l

sn
~ j !~ t !D j . ~2.29!

Taking into account~2.10! and ~2.25!, one can easily prove that

p̃n5Sngn . ~2.30!

Let us construct

B~ p̃n* !5(
k

bn
~k!~ t !Dk, ~2.31!

wherebn
(k)(t) are some RFs, then from Eq.~2.28! it follows that

bn
~k!5 p̃n,t

~k!1(
j

~ p̃n
~ j ! f n1 j

~k2 j !1 f n1 j
~2 j !p̃n1 j

~k2 j !!, ~2.32!

and then by differentiating Eq.~2.25! with respect toun1k , we can rewrite Eq.~2.32!, after a long
but straight forward calculation, in the form

bn
~k!52(

j
p̃n1 j

]2f n1 j

]un]un1k
, ~2.33!

and thus prove, asf n depends just onun and un61 , that bn
(k) are different from zero only for

22<k<2.
In such a way, for a sufficiently high-order conserved densitypn , we can require that

B~ p̃n* !50, ~2.34!

is approximately solved. If the firstm,N21 terms of the Frechet derivative ofp̃n satisfy Eq.
~2.34!, then we say that we have an approximate conserved density oforder N and length m.

Let us mention here that sometimes thep̃n solution of~2.25!, is called a conserved covarian
while Hn5Sn

21 and the solutions of~2.34! are called, respectively, a Noether operator and
inverse Noether operator.15 The Noether operator maps conserved covariants into symme
while the inverse Noether operator maps symmetries into conserved covariants. This corre
to the familiar relation between symmetries and conservation laws in Lagrangian or Hamilt
mechanics~Noether’s theorem!. In some casesHn can be the Hamiltonian operator for our equ
tion and the inverse of formula~2.30!,

gn5Hn

dpn

dun
, ~2.35!

will be local.
Taking all the results up to now obtained into account, we can state the following theo

which will be proved in Appendix C.
Theorem 3: If the chain ~1.1! satisfies conditions~2.1!, it has a conservation law of orde

N>3, and condition~2.18! is satisfied, then the following conditions must take place:

r n
~k!5~D21!sn

~k! ~k51,2!, ~2.36a!

with
J. Math. Phys., Vol. 38, No. 12, December 1997
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r n
~1!5 log@2 f n

~1!/ f n
~21!#, r n

~2!5sn,t
~1!12 f n

~0! , ~2.36b!

wheresn
(k) are RFs.

III. DISCUSSION OF THE CONDITIONS

First of all let us notice that the request that nontrivial local conservation laws exist is
restrictive than that of the existence of symmetries. In fact, there are many instances in
generalized symmetries do exist, but not nontrivial conservation laws. This may be the ca
manyc-integrable equations, i.e. nonlinear equations that can be transformed into linear o
an invertible transformation.7

If one compares Theorem 1 and Theorem 2 of Sec. II, one can think that among cond
~2.18! and~2.21! with k52, 3 there is a difference of importance, as conditions~2.21! require the
existence of two generalized symmetries, while for condition~2.18! only one generalized symme
try is sufficient. However, we could obtain conditions~2.21! with k52,3, assuming that only on
symmetry of orderi>4 exists, but calculations in the proof would be more difficult. For exam
in the casek52, following the notation of Appendix A, we can define

ĝn5
gn

~ i 21!

)k5n
n1 i 22f k

~1! 5 (
k5n

n1 i 21

pk
~2! .

Then, for i>3, it follows that

] tĝn1ĝn~pn1 i 21
~2! 2pn

~2!!5~D21!F gn
~ i 22!

)k5n
n1 i 23f k

~1!2 (
k5n

n1 i 21

f k
~21! f k21

~1! G;0,

and hence we get the wanted result:

ĝn~pn1 i 21
~2! 2pn

~2!!;0, ] tĝn; i ] tpn
~2! .

Conditions~2.21! required only thatf n
(1)Þ0. An analogous set of conditions could be deriv

if we requested that justf n
(21)Þ0 for all n. They can be derived in a straightforward wa

considering expansions in negative powers ofD, instead of positive, as we have done up to no
This derivation is left to the readers as an exercise. This set of conditions also will have the
of canonical conservation laws:

] t p̂n
~k!5~D21!q̂n

~k! , ~3.1!

and conserved densities will be symmetric to the ones of~2.21!. For example,

p̂n
~1!5 logS 2

] f n

]un21
D . ~3.2!

Let us notice, moreover, that ifHn
(1) andHn

(2) are two solutions of~2.34! of different order, the
operator

Kn5~Hn
~1!!21Hn

~2! ~3.3!

satisfies~2.14!, and thus it is a recursive operator. Consequently, if we start from two approxi
solutions of ~2.34!, i.e. two Frechet derivatives of formal variational derivatives of conser
densities, we can, using~2.34!, get an approximate symmetry. So, one can derive all the condit
J. Math. Phys., Vol. 38, No. 12, December 1997
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~2.21!, ~2.36!, ~3.1!, assuming the existence of two higher-order local conservation laws. In
case of conditions~3.1!, one should use the same formula~3.3!, but (Hn

(1))21 will be a series in
positive powers of the shift operatorD:

~Hn
~1!!215 (

k52N

1`

hn
~k!Dk.

This proves the statement written at the beginning of this section that conservation laws are
fundamental’’ than symmetries, as from conservations laws we get symmetries.

If we compare conditions~2.21!, ~2.36!, ~3.1!, we can see, for example, that

r n
~1!5pn

~1!2 p̂n
~1! , ~3.4!

i.e. the first of conditions~2.36! implies thatpn
(1); p̂n

(1) , i.e. the first canonical conservation law
of ~2.21! and~3.1! are equivalent. The same result could be obtained for the second conditi
~2.32!. In particular, the set of conditions~3.1! can be derived, starting from conditions~2.21! and
~2.36!. However, these conditions are of great importance in themselves, as there might be
tions of interest that satisfy~2.21! and ~3.1!, but not~2.36!.

The solution of the conditions, be those obtained by requesting the existence of the ge
ized symmetries or those of local conservation laws, provide the highest-order coefficients
Frechet derivative of a symmetry or of the formal variational derivative of a conserved de
Those coefficients are the building blocks for the reconstruction of the symmetries or of the f
variational derivatives of the conserved densities. In fact the knowledge ofgn

(k)5]gn /]un1k with
k5 i , i 21,..., for a few values ofk, gives a set of partial differential equations forgn with respect
to its variable, whose solution provides the needed symmetry. In the same way we can reco
variational derivatives of conserved densities. There is, however, a more direct way to
conserved densities. In fact, if we know the highest coefficients ofLn , the solution of Eq.~2.14!,
we can obtain several conserved densities by the following formula:

pn
~ j !5res~Ln

j ! ~ j 51,2,...!

~see Appendix B!.
Equation~1.1! with the conditions~2.1! can be splitted into two different classes. In fact, E

~2.21! with k51 can be written in the form

pn,t
~1!;

]pn
~1!

]un11
f n111

]pn
~1!

]un
f n1

]pn11
~1!

]un
f n5Fn;0,

Fn5Fn~un12 ,un11 ,un ,un21!.

As Fn is a RF equivalent to zero, we have

]2Fn

]un12 ]un21
5rn

] f n11

]un12
1rn11

] f n

]un21
50, ;n, ~3.5!

where

rn5
]2pn

~1!

]un11 ]un21
.

Conditions~2.1! and ~3.5! imply that there are only two possibilities:
J. Math. Phys., Vol. 38, No. 12, December 1997
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rn50, ;n, ~A!

rnÞ0, ;n. ~B!

Both classes are not empty. The Toda and Volterra equation belong to class~A! while the
discrete analogue of Krichever Novikov equation14 belongs to class~B!. One can prove the
following statement for chains of the class~B!: if a chain~1.1! satisfies~2.1! and~2.21!, then this
chain has conservation laws of the orders 2, 3, 4, which will be given just by the cano
conservation laws~2.21!. In fact, it is obvious that the first of conservation laws~2.21! has order
2. So, let us consider~2.21! with k51, 2 and use them to obtain informations aboutqn

(1) , qn
(2) .

The functionqn
(1) depends onun11 ,...,un22 and

]qn
~1!

]un22
52

]pn
~1!

]un21
f n21

~21! . ~3.6!

The functionqn
(2) depends onun11 ,..,un23 and

]qn
~2!

]un23
52

]pn
~2!

]un22
f n22

~21!5
]pn

~1!

]un21
f n21

~21! f n22
~21! .

Now one easily can show that

]2pn
~2!

]un11 ]un22
52rnf n21

~21! ,
]2r n

]un11 ]un23
5rn f n21

~21! f n22
~21! , ~3.7!

where r n5qn
(2)1 1

2(pn
(2))21(] f n21 /]un) (] f n /]un21);pn

(3) . Taking into account Eq.~2.1! the
functions~3.7! are different from zero for anyn, thus showing that the conservation laws~2.21!
for k52, 3 are of the orders 3 and 4, respectively.

The same formulas~3.7! show that in the case of chains of the class~A! canonical conserva
tion laws~2.21! have orders less than 2, 3, 4, respectively. For example, for the Toda chain~1.6!,
~1.7!, formulas~2.21! give three inequivalent nontrivial conservation laws of order 0. In the c
of the chain

un,t5~un112un!1/2~un2un21!1/2, ~3.8!

all three canonical conservation laws are trivial.
If the chain satisfies all five conditions and the conservation laws are all of low order, th

case~A! the chain might be linearizable. In the case of Eq.~3.8!, such a transformation isvn

5(un112un)1/2 and leads to the linear equation

2vn,t5vn112vn21 . ~3.9!

It is worthwhile to show here how all five conditions~2.21!, ~2.36! can be rewritten in explicit
form. Such explicit conditions can be easily verified using the computer and thus they can
starting point for the construction of a program of the kind ofDELIA10 to check the integrability of
differential-difference equations of the form~1.1!.

A condition isexplicit if it has the formAn50, ;n, whereAn is a function depending only on
f n and its partial derivatives with respect to allun1 i . Let us define the functions

Pn
~k!5

d

dun
] tpn

~k! , Rn
~k!5

d

dun
r n

~k! , k51, 2,
J. Math. Phys., Vol. 38, No. 12, December 1997
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and

Pn
~3!5

d

dun
] tpn

~3!2qn
~1!Pn

~2! .

The five explicit conditions are given by

Pn
~k!50, Rn

~ l !50, ;n , k51, 2, 3; l 51, 2. ~3.10!

The functionspn
(1) , r n

(1) are already explicit and from them one can derive all partial der
tives ]qn

(1)/]un1 i , ]sn
(1)/]un1 i @see, e.g.,~3.6!# and then express] tpn

(2) , r n
(2) in an explicit form.

For example, from~2.36! we have

r n
~2!5

]r n21
~1!

]un
f n2

]r n
~1!

]un21
f n2112

] f n

]un
.

Let us now considerPn
(3) . On one hand we have

] tpn
~3!5] tS qn

~2!1
] f n

]un11

] f n11

]un
D1S qn

~1!1
] f n

]un
D ] tpn

~2! .

Using ~2.21! with k52, one can find all the partial derivatives ofqn
(2) and consequently get a

explicit expression for] tqn
(2) . Using ~2.21! with k51, we can obtain not only the function

]qn1 i
(1) /]un but also all differencesqn1 i

(1) 2qn
(1) . Consequently, as

d

dun
~qn

~1!] tpn
~2!!2qn

~1!Pn
~2!5(

i

]qn1 i
~1!

]un
] tpn1 i

~2! 1(
i

~qn1 i
~1! 2qn

~1!!
]

]un
] tpn1 i

~2! , ~3.11!

we can easily write down the explicit form ofPn
(3) .

Let us end this discussion by looking into the connection between the symmetries an
servation laws for Eq.~1.1! and those belonging to the reduced case~1.3!. For simplicity of
exposition we just present the results in the case of periodicity 2, where Eq.~1.1! reduces to Eq.
~1.4!.

Generalized symmetries and conservation laws for Eq.~1.4! can be defined in the same wa
as those for Eq.~1.1!. For example, a local conservation law of Eq.~1.4! is of the form

Cn,t5Dn112Dn , ~3.12!

whereCn , Dn are RFs of variablesun
0, un

1, un61
0 , un61

1 ,... . Let usconsider conservation laws o
order N for N>1. For such a conservation law to exist, we need it to be represented bCn

;hn(un
0, un

1,..., un1N
0 , un1N

1 ), with

S ]2hn

]un
0 ]un1N

0

]2hn

]un
0 ]un1N

1

]2hn

]un
1 ]un1N

0

]2hn

]un
1 ]un1N

1
D Þ0.

There is the following one-to-one correspondence between Eqs.~1.1! and the system~1.4!: un
0

5u2n11 , un
15u2n , f n

05 f 2n11 , f n
15 f 2n .

The same transformation allows one to rewrite the generalized symmetries. Let us se
happens to the conservation laws. Ifpn,t5qn112qn is a conservation law of~1.1!, then
J. Math. Phys., Vol. 38, No. 12, December 1997
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Cn5p2n111p2n , Dn5q2n , ~3.13!

gives a conservation law for~1.4!. Given the conservation law~3.12!, we have

p̄2n115Cn , p̄2n50, q̄2n112q̄2n5Dn , ~3.14!

and thus equivalent conservation laws are turned into equivalent ones. In fact, if we pass frpn

to Cn and then back top̄n , we have

p̄n5Pn11
2 ~pn1pn21!;~Pn11

2 1Pn
2!pn5pn .

It can be checked that if we use formulas~3.13!, then ordCn'1/2 ordpn ; in the case of transition
~3.14!, ord p̄n'2 ord Cn . For example, the Toda chain~1.6!, written in the form ~1.4!, has
conserved densities,

log un
0, un

1, 2un
01~un

1!2, un
0~un11

1 1un
1!1 1

3~un
1!3,

while in the form~1.17! the conserved densities are

Pn11 log un , Pnun , 2Pn11un1Pnun
2, un11un1 1

3Pnun
3.

IV. APPLICATIONS

In the following we will find out about the integrability of differential difference equations
the form ~1.1! by going through all examples considered in the Introduction, following the e
meration given there.

~1! In the case~1.10! the first canonical conservation law~2.18! implies that

] t log bn;0, ~4.1!

i.e.,

bn8~un112un21!;bn8un112bn118 un;0. ~4.2!

So bn9 must be ann-independent constant:

bn5Aun
21Bnun1Cn . ~4.3!

Inserting this result into~4.2!, we get that

~Bn212Bn11!un;0, i.e. Bn5B1~21!nB̃,

and thus the first canonical conservation law gives

qn
~1!52Aunun211B~un1un21!2B̃@~21!nun1~21!n21un21#. ~4.4!

Introducing~1.10! and ~4.4! into the second canonical conservation law, we get, after a stra
forward but lengthy calculation, that

pn,t
~2!;~Cn212Cn11!~Aun

21Bnun!.

It follows, in particular, that ifAÞ0, then

Cn5C1~21!nC̃. ~4.5!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Using the last canonical conservation law, one can prove thatCn must have always the form~4.5!,
and thus the most general chain of the form~1.10! that satisfies all five conditions is

un,t5@Aun
21~B1~21!nB̃!un1C1~21!nC̃#~un112un21!, ~4.6!

which depends on five arbitrary complex constants.
By obvious point transformations, we can reduce any nonlinear chain of the form~4.6! to one

of the following chains: the Toda chain~1.7!, or

un,t5un~un112un21!, ~4.7!

the Volterra equation, or

un,t5~Cn2un
2!~un112un21!, ~4.8!

where

Cn51 or Cn50 or Cn5Pn11
2 , ~4.9!

corresponding to three modifications of the Volterra equation. Unlike the discrete version
Krichever–Novikov equation~1.21!, ~1.22!, all the chains~4.7!–~4.9! can be reduced to the Tod
chain by Miura transformations. For example, in the case of the Volterra equation, we ha
transformation

ũn5Pn11
2 un11un1Pn

2~un111un!, ~4.10!

which brings any solutionun of the Volterra equation into a solutionũn of the Toda chain.
Transformations of the modified Volterra equations~4.8!, ~4.9! into the Volterra equation are
given by the formula

ũn5~Cn1un!~Cn112un11!. ~4.11!

Consequently, due to transformations~4.10!, ~4.11!, together with point transformations, an
nonlinear chain of the form~4.7!–~4.9! possesses local conservation laws of an arbitrary h
order. This means, in particular, that the chains~4.7!–~4.9! satisfy not only classifying conditions
~2.21!, ~2.36! but also all other conditions of higher order we could derive using approxim
symmetries and conserved densities.

~2! We now classify chains of the form~1.11!. Equation ~2.1! reduces to the following
conditions:

] f n

]un11
5Pn11

2 eun11~gn1gn8!1Pn
2lnÞ0, ~4.12!

2
] f n

]un21
5Pn11

2 eun11gn81Pn
2lnÞ0. ~4.13!

This means, in particular, thatlnÞ0 for evenn. As ln do not exist in our equation forn odd, we
can take them arbitrary forn odd and then assume thatlnÞ0 for all n. Analogously, we have to
require thatgn8Þ0, gn1gn8Þ0 for all n. We can then formulate the following theorem.

Theorem: A chain of the form~1.11! satisfies the classifying conditions~2.21!, ~2.36! iff it is
related by a point transformation of the formũn5anun1bn to one of two following chains:

un,t5Pn11
2 ~exp un112exp un21!1Pn

2~un112un21!, ~4.14a!
J. Math. Phys., Vol. 38, No. 12, December 1997
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un,t5Pn11
2 expS un112un21

an
D1Pn

2an11an21~un112un21!, ~4.14b!

with an5an1b, wherea andb are arbitrary constants.
To prove this theorem we consider at first the conditions~2.36!. As we have~3.4!,

pn
~1!5 log

] f n

]un11
5Pn11

2
„un111 log~gn1gn8!…1Pn

2 log ln , ~4.15!

p̃n
~1!5 logS 2

] f n

]un21
D5Pn11

2 ~un111 log gn8!1Pn
2 log ln , ~4.16!

then

r n
~1!5Pn11

2 Hn , Hn5 log~gn1gn8!2 log gn8 .

Hence

Pn11
2 Hn950, i.e., Pn11

2 Hn5anvn1bn , ~4.17!

where vn5un112un21 , and an , bn are somen-dependent constants. Consequently, we m
havean215an11 for all n. As a2k50 @see~4.17!#, anda2k215a2k11 , we have that

an5Pn11
2 a, ~4.18!

wherea is a pure constant. So, the conditionr n
(1);0 implies~4.17! and~4.18!. We find, moreover,

that

sn
~1!5cn1~D21!~aPn11

2 un21!;2aPn
2un ,

and as in this case] f n /]un50, thenr n
(2)5] tsn

(1) . Consequently,

r n
~2!;2aPn

2 f n52aPn
2lnun;2aPn11

2 ~ln212ln11!un ,

and the last condition gives, for alln,

aPn11
2 ~ln212ln11!50. ~4.19!

Let us pass over to the first canonical conservation law. It follows from~3.4! that this condition is
equivalent to the condition] t p̃n

(1);0. Sincep̃n
(1);Pn

2un1Pn11
2 log gn8 @see~4.16!#, then

] t p̃n
~1!;Pn

2f n1Pn11
2 ~ log gn8!8~ f n112 f n21!

;Pn
2lnvn1Pn11

2 ln11vn11~ log gn8!81Pn
2lnvn~ log gn118 !8.

Applying the operator]2/]un12]un21 to it, we obtain

Pn11
2 ln11~ log gn8!92Pn

2ln~ log gn118 !950,

which means that for alln we must have

Pn11
2 ~ log gn8!950, i.e. Pn11

2 log gn85cnvn1dn , ~4.20!

wherecn , dn are somen-dependent constants.
J. Math. Phys., Vol. 38, No. 12, December 1997
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By comparing~4.17! and~4.20! we obtain an explicit formula forgn . As for any functionun

the formulaPn11
2 exp(Pn11

2 un)5Pn11
2 expun is valid:

Pn11
2 gn85Pn11

2 exp~ log gn8!5Pn11
2 exp~Pn11

2 log gn8!,

and consequently from Eq.~4.20! we get

Pn11
2 gn85Pn11

2 exp~cnvn1dn!. ~4.21!

Using ~4.17! we are led to the following formula forgn :

Pn11
2 gn5Pn11

2 exp„~a1cn!vn1bn1dn…2Pn11
2 exp~cnvn1dn!. ~4.22!

Moreover, the consistency between~4.21! and ~4.22! implies that we must have

Pn11
2 ~11cn!5Pn11

2 ~a1cn!exp~avn1bn!,

from which it follows that

a~a21!50, ~4.23!

Pn11
2 ~11cn!a50. ~4.24!

Condition ~4.23! implies that eithera51 or a50. Let us, at first, consider the casea51.
Condition ~4.24! gives Pn11

2 cn52Pn11
2 , and then it follows from~4.19! that l2k5l2k225l,

wherel is a constant different from zero. Taking into account formula~4.22!, we get that the
obtained chain is of the form

un,t5Pn11
2

„exp~un111an!2exp~un211bn!…1~un112un21!Pn
2l,

wherean , bn are somen-dependent constants.
This chain can be further simplified, using simple point transformations. If we apply firs

transformationũn5(Pn11
2 l1Pn

2)un and thenũn5un1Pn
2an21 , we can reduce it to the form

un,t5Pn11
2

„expun112exp~un211gn!…1~un112un21!Pn
2,

wheregn are somen-dependent constants. Moreover, we have

] tpn
~2!;2Pn

2 exp~un!~12exp gn11!.

As Pn11
2 expgn5Pn11

2 for all n, the chain takes the form~4.14a!. There are no problems to chec
that all the five classifying conditions are satisfied for~4.14a!. Let us consider now the casea50.
It follows from ~4.22! that

Pn11
2 gn5Pn11

2 exp~cnvn1dn!~exp bn21!,

so that the function expbn21 cannot be zero for oddn, asgnÞ0. This means we can redefinedn

so that~1.11! takes the form

un,t5Pn11
2 exp@~11cn!un112cnun211dn#1~un112un21!Pn

2ln . ~4.25!

Let us notice that 11cn andcn are different from zero for alln, as~2.1! must be valid.
As in the previous case, the chain~4.25! can be simplified, using point transformations of t

form ũn5anun1bn , and we get the following chain:
J. Math. Phys., Vol. 38, No. 12, December 1997
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un,t5 f n5Pn11
2 exp

vn

an
1Pn

2bnvn , ~4.26!

wherevn5un112un21 andan , bn are somen-dependent constants different from zero for anyn.
To fix an and bn we will use two of the conditions~2.21! that will give us two other

constraints. It is easy to see thatpn
(1)5Pn11

2 (vn /an)1dn , and then

] tpn
~1!;unPn11

2 ~Bn212Bn11!, Bn5bnS 1

an21
2

1

an11
D ,

from which it follows that

Pn11
2 ~Bn212Bn11!50. ~4.27!

Now

qn
~1!5const1Pn

2 bn

an21
vn1Pn11

2 bn21

an
vn211Pn11

2 Bn21un1Pn
2Bnun21;2unPn11

2 An ,

An5
bn21

an22
2

bn11

an12
,

and thus

] tpn
~2!;2Pn11

2 An exp
vn

an
.

So we get the second constraint:

Pn11
2 An50. ~4.28!

Introducingb̃n such thatbn5b̃nan11an21 , we obtain from~4.28! that Pn
2b̃n5Pn

2b, whereb is a
constant different from zero. Therefore

Pn
2bn5bPn

2an11an21 . ~4.29!

Taking into account~4.27! and using~4.29!, we obtain

Pn11
2 ~an1222an1an22!50.

From this it follows that, forn odd,an will have the form

a2k215c~2k21!1d,

wherec, d are constants. As our chain~4.26! does not contain anyan with evenn, we can set
an5cn1d for all n.

The chain~4.26! with bn satisfying~4.29! has the form

un,t5Pn11
2 exp

vn

an
1bPn

2an11an21vn ,

i.e. coincides with~4.14b! up to the constantb. This constant, however, can be easily remov
using an obvious point transformation.

If we go over to the class~1.12!, we see that in case~4.14a!
J. Math. Phys., Vol. 38, No. 12, December 1997
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ek51, Gk512exp„~vk2vk21!2~vk112vk!…,

and this is nothing but the Toda model~1.6! for the functionvk . The chain~4.14b! is a new
example of integrable~andn-dependent! equation. In this case, the chain equation can be rewri
as, setting for semplicity,ck5a2k21!

vk,tt5exp@ck11~vk112vk!2ck21~vk2vk21!#. ~4.30!

It belongs to the class~1.12!, as

Gk~zk!5exp~dkzk!, dk5ck21ek , ck11ek112ck21ek51.

As ck is linear ink, Eq. ~4.30! can be written as

vk,tt5exp~ck11vk1122ckvk1ck21vk21!,

and by an obvious point transformation, we can remove theck and will have the potential Toda
equation:

vk,tt5exp~vk1122vk1vk21!, ~4.31!

which reduces to the Toda by the following transformation:

ṽk5vk112vk .

This implies that Eq.~4.30! is completely integrable.
~3! In the case of the classification problem~1.14! we present here just the final results.

integrability conditions~2.21!, ~2.36! are satisfied for a chain of the form~1.14!, then such a chain
up to a point transformation of the formũn5aun1bn , t̃5ct, must have the form

un,t5Pn11
2 S expS vn

an
D1

ln

an
D1Pn

2an11an21vn , ~4.32a!

where

vn5un112un21 , ~4.32b!

an5an1bÞ0, ;n, ln5gn1d. ~4.32c!

It turns out that there exists a complicated and not obvious transformation:

ũn5Pn11
2 en expS vn

en
D1Pn

2~en11un112en21un2122gt !, ~4.33!

which turns~4.32! into the polynomial Toda chain~1.7!. This shows that~4.32! is integrable. Two
of its three canonical conservation laws are nontrivial. More precisely,

pn
~1!;2arn

~1! , rn
~1!5

Pn
2

an11an21
un , pn

~2!;0,

pn
~3!;rn

~2!52Pn11
2 an expS vn

en
D1Pn

2~an11un112an21un21!2,

wherern
(1) andrn

(2) are densities of conservation laws of the orders 0 and 2.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The chain~4.32! depends essentially on the spatial variablen, as point transformations do no
allow us to remove this dependence. This dependence is nonlinear~unlike local master
symmetries15!.

Local conservation laws of~4.32! are constructed using the transformation~4.33!, which is of
the form ũn5cn(un11 ,un21). If pn,t5(D21)qn is of ~1.7!, via ~4.33! we obtain a local conser
vation law of ~4.32!. As a result, we have local conservation laws of~4.32! of ordersm>3 ~we
already have written down two local conservation laws of the orders 0 and 2!. Indeed, let us
consider a conserved density of~1.7! of orderM ,

pn5pn~un1 i ,...,un1 j !, i 2 j 5M>1,

where ]2pn /]un1 i ]un1 jÞ0 for at least somen. Using ~4.33!, we are led to the conserve
density,

p̂n~un1 i 11 ,...,un1 j 21!5pn~cn1 i ,...,cn1 j !,

of ~4.32!. It is easy to see that, ifM>1, then

]2p̂n

]un1 i 11 ]un1 j 21
5

]2pn

]cn1 i ]cn1 j

]cn1 i

]un1 i 11

]cn1 j

]un1 j 21
Þ0, ;n.

Then the local conservation law of~4.32! is of the orderm5M12. So, the new chain~4.32! has
local conservation laws of an arbitrary high order. In general, these local conservation laws d
on the timet. If g50, the transformation~4.33! does not depend ont but, however, still depends
on n.

Let us rewrite Eq.~4.32! as a dynamical system. If we introduce

ũk5u2k1~ad2bg!t2,

and denoteck5a2k21 , we are led to an integrable~in the sense that we can construct solution!
lattice equation of the form~1.17!

uk,tt

ck11ck
5exp

uk112uk

ck11
2exp

uk2uk21

ck
, ck5ak1bÞ0, ;k. ~4.34!

Equation~4.34! can be reduced directly to the potential Toda equation~4.31! by the following
transformation:

uk

ckck11
5~D21!S vk

ck
1lkD .

Such a transformation is not invertible and transform point symmetries in potential symm
~i.e., it does not provide local conservation law!. One can see that the chain~4.34! is a direct and
very close generalization of the exponential Toda model. Surely it has physical application
in any case, this chain seems interesting in itself.

Let us now consider the following generalization of the discrete analog of the Kriche
Novikov equation~1.21!, ~1.22!, obtained by introducing into Eq.~1.22! arbitrary n-dependent
coefficients, i.e.

pn5anun
212bnun1gn , ~4.35a!

qn5b̃nun
21lnun1 d̃n , ~4.35b!
J. Math. Phys., Vol. 38, No. 12, December 1997
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r n5g̃nun
212 dnun1vn . ~4.35c!

Let us definef n , the rhs of~1.21!, as

f n5
Qn

vn
2

1

2

]Qn

]un11
5

Q̃n21

vn
1

1

2

]Q̃n21

]un21
,

wherevn5un112un21 is the denominator of~1.21!, and

Qn5un11
2 pn12un11qn1r n , Q̃n5pn11un

212qn11un1r n11 .

One can easily prove that

] tpn
~1!;2

Qn2Q̃n

vn11vn
1hn~un11 ,un ,un21!;0,

and consequently

Qn5Q̃n .

This condition can be rewritten as a condition for the coefficients appearing in the equatio
solution gives

an115an5a, ln115ln5l, vn115vn5v, ~4.36a!

bn125bn , gn125gn , dn125dn , ~4.36b!

b̃n5bn11 , g̃n5gn11 , d̃n5dn11 . ~4.36c!

As for this chain, the conditions

] tpn
~1!;] tpn

~2!;r n
~1!;r n

~2!;0,

are identically satisfied, we can say that it is integrable. We have conservation laws of the
2 and 3 with the following densities:

pn
~1!; log Qn22 log vn , pn

~2!;22
Qn

vn11vn
2

1

2

]2Qn

]un11 ]un
.

Transformations of the type

ũn5anUn , ũn5un1an , an125an ,

and

ũn51/un

~and, therefore, any linear–fractional transformation with two-periodic coefficients! do not change
the form~1.21!, ~4.35!, and the conditions~4.36!, but, in general, would allow us to remove on
one of three two-periodic constantsbn , gn , dn . This implies that one has written down a
integrable two-field extension of the Krichever–Novikov equation.
J. Math. Phys., Vol. 38, No. 12, December 1997
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V. CONCLUSIONS

In this paper we have constructed a set of five conditions necessary for the existence of
symmetries and conservation laws for differential difference equations of the class~1.1!. By
applying these conditions to a few subcases of particular interest, we have been able to pro
this class of equations contains new integrable nonlinear equations related to the Toda~1.7! or to
the discrete Krichever–Novikov equation~1.21!. In this way we have proved the validity of thes
conditions for stating the integrability of equations of the form~1.1!. We have, moreover, show
that these conditions are, in a certain sense, not only necessary but also sufficient as, w
they are satisfied the equation is integrable. So they can be used as a very convenient tes
integrability of equations of the form~1.1!. The explicit form of these conditions, presented in S
III, allows us to check them easily, even using a computer.

The complete classification of the equations of the form~1.1! is left to a future work together
with the extension of the method for the case of difference–difference equations, the exten
the class of symmetries from that of the restricted function to unrestricted ones and to the c
potential symmetries.
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APPENDIX A: PROOF OF THEOREM 1

For a sufficiently high-order symmetry, i.e.i @1, the highest terms of

gn* 5(
k5 j

i

gn
~k!Dk,

will satisfy the following equation:

(
l 52

i

gn,t
~ l !Dl1(

k

i

(
m521

1

gn
~k! f n1k

~m!Dk1m2(
k

i

(
m521

1

f n
~m!gn1m

~k! Dk1m50, ~A1!

where the sum is over thosek such thatk1m.1, as otherwise the lhs of~A1! is different from
zero. In ~A1! the coefficients of any power ofD must vanish; so the highest coefficient, that
Di 11, reads as

gn
~ i ! f n1 i

~1! 2 f n
~1!gn11

~ i ! 50. ~A2!

As, due to~2.1!, f n
(1)Þ0, ;n, we have

gn
~ i !5 )

k5n

n1 i 21

f k
~1! , ~A3!

where we have, with no restriction, set to unity the arbitrary integration constant.
Let us consider now the coefficient ofDi ; this comes from more than one term~k5 i , m

50 or k5 i 21, m51! and involves the time evolution ofgn
( i ) . It can be cast in the following

form:
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gn,t
~ i !

gn
~ i !

5
gn11

~ i 21!

)k5n11
n1 i 21 f k

~1!
2

gn
~ i 21!

)k5n
n1 i 22f k

~1!
2~D21! (

k5n

n1 i 21

f k
~0! , ~A4!

from which we derive

] t log gn
~ i !5~D21!F gn

~ i 21!

)k5n
n1 i 22f k

~1!
2 (

k5n

n1 i 21

f k
~0!G . ~A5!

Introducing~A3! onto the lhs of~A5!, we get

] t log )
k5n

n1 i 21

f k
~1!5 (

k5n

n1 i 21

] log f k
~1!; i ] t log f n

~1!;0 c.v.d.

APPENDIX B: PROOF OF THEOREM 2

From Theorem I, we deduce that we have an approximate symmetry of orderi 51,

Gn5gn
~1!D1gn

~0!1gn
~21!D211gn

~22!D221••• , ~B1!

where, from~A3!,

gn
~1!5 f n

~1! . ~B2!

Instead of~A5! we have

] t log f n
~1!5~D21!~gn

~0!2 f n
~0!! ~B3!

@see the coefficient ofD in the equationA(Gn)50 with A defined by~2.14!#. Consequently, the
function on the rhs of the first canonical conservation law is

qn
~1!5gn

~0!2 f n
~0! ,

from which we get

gn
~0!5 f n

~0!1qn
~1! . ~B4!

Let us now consider the coefficient ofD0 in the equationA(Gn)50:

] tgn
~0!5~D21!@ f n21

~1! ~gn
~21!2 f n

~21!!#. ~B5!

Equation~B5! is the second canonical conservation law with the lhs given by~B4!:

pn
~2!5gn

~0!5 f n
~0!1qn

~1! , qn
~2!5 f n21

~1! ~gn
~21!2 f n

~21!!. ~B6!

From ~B6! we get

gn
~21!5 f n

~21!1qn
~2!/ f n21

~1! . ~B7!

This last relation is obtained in a simpler way using the following lemma.
If Hn5hn

( i )Di1hn
( i 21)Di 211••• is an approximate symmetry, which satisfies the firstm> i

12 terms of the equationHn,t5@ f n* ,Hn#, then

res~Hn![hn
~0! , ~B8!
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will be a conserved density.
In fact,

] t res~Hn!5res~Hn,t!5res@ f n* ,Hn#. ~B9!

The coefficient ofD0 of @ f n* ,Hn# can be obtained only from terms of the type

@r nDm,snD2m#,

which are equivalent to zero.
As any power of an approximate symmetry is also an approximate symmetry of the

length, we can construct a new conserved density, calculating the residue ofGn
2. In such a case

after a long but straightforward calculation, we get

res~Gn
2!5res@~gn

~1!D1gn
~0!1gn

~21!D211••• !2#

5gn
~1!gn11

~21!1~gn
~0!!21gn

~21!gn21
~1! ;2gn

~1!gn11
~21!

1~gn
~0!!2;2qn

~2!1~pn
~2!!212 f n

~1! f n11
~21!52pn

~3! .

As, from the previous lemma,] t resGn
2;0,

] tpn
~3!;0 c.v.d.

APPENDIX C: PROOF OF THEOREM 3

Let us assume that we have a solution of

] tSn1Sn f n* 1 f n*
TSn50, ~C1!

whereSn is an approximate conserved density,

Sn5 (
k5N2m11

N

sn
~k!Dk, ~C2!

of order N>3 and lengthm>2. In such a case, introducing~C2! into ~C1!, the coefficient of
DN11 in ~C1! reads as

sn
~N! f n1N

~1! 1 f n11
~21!sn11

~N! 50. ~C3!

As f n
(61)Þ0 for anyn, it follows thatsn

(N)Þ0 for anyn. Then we get

2 f n1N
~1! / f n11

~21!5sn11
~N! /sn

~N! , ~C4!

and thus, by taking the logarithm of both sides, we are led to

r n
~1!5 log@2 f n

~1!/ f n
~21!#. ~C5!

From ~C4! and ~C5! we get

sn
~N!5 s̃n11f n11

~1! f n12
~1! ••• f n1N21

~1! , ~C6!

wheres̃n is such that

s̃n f n
~1!1 f n

~21!s̃n1150. ~C7!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The coefficient at orderDN of ~C1! gives

] t log ~ s̃n11f n11
~1! ••• f n1N21

~1! !1 f n
~0!1 f n1N

~0! ;0,

from which

~N21!] t log f n
~1!1] t log s̃n12 f n

~0!;0.

As condition~2.18! is satisfied, and logs̃n5s̃n
(1) @compare~C7! and the first of the conditions

~2.32!#, we are led to

r n
~2!5] ts̃n

~1!12 f n
~0! c.v.d.
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