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Conditions for the Existence of
Higher Symmetries and
Nonlinear Evolutionary
Equations on the Lattice

D. Levi and R. Yamilov

ABSTRACT In this paper we derive a set of five conditions necessary for
the existence of generalized symmetries. We apply them to a class of dynam
ical equations on the lattice, depending on nearest neighboring interaction,
which has a four-dimensional Lie group of continuous point symmetries.

1 Introduction

When considering differential equations we have many effective tools to
integrate them, for example, Lie Group techniques [2, 12, 16]. This is not
the case for difference equations, where few results are known [5-8, 13].
Thus it is very important to introduce new tools to be able to treat dif
ference equations, as often discrete equations present "discrete" features
that are lost in the continuum limit approximation. This is especially the
case for nonlinear differential-difference equations, which are important in
applications.
As in the case of partial differential equations, there are a certain num
ber of difference equations that are integrable [1, 4], as, for example, the
Toda lattice, which has a Lax pair, Backlund transformations, an infinity
of conserved quantities and symmetries, and an infinity of explicit exact
solutions. However, in order to improve the techniques for studying differ
ence equations we first need us to find new integrable difference equations.
There are various possible approaches to this problem. One possibility is to
construct integrable difference equations of a given form by starting from
the integrability conditions (i.e., Lax pair). A second possibility is to start
from a class of equations of the desired form and deduce the integrable
cases by applying some integrability conditions.
This second approach will be considered in the following. This relies on
the so-called formal symmetry approach introduced by A.B. Shabat and
collaborators in Ufa (see, e.g., review articles [10, 11, 15]) by which the
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authors classified all equations of a certain class that possess a few gener
alized symmetries of a certain kind. Such an approach has been introduced
at first to study partial differential equations but then the procedure has
been extended to the case of differential-difference equations [14, 17, 18].
In such an approach, one introduces conditions under which one can prove
the existence of at least one (or more) generalized symmetries.
The class of nonlinear differential-difference equations we will consider

in the following is given by

(1.1 )

where un(t) is a dependent field expressed in terms of its independent
variables, t varying over the reals and n varying over the integers. Equa
tion (1.1) is a differential functional relation that correlates the time evo
lution of a function calculated at the point n to its values in its nearest
neighboring points (n + 1, n -1). A peculiarity of the choice of Eq. (1.1) is
the fact that its right-hand side is not a function-Le., it is not the same
for all points in the lattice-but for each point of the lattice one has an
a priori different right-hand side. In fact, we can think of Eq. (1.1) as an
infinite system of different differential equations for the infinite number of
functions Un' By proper choices of the functions in, Eq. (1.1) can be re
duced to a system of k coupled differential-difference equations for the k
unknown u~ or to a system of dynamical equations on the lattice. Let us
assume that in and Un are periodic functions of n of period k, i.e.,

k-l

in (Un-l (t), un(t), Un+l (t)) = L P~-jij (Um-l (t), um(t), Um+l (t)),
j=O

k-l

""' k .Un = L.J pn-ju::r"
j=O

where P~ is a projection operator such that for any integer m, such that
n = km + j with 0 ::; j ::; k - 1. The following relations are true:

pfm = 1, pfm+j = 0, (j = 1,2, ... ,k -1);

then Eq. (1.1) becomes, for example, in the case k = 2, the system

(1.2)

A subclass of Eq. (1.2) of particular relevance for its physical applications
is given by dynamical systems on the lattice, Le., equations of the type

Xn,tt = g(Xn+l - Xn, Xn - Xn-l). (1.3)
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So part of the results presented in Ref. [8] can be further analyzedd for
the existence of generalized symmetries and of their integrability using the
conditions presented here as these equations can be written in the form
(1.3).
Section 2 is devoted to the construction of a certain number of conditions
(the simpler ones) necessary to prove that an equation of the class (1.1) has
generalized symmetries and higher-order conservation laws. The obtained
conditions thus obtained are applied in Section 3 to the case

Un,t = P~+leUn+lgn(un+l - un-d + P~, An(Un+l - un-d, (1.4)

where gn ((n) is a set of functions and An is a set of constants. This equation
describes a class of dynamical equations

having a four-dimensional group of point symmetries and including the
Toda lattice as one of its members [8]. A more complete set of results on
the conditions associated with the class of Eqs. (1.1), together with other
examples of equations that pass the test, can be found in Ref. [9].

2 Construction of the Classifying Conditions

Before considering in detail the problem of constructing generalized sym
metries to Eq. (1.1) we will introduce a few definitions necessary for future
calculations.
A function gn depending on the set of fields Un, for n varying on the

lattice, will be called a restricted function and will be denoted by the symbol
RF if it is defined on a compact support; i.e., if

and i and j are finite integer numbers. If there exist, in the range of possible
values of n, values k and m such that

(2.2)

then we say that the function gn has a length i - j + 1.
Let us define the shift operator D by

Then we can split the RF into equivalence classes.
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Definition. Two RF an (Un+i a , ••• , un+jJ and bn(Un+ib"'" Un+jb) are
said to be equivalent, denoted by an """ bn , if

(2.3)

(2.4)

(2.5)

where Cn is an RF.

Let us notice that any function that is equal to a total difference is
equivalent to zero; i.e., an = (D - l)cn """ O. If an RF an of length i - j + 1
(i > j) is equivalent to zero, then there will exist, by necessity, a RF Cn of
length i - j such that an = (D - l)cn and consequently

B2an = O.
BUn+iBun+j

In the case i = j, (dan)/(dun+i) = 0, Le., an is an invariant function, that
is a function which depends only on n.
We can moreover define the "formal" variational derivative of an RF an

of length i - j + 1 as
n-j

8an = L Bak

8un k=n-i BUn'

If an is linear in Un, then 8an /8un is an invariant function. However, if it
is nonlinear, then 8an /8un = gn(Un+N, ... ,Un-N), where Bgk/Buk+N =/:. 0
for some k and Bgm/Bum-N =/:. 0 for some m. It is easy to prove that if an
is an RF equivalent to zero, then the formal variational derivative of an is
zero. The inverse is also true; i.e., if 8an /8un = 0, then an is equivalent to
zero.
Given a nonlinear chain (1.1), we will say that the RF 9n(Un+i,"" un+j)

is a generalized (or higher) local symmetry of order i (more precisely, of
left order i) of our equation if

Un,T = 9n(Un+i,"" un+j),

is compatible with (1.1), i.e., if

Making explicit condition (2.7), we get

(2.6)

(2.7)

(2.8)

where by i~ we mean the Frechet derivative of the function in, given by

. 1* = Bin D + Bfn + Bfn D- I = j(1) D + j(O) + i-I)D- I (2.9)
n BUn+1 BUn BUn-1 n n n .

Equation (2.8) is an equation for the symmetries 9n once the function fn
is given.
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Given a symmetry we can construct a new symmetry by applying a recur
sive operator, i.e., an operator that transforms symmetries into symmetries.
Given a symmetry gn of Eq. (1.1), an operator

L n = L l~P(t)Dj
j=-=

is a recursive operator for Eq. (1.1) if gn given by

gn = Lngn

(2.10)

(2.11)

is a new generalized symmetry associated with (1.1). Equations (2.8) and
(2.11) imply that

A(Ln ) = Ln,t - [J~, LnJ = O.

Moreover from (2.8) it follows that

(2.12)

(2.13)

Equation (2.13) implies that, as its right-hand side is an operator of order 1
(see (2.9)), the highest terms in the left-hand side must be zero.
Thus we can define as approximate symmetry of order i and length m, the

operator Gn = I:~=i-m+l g~k) D k , such that the m terms of highest order

of the operator A(Gn ) = I:~;;'~-m a~k)D k are zeros. Taking into account
Eq. (2.13), we find that we must have i - m + 2> 1 if the equation

(2.14)

is to be satisfied. From this result we can derive the first integrability
condition, which can be stated in the following theorem:

Theorem 2.1. If Eq. (1.1) has a local generalized symmetry of orderi ?: 2,
then it must have a conservation law given by

(2.15)

(2.16)

where q~l) is an RF.

The next canonical conservation laws could be obtained in the same way,
namely, by assuming the existence of a higher symmetry so that we may
consider an approximate symmetry of higher length. This procedure can
be carried out, and leads to the following theorem:

Theorem 2.2. If Eq. (1.1) has two generalized local symmetries of order
i and i + 1, with i ?: 4, then the following conservation laws must be true:

fJtP~k) = (D - 1)q~k) (k = 1,2,3),

(1) -1 fJfn (2) _ (1) + fJfn
Pn - og fJ ' Pn - qn fJ'

Un+1 Un

(3) = (2) + ~( (2))2 + fJfn fJfn+1
Pn qn 2 Pn fJ fJ'Un+1 Un
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where q~k) (k = 1,2,3) are some RFs.

Thus, if Eq. (1.1) has local generalized symmetries of high enough order,
we can construct a few conservation laws depending on the function on the
right-hand side of Eq. (1.1).
One can divide the conservation laws into conjugacy classes under an

equivalence condition. Two conservation laws Pn,t = (D - l)qn and rn,t =
(D - l)sn are equivalent if

(2.17)

A local conservation law is trivial if Pn rv O. If Pn rv rn(un), with r~ =f- 0
for at least some n, then we have a conservation law of zeroth order, while
if Pn rv rn(Un+N' ... ,un), N > 0, and (EPrn )/ (aunaun+N) =f- 0 for at least
some n, the conservation law is of order N.
An alternative way to define equivalence classes of local conservation

laws is via the formal variational derivative. Let us denote by Pn the formal
variational derivative of the density Pn of a local conservation law, i.e.,

(2.18)

If the local conservation law is trivial, then Pn = O. If it is of order
zero, then Pn = Pn(un) =f- 0 for at least some n. And if it is of or
der N, then Pn = Pn(Un+N, ... ,Un, ... ,Un-N), where apn/aUn+N =f- 0,
(apn)/(aun-N) =f- 0 for at least some n. Then, for any conserved density
Pn, by direct calculation, we derive the following relation:

Pn,t rv Pnfn rv O. (2.19)

By carrying out the formal variational derivative of Eq. 2.19 we get that
the formal variational derivative Pn of a conserved density Pn satisfies the
following equation:

(at + f~T)Pn = 0,

where the transposed Frechet derivative of fn is given by

(2.20)

Let us consider the Frechet derivative of Pn for a local conservation law of
order N. In this case, we have

N

p;, = L ~k)Dk,
k=-N

;;(k) _ apn
Pn - J:l •

UUn+k
(2.22)

We can construct the following operator:

(2.23)
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where
I

Sn = L sCj)(t)Dj.
j=-oo

Taking into account (2.8) and (2.20), one can easily prove that

Let us construct

(2.24)

(2.25)

(2.26)B(P;,) = L b~k)(t)Dk,

k

where b~k) (t) are some RFs. It then follows from Eq. (2.23) that b~k) are
different from zero only for -2 ::; k ::; 2.

In this way, for a sufficiently high order conserved density Pn, we can
require that

B(P;,) = 0 (2.27)

is approximately solved. If the first m < N - 1 terms of the Frechet de
rivative of fin satisfy Eq. (2.27), then we say that we have an approximate
conserved density of order N and length m. Taking into account all the
results up to now, we can state the following theorem:

Theorem 2.3. If the chain (1.1) has a conservation law of order N ~ 3,
and condition (2.16) is satisfied, then the following conditions must take
place:

r~k) = (D - l)s~k) (k = 1,2), (2.28a)

with
r(2) = sCI) + 21CO)

n n,t n' (2.28b)

where s~k) are RFs.

Conditions (2.16) require only that f~l) -I- O. An analogous set of condi
tions could be derived if we required that just f~-l) -I- 0 for all n. They can
be derived in a straightforward way by considering expansions in negative
powers of D instead of positive, as we have done up to now. This set of
conditions also will have the form of canonical conservation laws,

(2.29)

and conserved densities will be symmetric to those of (2.16). For example,

f4tl) = log (_ afn ).
aUn-l

(2.30)

Let us notice moreover that if H~l) and H~2) are two solutions of (2.27)
of different order, the operator

K = (HCl»)-lH(2)n n n , (2.31)
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satisfies (2.12) and thus it is a recursive operator. Consequently, if we start
from two approximate solutions of (2.27), Le., two Frechet derivatives of
formal variational derivatives of conserved densities, we can, using (2.27),
get an approximate symmetry.

If we compare conditions (2.16), (2.28), and (2.29), we can see, for ex
ample, that

r~l) = p~l) _ ~1); (2.32)

i.e., the first of conditions (2.28) implies that p~l) rv ifnI). Thus the first
canonical conservation laws of (2.16) and (2.29) are equivalent.
The solutions of the conditions, be they those obtained by requiring ex

istence of the generalized symmetries or those of local conservation laws,
provide the highest-order coefficients of the Frechet derivative of a sym
metry or of the formal variational derivative of a conserved density. Those
coefficients are the building blocks for the reconstruction of the symmetries
or of the formal variational derivatives of the conserved densities. In fact,
the knowledge of g~k) = (ogn)/(OUn+k) with k = i, i-I, ... for a few
values of k, gives a set of partial right-hand equations for gn with respect
to its variables, whose solution provides the needed symmetry. In the same
way we can reconstruct variational derivatives of conserved densities. There
is, however, a more direct way to obtain conserved densities. In fact, if we
know the highest coefficients of L n , the solution of Eq. (2.12), we can obtain

several conserved densities by computing p~f.l = res(LtJ for j = 1,2, ... ,
where res(L~) denotes the coefficient of DO in L~.

It is worthwhile to show here how all five conditions (2.16), (2.28) can
be rewritten in explicit form. Such explicit conditions can be easily verified
using a computer and thus they can be the starting point for the construc
tion of a program like DELIA [3] to check the integrability of differential
difference equations of the form (1.1).
A condition is explicit if it has the form An = 0 'in, where An is a

function depending only on f n and its partial derivatives with respect to
all Un+i. Let us define the functions p~k) = 8/8unOtp~k), R~k) = 8/8unr~k)

for k = 1,2 and p~3) = 8/8unOtp~3) - q~l) p~2). The five explicit conditions
are given by

p~k) = 0, R~) = 0 'in, k = 1,2,3; l = 1,2. (2.33)

The functions p~l), r~l) are already explicit, and from them one can

derive all partial derivatives oq~l) /OUn+i, os~l) /OUn+i and then express
OtP~2), r~2) in an explicit form. For example, from (2.28) we have r~2) =
(1) / (1)/ !::l /!::l • (3)orn_ 1 ounfn - orn OUn-dn-1 + 2ufn uUn · Let us now consider Pn .

We have

o (3) = 0 ( (2) + ofn Ofn+1) + ( (1) + Ofn)o (2)tPn t qn !::l!::l qn!::l tPn .
uUn+1 uUn uUn
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Using (2.16) with k = 2, one can find all the partial derivatives of q~2) and

consequently get an explicit expression for Otq~2). Using (2.16) with k = 1,
we can obtain not only the functions oq~~dOUn but also all differences

(1) (1)
qn+i - qn . Consequently, as

~(q(1)O p(2») _ q(l) p(2)
!SUn n t n n n

o (1)
_ ""' qn+i 0 (2) ""'( (1) _ (l»)~O (2)
- L..J):l tPn+i + L..J qn+i qn ):l tPn+i'

. uUn . uUn• •
we can easily write down the explicit form of PA3

) .

3 The Toda Lattice Class

(2.34)

(3.1)

(3.2)

In the following we learn about integrability of differential-difference equa
tions of the form (1.4). The following conditions must be imposed to ensure
that (1.1) represents an evolutionary difference equation:

ofn _ p2 U n + 1 ( + ') + p2 \ ...J. 0
-):l-- - n+1 e gn gn nAn -r ,
UUn +1

_ ofn _ p2 U n + 1 1 + p2 \ ...J. 0
):l - n+1 e gn nAn-r·
UUn -1

This means, in particular, that .An =J 0 for n even. As the .An do not exist
in our equation for n odd, we can make them arbitrary for n odd and then
assume that .An =J 0 for all n. Analogously, we have to require that g~ =J 0,
gn + g~ =J 0 for all n. We can than formulate the following theorem:

Theorem. A chain of the form (1.5) satisfies the classifying conditions
(2.16), (2.28) iff it is related by a point transformation of the form Un =
anun + f3n to one of two following chains:

(3.3a)

(3.3b)

(3.4)

(3.5)

with an = an + f3 where a and f3 are arbitrary constants.

To prove this theorem we first consider the conditions (2.28). As we have
(2.32) ,

(1)-1 ofn _p2 ( 1 ( I)) p 2 1 \Pn - og -):l-- - n+1 Un+1 + og gn + gn + n og An,
UUn +1

;;(1) _ 1 ( Ofn) _ p2 ( 1 ') p 2 1 \Pn - og --):l-- - n+1 Un+1 + oggn + n ogAn,
UUn -1
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and consequently r~1) = P;+! Hn , where Hn = log(gn + g~) -log g~. Hence

(3.6)

where Vn = Un+! - Un-I, and an and bn are constants that depend on n.
Consequently we must have an-I = an+! for all n. Thus from (3.6) we get
that

(3.7)

where a is a pure constant. So, the condition r~l) "" 0 implies (3.6) and
(3.7). We find moreover that r~2) = OtS~I). Consequently

(3.8)

Let us consider the first canonical conservation law. It follows from
(2.32) that this condition is equivalent to Otifnl ) "" O. Since ifnI) "" P~Un +
P~+llogg~ (see (3.5)). Then we must have

where Cn and dn are constants depending on n.
By comparing (3.6) and (3.9) we obtain an explicit formula for gn' Since

for any function ()n the formula P~+I exp(P~+1()n) = P~+I exp ()n is valid,
we get from Eq. (3.9)

(3.10)

Using (3.6) we are led to the following formula for gn:

P~+!gn = P~+! exp((a + cn)vn + bn + dn ) - P~+! exp(cnvn + dn ). (3.11)

Moreover the consistency between (3.10) and (3.11) implies that we must
have

a(a-1)=0,

P~+! (1 + cn)a = O.

(3.12)

(3.13)

Let us first consider the case a = 1. Condition (3.13) gives P~+!Cn =
-P~+I and it then follows from (3.8) that A2k = A2k-2 = A, where A is
a constant different from zero. Taking into account formula (3.11), we get
that the chain thus obtained is of the form

where an, f3n are some constants depending on n. This chain can be fur
ther simplified, using simple point transformations. If we apply first the
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transformation Un = (P;+1 A+ P;)un and then Un = Un + P;an-l, we can
reduce it to the form

where 'Yn are some n-dependent constants. Moreover, we have f)tP~2)
2P; exp(Un )(1 - exp 'Yn+1)' Since P;+1 exp 'Yn = P;+1 for all n, the chain
takes the form (3.3a).
Let us consider now the case a = O. It follows from (3.11) that P;+1 gn =

P;+1 exp(CnVn + dn )(exp bn - 1) so that the function exp bn - 1 cannot be
zero for odd n, as gn # O. This meanS we can redefine dn so that (1.4) takes
the form

Un,t

= P~+l exp[(l + cn )un+1 - CnUn-l + dn] + (un+1 - Un-l)P~An. (3.14)

As in the previous case, the chain (3.14) can be simplified, using point
transformations of the form Un = anUn + (3n, and we get the following
chain:

2 Vn 2
Un,t = in = Pn+1 exp an + Pnbnvn, (3.15)

where Vn = Un+l -Un-l and an and bn are some nOnzero constants depend
ing On n. To fix an and bn we use two of the conditions (2.16) that will give
us two other constraints. It is easy to see that p~1) = P;+1(vn )/(an ) + bn ,
and that

f) (2) 2p2 bn- 1 bn+1 Vn
tPn '" n+l-- - --exp-.

an-2 an+2 an

Thus we get the constraint

(3.16)

Introducing bn such that bn = bnan+1an-l, we obtain from (3.16) that
P;bn = P;b, where b is a constant different from zero. Therefore

(3.17)

and we obtain
P~+1(an+2 - 2an + an-2) = O.

Taking into account the form of (3.15), it follows that we can set an = cn+d
for all n. The chain (3.15) with bn satisfying (3.17) has the form

i.e., coincides with (3.3b) up to the constant b. This constant, however, can
be easily removed, using an obvious point transformation.
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If we go over to the class (1.5), we see that, in case (3.3a),

and this is the Toda model for the function Vk. The chain (3.3b) is a new
example of an integrable (and n-dependent) equation. In this case, the
chain equation can be rewritten, setting, for simplicity, Ck = a2k-l as

(3.18)

It belongs to the class (1.5), as

Gk((k) = exp(Ok(k), Ok = Ck-lck, Ck+lck+l - Ck-lck = 1.

As Ck is linear in k, Eq. (3.18) can be written as

and by an obvious point transformation, we can remove the Ck and obtain
the potential Toda equation:

(3.19)

This reduces to the Toda equation by the transformation

This implies that Eq. (3.18) is completely integrable.
In conclusion we state that the only equation in the class (1.4)-(1.5) that
possesses generalized symmetries characterized by RF is the Toda lattice.
Point symmetries by themselves are not sufficient to discriminate between
integrable and nonintegrable equations. At least in the case of dynami
cal systems on the lattice depending on nearest neighbor interaction, the
existence of a large group of continuous Lie point symmetries is not an
indication that an equation is more integrable.
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