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Integrability test for discrete equations via
generalized symmetries.
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†Ufa Institute of Mathematics, Russian Academy of Sciences, 112 Chernyshevsky Street, 450008 Ufa,
Russian Federation

Abstract. In this article we present some integrability conditions for partial difference equations
obtained using the formal symmetries approach. We apply them to find integrable partial difference
equations contained in a class of equations obtained by the multiple scale analysis of the general
multilinear dispersive difference equation defined on the square.

Keywords: integrability test; generalized symmetries; integrable nonlinear discrete equations
PACS: 02.20.-a; 02.30.lk; 02.30.Ks

1. INTRODUCTION

DL met Marcos Moshinsky for the first time on his arrival in Mexico in February 1973. He
went there with a two years fellowship of the CONACYT (Consejo Nacional de Ciencia y
Tecnología), the Mexican Research Council. DL visit was part of his duties as military service
in Italy and was following a visit to Mexico in the summer of 1972 by Francesco Calogero, with
whom he graduated at the University of Rome La Sapienza in the spring of 1972 with a thesis on
"Computation of bound state energy for nuclei and nuclear matter with One-Boson-Exchange
Potentials" [5].

The bureaucratic process, preliminary to this visit, was long and tiring and it was successful
only for the strong concern of DL uncle, Enzo Levi, professor of Hydrulics at UNAM [9] and
for the help of Marcos Moshinsky who signed a contract for him which, as DL uncle wrote, was
ready to substain with his own personal funds if no other source could be found.

During DL stay in Mexico he was able, with the help of Marcos, to appreciate the pleasures of
research and to start his career in Mathematical Physics. With Marcos Moshinsky he published,
during the two years stay at the Instituto de Fisica of UNAM, 4 articles [6, 14, 7, 8] but he
also collaborated with some of the other physicists of the Institute [4, 11, 12]. This visit was
fundamental to shape DL future life, both from the personal point of view and from the point of
view of his career.

After 1975 DL met Marcos Moshinsky frequently both abroad and in Mexico. When DL was
in Mexico, Marcos Moshinsky always invited him to his home to partecipate to his family
dinners. As a memento of Marcos, let us add a picture of his with Pavel Winternitz, Petra
Seligman and Decio Levi, taken in September 1999 in front of the Guest House of the CIC-AC
where he stayed overnight after a seminar given at the Instituto de Fisica of UNAM, Cuernavaca
branch.

Symmetries have played always an important role in physics and in the research of Marcos
Moshinsky. This presentation shows how crucial can be the notion of symmetry in uncovering
integrable structures in nonlinear partial difference equations.
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FIGURE 1. Pavel Winternitz, Marcos Moshinsky, Petra Seligman and Decio Levi in front of the Guest
House of CIC-AC in Cuernavaca in September 1999.

The discovery of new integrable Partial Difference Equations (P∆E) is always a very chal-
lenging problem as, by proper continuous limits, we can obtain integrable Differential Differ-
ence Equations (D∆E) and Partial Differential Equations (PDE).

A very successful way to uncover integrable PDE has been the formal symmetry approach
due to Shabat and his school in Ufa [22]. These results have been later extended to the case of
D∆E by Yamilov [31], a former student of Shabat.

Here we present some results on the application of the formal symmetry technique to P∆E.
The basic theory for obtaining symmetries of differential equations has been introduced by

Sophus Lie at the end of the nineteen century and can be found together with its extension to
generalized symmetries introduced by Emma Noether, for example in the book by Olver [26].
The extension of the classical theory to P∆E can be found in the work of Levi and Winternitz
[19, 21, 29].

Here in the following we outline the results of the geometric classification of P∆E given
by Adler, Bobenko and Suris [2] with some critical comments at the end. Then in Section
2 we derive the lowest integrability conditions starting from the request that the P∆E admit
generalized symmetries of sufficiently high order. In Section 3 we show how the test can be
applied. Then we apply it to a simple class of P∆E obtained by the multiple scale analysis of a
generic multilinear dispersive equation defined on the square.

1.1. Classification of linear affine discrete equations

Adler, Bobenko and Suris [2] considered the following class of autonomous P∆E:

ui+1, j+1 = F(ui+1, j,ui, j,ui, j+1), (1)
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where i, j are arbitrary integers. Eq. (1) is a discrete analogue of the hyperbolic equations

uxy = F(ux,u,uy). (2)

which are very important in many fields of physics. Up to now the general equation (2) has not
been classified. Only the two particular cases:

uxy = F(u); ux = F(u,v) , vy = G(u,v),

which are essentially easier, have been classified by the formal symmetry approach [32, 33].
The ABS integrable lattice equations are defined as those autonomous affine linear (i.e.

polynomial of degree one in each argument, i.e. multilinear) partial difference equations of
the form

E (u0,0,u1,0,u0,1,u1,1;α,β ) = 0, (3)

where α and β are two constant parameters , whose integrability is based on the consistency
around a cube (or 3D-consistency). Here and in the following, as the equations are autonomous,
and thus translational invariant, we skip the indices i and j and write the equations around the
origin.

u0,0

β

α u1,0

u1,1u0,1

FIGURE 2. A square lattice

The main idea of the consistency method is the following:

1. One starts from a square lattice and defines the three variables ui, j on the vertices (see
Figure 2). By solving E = 0 one obtains a rational expression for the fourth one.

2. One adjoins a third direction, say k, and imagines the map giving u1,1,1 as being the
composition of maps on the various planes. There exist three different ways to obtain
u1,1,1 and the consistency constraint is that they all lead to the same result.

3. Two further constraints have been introduced by Adler, Bobenko and Suris:
• D4-symmetry:

E (u0,0,u1,0,u0,1,u1,1;α,β ) = ±E (u0,0,u0,1,u1,0,u1,1;β ,α)
= ±E (u1,0,u0,0,u1,1,u0,1;α,β ).

• Tetrahedron property: u1,1,1 is independent of u0,0,0.
4. The equations are classified according to the following equivalence group:

• A Möbius transformation.
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FIGURE 3. Three-dimensional consistency

• Simultaneous point change of all variables.

As a result of this procedure all equations possess a symmetric (in the exchange of the first to
the second index) Lax pair, Bäcklund transformations etc. . Thus the compatible equations are,
for all purposes, completely integrable equations.

The ABS list read:

(H1) (u0,0−u1,1)(u1,0−u0,1) − α + β = 0, (4)
The potential discrete KdV equation [15, 23]

(H2) (u0,0−u1,1)(u1,0−u0,1)+(β −α)(u0,0 +u1,0 +u0,1 +u1,1)−
−α

2 +β
2 = 0,

(H3) α(u0,0u1,0 +u0,1u1,1)−β (u0,0u0,1 +u1,0u1,1)+δ (α2−β
2) = 0,

(5)

(Q1) α(u0,0−u0,1)(u1,0−u1,1)−β (u0,0−u1,0)(u0,1−u1,1)+

+δ
2
αβ (α−β ) = 0, The Schwarzian discrete KdV equation [16, 25]

(Q2) α(u0,0−u0,1)(u1,0−u1,1)−β (u0,0−u1,0)(u0,1−u1,1)+

+αβ (α−β )(u0,0 +u1,0 +u0,1 +u1,1)−αβ (α−β )(α2−αβ +β
2) = 0,

(Q3) (β 2−α
2)(u0,0u1,1 +u1,0u0,1)+β (α2−1)(u0,0u1,0 +u0,1u1,1)−

−α(β 2−1)(u0,0u0,1 +u1,0u1,1)−
δ 2(α2−β 2)(α2−1)(β 2−1)

4αβ
= 0,

(Q4) a0u0,0u1,0u0,1u1,1 +
+a1(u0,0u1,0u0,1 +u1,0u0,1u1,1 +u0,1u1,1u0,0 +u1,1u0,0u1,0)+
+a2(u0,0u1,1 +u1,0u0,1)+ ā2(u0,0u1,0 +u0,1u1,1)+
+ã2(u0,0u0,1 +u1,0u1,1)+a3(u0,0 +u1,0 +u0,1 +u1,1)+a4 = 0,

where the seven parameters ai’s in (Q4) are related by 3 equations.
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By a proper limiting procedure all equations of the ABS list are contained in eq. (Q4) [24].
The symmetries for the discrete equations of the ABS list have been constructed [28, 27] and
are given by D∆E, subcases of Yamilov’s discretization of the Krichever–Novikov equation
(YdKN) [17, 31]:

du0

dε
=

R(u1,u0,u−1)
u1−u−1

, R(u1,u0,u−1) = A0u1u−1 +B0(u1 +u−1)+C0,

where

A0 = c1u2
0 +2c2u0 + c3,

B0 = c2u2
0 + c4u0 + c5,

C0 = c3u2
0 +2c5u0 + c6.

It is immediate to see that by defining vi = ui, j and ṽi = ui, j+1, the equations of the ABS list are
nothing else but Bäcklund transformations for particular subcases of the YdKN [13, 17]. The
ABS equations do not exhaust all the possible Bäcklund transformations for the YdKN equation
as the whole parameter space is not covered [17, 30]. Moreover, in the list of integrable D∆E of
Volterra type [31], there are equations different from the YdKN which may also have Bäcklund
transformations of the form (1). So we have space for new integrable P∆E which we will search
by using the formal symmetry approach. An extension of the 3D consistency approach has been
proposed by the same authors [3] allowing different equations in the different faces of the cube.
However in this way ABS were able to provide only examples of new integrable P∆E but not to
present a complete classification scheme.

2. CONSTRUCTION OF INTEGRABILITY CONDITIONS

We consider the class of autonomous P∆E

u1,1 = f0,0 = F(u1,0,u0,0,u0,1) (∂u1,0F, ∂u0,0F, ∂u0,1F) 6= 0. (6)

Introducing the two shifts operators, T1 and T2 such that T1ui, j = ui+1, j, T2ui, j = ui, j+1, it follows
that the functions ui, j are related among themselves by eq. (6) and its shifted values

ui+1, j+1 = T i
1T j

2 f0,0 = fi, j = F(ui+1, j,ui, j,ui, j+1).

So, the functions ui, j are not all independent. However we can introduce a set of independent
functions ui, j in term of which all the others are expressed. A possible choice is given by
(ui,0, u0, j), for any arbitrary i, j integers.

A generalized symmetry, written in evolutionary form, is given by

d
dt

u0,0 = g0,0 = G(un,0,un−1,0, . . . ,un′,0,u0,k,u0,k−1, . . . ,u0,k′), n≥ n′, k ≥ k′. (7)

where t is the group parameter. By shifting, we can write it in any point of the plane

d
dt

ui, j = T i
1T j

2 g0,0 = gi, j = G(ui+n, j, . . . ,ui+n′, j,ui, j+k, . . . ,ui, j+k′).
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In term of the functions gi, j we can write down the symmetry invariant condition[
g1,1−

d f0,0

dt

]∣∣∣∣
u1,1= f0,0

= 0. (8)

i.e. g1,1 = (g1,0∂u1,0 +g0,0∂u0,0 +g0,1∂u0,1) f0,0. This equation involves the independent variables
(ui,0, u0, j) appearing in g0,0 shifted to points laying on lines neighboring the axis, i.e. (ui,1, u1, j).
For those function we can state the following Proposition [20], necessary to prove the subse-
quent Theorems:

Proposition 1 The functions ui,1,u1, j have the following structure:

i > 0 : ui,1 = ui,1(ui,0,ui−1,0, . . . ,u1,0,u0,0,u0,1), ∂ui,0ui,1 = T i−1
1 fu1,0;

i < 0 : ui,1 = ui,1(ui,0,ui+1,0, . . . ,u−1,0,u0,0,u0,1), ∂ui,0ui,1 =−T i
1

fu0,0
fu0,1

;

j > 0 : u1, j = u1, j(u1,0,u0,0,u0,1, . . . ,u0, j−1,u0, j), ∂u0, ju1, j = T j−1
2 fu0,1;

j < 0 : u1, j = u1, j(u1,0,u0,0,u0,−1, . . . ,u0, j+1,u0, j), ∂u0, ju1, j =−T j
2

fu0,0
fu1,0

.

(9)

In eq. (9) and in the following, fui, j = ∂ f0,0
∂ui, j

and gui, j = ∂g0,0
∂ui, j

. If a generalized symmetry of
characteristic function g0,0 depends on at least one variable of the form ui,0, then (gun,0,gun′,0) 6=
0, and the numbers n,n′ are called the orders of the symmetry. The same can be said about the
variables u0, j and the corresponding numbers k,k′ if (gu0,k ,gu0,k′ ) 6= 0.

Now we can state the following Theorem, whose proof can be found in [20]:

Theorem 1 If the P∆E u1,1 = F possesses a generalized symmetry then the following relations
must take place:

n > 0, (T n
1 −1) log fu1,0 = (1−T2)T1 loggun,0 , (10)

n′ < 0, (T n′
1 −1) log

fu0,0

fu0,1

= (1−T2) loggun′,0, (11)

k > 0, (T k
2 −1) log fu0,1 = (1−T1)T2 loggu0,k , (12)

k′ < 0, (T k′
2 −1) log

fu0,0

fu1,0

= (1−T1) loggu0,k′ . (13)

As
T m

l −1 = (Tl−1)(1+Tl + · · ·+T m−1
l ), m > 0,

T m
l −1 = (1−Tl)(T−1

l +T−2
l + · · ·+T m

l ), m < 0, l = 1,2,

it follows from Theorem 1 that we can write the equations (10, 11, 12, 13) as standard conser-
vation laws. Thus, the assumption that a generalized symmetry exist implies the existence of
some conservation laws.

If we assume that a second generalized symmetry exists, i.e. we can find a nontrival function
G̃ such that

u0,0,t̃ = g̃0,0 = G̃(uñ,0,uñ−1,0, . . . ,uñ′,0,u0,k̃,u0,k̃−1, . . . ,u0,k̃′), (14)

where ñ, ñ′, k̃, k̃′ are its orders, then we can state the following Theorem:
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Theorem 2 Let the P∆E u1,1 = F possess two generalized symmetries of orders (n,n′,k,k′)
and (ñ, ñ′, k̃, k̃′), u00,t = g00 and u00,t̃ = g̃00 , and let their orders satisfy one of the following
conditions:

Case 1 : n > 0, ñ = n+1 Case 2 : n′ < 0, ñ′ = n′−1
Case 3 : k > 0, k̃ = k +1 Case 4 : k′ < 0, k̃′ = k′−1

Then in correspondence with each of the previous cases the P∆E u1,1 = F admits a conservation
law

(T1−1)p(m)
0,0 = (T2−1)q(m)

0,0 , m = 1,2,3,4, (15)

where

p(1)
0,0 = log fu1,0, p(2)

0,0 = log
fu0,0

fu0,1

, q(3)
0,0 = log fu0,1, q(4)

0,0 = log
fu0,0

fu1,0

. (16)

So the assumption that the P∆E u1,1 = F have two generalized symmetries implies that we
must have four necessary conditions of integrability, i.e. there must exist some functions of finite
range q(1)

0,0,q
(2)
0,0, p(3)

0,0, p(4)
0,0 satisfying the conservation laws (15) with p(1)

0,0, p(2)
0,0,q

(3)
0,0,q

(4)
0,0 defined

by eq. (16). q(1)
0,0 and q(2)

0,0 may depend only on the variables ui,0, and p(3)
0,0 and p(4)

0,0 on u0, j.
Summarizing the results up to now obtained we can say that a nonlinear partial difference

equation will be considered to be integrable if it has a generalized symmetry of finite order, i.e.
depending on a finite number of fields. This provide some conditions which imply the existence
of functions p(m)

0,0 or q(m)
0,0 of finite range whose existence is proved by solving a total difference.

For a D∆E, when all shifted variables are independent the proof that a total difference has a
solution depending on a finite number of fields, i.e. is a finite range function, is carried out by
applying the discrete analogue of the variational derivative, i.e. a function qn is (up to a constant)
a total difference of a function of finite range iff

δqn

δun
= ∑

j
T− j ∂qn

∂un+ j
= 0, (17)

see, e.g. [31]. For P∆E this is no more valid as the shifted variables are not independent as they
are related by the nonlinear P∆E, in our case u1,1 = F(u1,0,u0,0,u0,1). This turns out to be the
main problem for the application of the formal symmetry approach to P∆E.

To get a definite result we limit our considerations to five points generalized symmetries, i.e.
when :

u̇0,0 = g0,0 = G(u1,0,u−1,0,u0,0,u0,1,u0,−1), gu1,0gu−1,0gu0,1gu0,−1 6= 0. (18)

The existence of a 5 points generalized symmetry will be taken by us as an integrability crite-
rion. This may be a severe restriction as there might be integrable equations with symmetries
depending on more lattice points. However just in this case we are able to get sufficiently easily
a definite result and, as will be shown in the next Section, we can even solve a classification
problem. In this case we can state the following Theorem, which specifies the results obtained
so far to the case of five point symmetries:

Theorem 3 If the P∆E u1,1 = F possesses a 5 points generalized symmetry, then the functions

q(m)
0,0 = Q(m)(u2,0,u1,0,u0,0), m = 1,2,

p(m)
0,0 = P(m)(u0,2,u0,1,u0,0), m = 3,4,

(19)

must satisfy the conditions (15, 16).
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Then, using the relations (10–13) with n = k = 1 and n′= k′=−1, we get the following relations
between the solutions of the total difference conditions and the generalized symmetry G:

q(1)
0,0 =−T1 logG,u1,0, q(2)

0,0 = T1 logG,u−1,0,

p(3)
0,0 =−T2 logG,u0,1 , p(4)

0,0 = T2 logG,u0,−1.
(20)

So, to prove the integrability, which for us means find a generalized 5 point symmetry, for
a nonlinear P∆E u11 = F , we have to check the integrability conditions (15, 16). If they are
satisfied, i.e. there exist some finite range functions q(m)

0,0 and p(m)
0,0 , we can construct the partial

derivatives of G. The compatibility of these partial derivatives of G, given by eqs. (20), provides
the additional integrability condition

G,u1,0,u−1,0 = G,u−1,0,u1,0, G,u0,1,u0,−1 = G,u0,−1,u0,1. (21)

If these additional integrability conditions are satisfied, we find g0,0 up to an arbitrary unknown
function of the form ν(u0,0), which may correspond to a Lie point symmetry. This function can
be specified, using the determining equations (8).

The 5 point generalized symmetry g0,0, so obtained, will be of the form:

g0,0 = Φ(u1,0,u0,0,u−1,0)+Ψ(u0,1,u0,0,u0,−1)+ν(u0,0). (22)

3. APPLICATION OF THE TEST: AN EXAMPLE

To check the integrability conditions (15, 16) we need to find the finite range functions q(m)
0,0

(m = 1,2) and p(m)
0,0 (m = 3,4). This is not an easy task even if they are linear first order difference

equations. A solution always exists but nothing ensure us a priory that the solution is a finite
range function. So let us present a scheme for solving explicitly the integrability conditions we
found for the equations on the square i.e. for finding the functions q(1)

0,0, q(2)
0,0, p(3)

0,0 and p(4)
0,0.

As an example of this procedure let us consider the solution of eq. (15) for m = 1, where

p(1)
0,0 = log( fu1,0), q(1)

0,0 = Q(1)(u2,0,u1,0,u0,0), T2q(1)
0,0 = Q(1)(u2,1,u1,1,u0,1). (23)

In eq. (23) we have the dependent variables u2,1 and u1,1 where u2,1 = F(u2,0,u1,0,u1,1) while
u1,1 = F(u1,0,u0,0,u0,1). So eq. (15) for m = 1 will contain the unknow function F which
characterize the class of equations we are considering twice, one time to calculate u1,1 in
terms of independent variables and then to calculate u2,1 in term of u1,1 and of the independent
variables. This double dependence makes the calculations extremely difficult. To overcome this
difficulty we take into account that we are considering autonomous equations which are shift
invariant. So we can substitute eq. (15) for m = 1 with the following equivalent independent
equations

p(m)
0,0 − p(m)

−1,0 = Q(m)(u1,1,u0,1,u−1,1)−Q(m)(u1,0,u0,0,u−1,0) (24)

p(m)
0,−1− p(m)

−1,−1 = Q(m)(u1,0,u0,0,u−1,0)−Q(m)(u1,−1,u0,−1,u−1,−1) (25)

where, to simplify the notation, we introduce in the following the functions

u1,1 = f (1,1)(u1,0,u0,0,u0,1), u−1,1 = f (−1,1)(u−1,0,u0,0,u0,1),

u1,−1 = f (1,−1)(u1,0,u0,0,u0,−1), u−1,−1 = f (−1,−1)(u−1,0,u0,0,u0,−1),
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to indicate f0,0 and its analogues. Moreover, we introduce the following two differential opera-
tors

A = ∂u0,0−
f (1,1)
u0,0

f (1,1)
u1,0

∂u1,0−
f (−1,1)
u0,0

f (−1,1)
u−1,0

∂u−1,0, (26)

B = ∂u0,0−
f (1,−1)
u0,0

f (1,−1)
u1,0

∂u1,0−
f (−1,−1)
u0,0

f (−1,−1)
u−1,0

∂u−1,0 .

in such a way that the functional equations (24, 25) reduce to differential monomials [1]:

A Q(m)(u1,1,u0,1,u−1,1) = 0, BQ(m)(u1,−1,u0,−1,u−1,−1) = 0, (27)

A Q(m)(u1,0,u0,0,u−1,0) = r(m,1), BQ(m)(u1,0,u0,0,u−1,0) = r(m,2). (28)

Eqs. (27) are, by construction, identically satisfied while eqs. (28) provide a set of equations for
the derivatives of Q(m)(u1,0,u0,0,u−1,0) with respect to its three arguments. By commuting the
two operators (26) we can obtain a third equation for the derivatives of Q(m)(u1,0,u0,0,u−1,0)
with respect to its three arguments:

[A ,B]Q(m)(u1,0,u0,0,u−1,0) = r(m,3). (29)

Eqs. (28, 29), if independent, define uniquely the derivatives of the function Q(m)(u1,0,u0,0,u−1,0)
and, if their consistency is satisfied, from them we get the functions themselves.

In a similar manner from (T1 − 1)p(m)
0,0 = (T2 − 1)q(m)

0,0 with m = 3,4 we get the function

p(m)
0,0 = P(m)(u0,2,u0,1,u0,0) and consequently the symmetry (22).
This procedure works if the function F is known, i.e. if we check a given equation for its

integrability. It also works if F is known up to some unknown arbitrary constants to be specified.
In such case we solve a classification problem with unknown constants. However, the problem is
much more difficult if F depends on unknown arbitrary functions of one, two or three variables.
In such a case the coefficients of the operators (26) and functions r(m,k) will depend on unknown
functions, and r(m,k) may even depend on the composition of unknown functions. In this case a
more complicated procedure might be necessary.

3.1. A concrete example

Let us consider the following P∆E [10]

2(u0,0 +u1,1) + u1,0 +u0,1 + γ[4u0,0u1,1 +2u1,0u0,1 +3(u0,0 +u1,1)(u1,0 +u0,1)]+ (30)
+ (ξ2 +ξ4)u0,0u1,1(u1,0 +u0,1)+(ξ2−ξ4)u1,0u0,1(u0,0 +u1,1)+
+ ζ u0,0u1,1u1,0u0,1 = 0.

Eq. (30) is a dispersive multi–linear partial difference equation which passes the A3 multiple
scales integrability test [18]. Applying the Möbious transformation ui, j = 1/(ûi, j− γ) we can
rewrite it in a simplified form as

(u0,0u1,1 +α)(u1,0 +u0,1)+(2u1,0u0,1 +β )(u0,0 +u1,1)+δ = 0, (31)
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where α , β and δ are well defined functions of γ , ξ2, ξ4 and ζ . We now apply to eq. (31) the
procedure outlined at the beginning of this section. Eq. (31) depends on three free parameters
and we look for conditions on the three parameters, if any, such that the equation admits
generalized symmetries. We get that the conditions are satisfied only in two cases:

1. α = 2β 6= 0, δ = 0 and, as β 6= 0 we can always set β = 1. This choice of the parameters
α and β corresponds to ξ2 = 3ξ4 + 3γ2 and ζ = 12γξ4 in eq. (30). The corresponding
integrable P∆E reads:

(u0,0u1,1 +2)(u1,0 +u0,1)+(2u1,0u0,1 +1)(u0,0 +u1,1) = 0. (32)

In correspondence with the eq. (32) we get the generalized symmetry

u0,0;t =
(u2

0,0−2)(2u2
0,0−1)

u0,0

{
A

[
1

u1,0u0,0 +1
− 1

u−1,0u0,0 +1

]
+ (33)

+ B
[

1
u0,1u0,0 +1

− 1
u0,−1u0,0 +1

]}
.

2. β = 2α 6= 0, δ = 0 and, as α 6= 0 we can always set α = 1. This choice of the parameters α

and β corresponds to ξ2 = 6γ2−3ξ4 and ζ = 12γ(γ2−ξ4) in eq. (30). The corresponding
integrable P∆E reads:

(1+u0,0u1,1)(u1,0 +u0,1)+2(1+u0,1u1,0)(u0,0 +u1,1) = 0. (34)

In correspondence with the eq. (34) we get the generalized symmetry

u0,0;t = A(u2
0,0−1)

u1,0−u−1,0

u−1,0u1,0−1
+B(u2

0,0−1)
u0,1−u0,−1

u0,−1u0,1−1
(35)

Here A,B are constant coefficients, and in both cases, (A = 0,B 6= 0) and (A 6= 0,B = 0),
the nonlinear D∆E (33, 35) are, up to a point transformation, equations belonging to the
classification of Volterra type equations done by Yamilov [31]. This shows that the eqs. (32, 34)
do not belong to the ABS classification. Moreover this calculation shows that the A3 integrability
in the multiple scale integrability test is not sufficient to select integrable P∆E on the square
having five points generalized symmetries.
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