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Abstract
In this paper we prove that the trapezoidal H4 and the H6 families of quad-
equations are Darboux integrable by constructing their first integrals. This 
result explains why the rate of growth of the degrees of the iterates of these 
equations is linear (Gubbiotti et al 2016 J. Nonlinear Math. Phys. 23 507–43), 
which according to the algebraic entropy conjecture implies linearizability. 
We conclude by showing how first integrals can be used to obtain general 
solutions.

Keywords: Darboux integrability, CAC, linearizable discrete equations, 
integrable discrete equations, general solutions

(Some figures may appear in colour only in the online journal)

1. Introduction

Since its introduction the integrability criterion denoted Consistency Around the Cube (CAC) 
has been a source of many results in the classification of nonlinear partial difference equa-
tions on a quad graph. The importance of this criterion relies on the fact that it ensures the 
existence of Bäcklund transformations [1–5] and, as a consequence, of Lax pairs. As it is well 
known [6], Lax pairs and Bäcklund transforms are associated with both linearizable and inte-
grable equations. We point out that to be a bona fide Lax pair it has to give rise to a genuine 
spectral problem [7], otherwise the Lax pair is called fake Lax pair [8–12]. A fake Lax pair is 
useless in proving (or disproving) the integrability, since it can be equally found for integrable 
and non-integrable equations. In the linearizable case Lax pairs must be then fake ones, even 
if proving it is usually a highly nontrivial task [13].
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A partial difference equations  on a quad graph for an unknown function un,m, with 
(n, m) ∈ Z2, is a relation of the form:

f (un,m, un+1,m, un,m+1, un+1,m+1) = 0, (n, m) ∈ Z2, (1)

where f = f (x, y, z, w) is a well defined function, i.e. analytic and single-valued, of its argu-
ments. Partial difference equations on a quad graph are the discrete analogue of hyperbolic 
equations. Indeed to describe an arbitrary second order PDE a lattice depending on at least six 
points is needed. A possible choice is to take these points to be un,m, un+1,m, un,m+1, un+1,m+1, 
un+2,m, un,m+2. For PDEs which can be reduced to the form uxy = F(x, y, u, ux, uy), i.e. not 
involving uxx  and uyy , the minimum number of points involved in a discretization is four, and 
it is sufficient to take these four points to be un,m, un+1,m, un,m+1, un+1,m+1 [14]. This means 
that the ‘minimal’ discretization of a hyperbolic equation is an equation of the form (1). The 
simplest possible equation of the form (1) is the discrete wave equation:

un,m − un+1,m − un,m+1 + un+1,m+1 = 0, (2)

which arises from the discretization of the wave equation uxy = 0 on an uniform grid.
The first attempt to classify all the multi-affine partial difference equations defined on the 

quad graph and possessing CAC was carried out in [15]. In [15] the quad graph was treated 
as a geometric object not embedded in any Z2-lattice, as displayed in figure 1. Then the quad-
equation is an expression of the form:

Q (x, x1, x2, x12;α1,α2) = 0, (3)

connecting some a priori independent fields x, x1, x2, x12 assigned to the vertices of the quad 
graph, see figure 1. Q is assumed to be a multi-affine polynomial in x, x1, x2, x12 and, as shown 
in figure 1, α1 and α2 are parameters assigned to the edges of the quad graph.

In this setting, we define the consistency around the cube as follows: assume we are given 
six quad-equations:

A (x, x1, x2, x12;α1,α2) = 0, (4a)

Ā (x3, x13, x23, x123;α1,α2) = 0, (4b)

B (x, x2, x3, x23;α3,α2) = 0, (4c)

B̄ (x1, x12, x13, x123;α3,α2) = 0, (4d)

C (x, x1, x3, x13;α1,α3) = 0, (4e)

Figure 1. The purely geometric quad graph not embedded in any lattice.
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C̄ (x2, x12, x23, x123;α1,α3) = 0, (4f)

arranged on the faces of a cube as in figure 2. Then if x123 computed from (4b), (4d) and (4f) 
coincide we say that the system (4) possesses the consistency around the cube property.

In [15] the classification was carried out up to the action of a general Möbius transforma-
tion and up to point transformations of the edge parameters, with the additional assumptions:

 (i) All the faces of the cube in figure 2 carry the same equation up to the edge parameters.
 (ii) The quad-equation (3) possesses the D4 discrete symmetries:

Q (x, x1, x2, x12;α1,α2) = µQ (x, x2, x1, x12;α2,α1)

= µ′Q (x1, x, x12, x2;α1,α2) ,
 

(5)

  where µ,µ′ ∈ ±1.
 (iii) The system (4) possesses the tetrahedron property, i.e. x123 is independent of x:

x123 = x123 (x, x1, x2, x3;α1,α2,α3) =⇒
∂x123

∂x
= 0. (6)

The result was the existence of two classes of discrete autonomous equations: the H and Q 
equations.

Releasing the hypothesis that every face of the cube carried the same equation, the same 
authors in [16] presented some new equations without classification purposes.

A complete classification in this extended setting was then accomplished by Boll in a 
series of papers culminating in his PhD thesis [17–19]. In these papers the classification of all 
the consistent sextuples of partial difference equations on the quad graph, i.e. systems of the 
form (4), has been carried out. The only technical assumption used in [17–19] is the tetrahe-
dron property. The obtained equations may fall into three disjoint families depending on their 
bi-quadratics:

Figure 2. Equations on a cube.
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hij =
∂Q
∂yk

∂Q
∂yl

− Q
∂2Q

∂yk ∂yl
, Q = Q (y1, y2, y3, y4;α1,α2) , (7)

where we use a special notation for variables of Q, and the pair {k, l} is the complement of 
the pair {i, j} in {1, 2, 3, 4}. A bi-quadratic is called degenerate if it contains linear factors of 
the form yi − c, where c is a constant, otherwise a bi-quadratic is called non-degenerate. The 
three families are classified depending on how many bi-quadratics are degenerate:

 • Q-type equations: all the bi-quadratics are nondegenerate,
 • H4-type equations: four bi-quadratics are degenerate,
 • H6-type equations: all of the six bi-quadratics are degenerate.

Let us notice that the Q family is the same as that introduced in [15]. The H4 equations are 
divided into two subclasses: rhombic and trapezoidal, depending on their discrete symmetries.

We remark that all classification results hold locally in the sense that they relate to a sin-
gle quadrilateral cell or a single cube displayed in figures 1 and 2. The important problem 
of embedding these results into a two- or three-dimensional lattice, with preservation of the 
three-dimensional consistency condition, was already discussed in [16, 20] by using the con-
cept of a Black and White lattice. One way to solve this problem is to embed (3) into a Z2-lat-
tice with an elementary cell of size greater than one. In this case, the quad-equation (3) can be 
extended to a lattice, and the lattice equation becomes integrable or linearizable. To this end, 
following [17–19], we reflect the square with respect to the normal to its right and top sides 
and then complete a 2 × 2 lattice by again reflecting one of the obtained squares in the other 
direction. Such procedure is graphically described in figure 3.

This corresponds to constructing three equations obtained from (3) by flipping its arguments:

Q = Q(x, x1, x2, x12;α1,α2) = 0, (8a)

Figure 3. The ‘four stripe’ lattice.
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|Q = Q(x1, x, x12, x2;α1,α2) = 0, (8b)

Q = Q(x2, x12, x, x1;α1,α2) = 0, (8c)

|Q = Q(x12, x2, x1, x;α1,α2) = 0. (8d)

By paving the whole Z2 with such equations, we get a partial difference equation which can 
be in principle studied using known methods. Since a priori Q �= |Q �= Q �= |Q , the obtained 
lattice will be a four stripe lattice, i.e. an extension of the Black and White lattice considered, 
for example, in [16, 20, 21]. This gives rise to lattice equations with two-periodic coefficients 
for an unknown function un,m, with (n, m) ∈ Z2:

F(+)
n F(+)

m Q(un,m, un+1,m, un,m+1, un+1,m+1;α1,α2)

+ F(−)
n F(+)

m |Q(un,m, un+1,m, un,m+1, un+1,m+1;α1,α2)

+ F(+)
n F(−)

m Q(un,m, un+1,m, un,m+1, un+1,m+1;α1,α2)

+ F(−)
n F(−)

m |Q(un,m, un+1,m, un,m+1, un+1,m+1;α1,α2) = 0,

 

(9)

where

F(±)
k =

1 ± (−1)k

2
. (10)

This explicit formula was first presented in [13]. For more details on the construction of equa-
tions on the lattice from the single cell equations, we refer to [17–20] and to the Appendix in [22].

A detailed study of all the lattice equations derived from the rhombic H4 family, includ-
ing the construction of their three-leg forms, Lax pairs, Bäcklund transformations and infi-
nite hierarchies of generalized symmetries, has been presented in [20]. However, besides the 
CAC property, little was known about the integrability features of the trapezoidal H4 equa-
tions and of the H6 equations. These equations where thoroughly studied in a series of papers  
[13, 22–25] with some unexpected results. First in [22] their explicit non-autonomous form was 
presented, which was constructed using the rules above given. Indeed it was shown that on the 
Z2 lattice with coordinates (n, m) the trapezoidal H4 equations had the following expression:

tH1 : (un,m − un+1,m) (un,m+1 − un+1,m+1)

− α2ε
2
(

F(+)
m un,m+1un+1,m+1 + F(−)

m un,mun+1,m

)
− α2 = 0,

 
(11a)

tH2 : (un,m − un+1,m) (un,m+1 − un+1,m+1)

+ α2 (un,m + un+1,m + un,m+1 + un+1,m+1)

+
εα2

2

(
2F(+)

m un,m+1 + 2α3 + α2

)(
2F(+)

m un+1,m+1 + 2α3 + α2

)

+
εα2

2

(
2F(−)

m un,m + 2α3 + α2

)(
2F(−)

m un+1,m + 2α3 + α2

)

+ (α3 + α2)
2 − α2

3 − 2εα2α3 (α3 + α2) = 0,

 

(11b)

tH3 : α2 (un,mun+1,m+1 + un+1,mun,m+1)

− (un,mun,m+1 + un+1,mun+1,m+1)− α3
(
α2

2 − 1
)
δ2

− ε2(α2
2 − 1)

α3α2

(
F(+)

m un,m+1un+1,m+1 + F(−)
m un,mun+1,m

)
= 0,

 

(11c)
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and the H6 equations had the following expression:

1D2 :
(

F(−)
n+m − δ1F(+)

n F(−)
m + δ2F(+)

n F(+)
m

)
un,m

+
(

F(+)
n+m − δ1F(−)

n F(−)
m + δ2F(−)

n F(+)
m

)
un+1,m

+
(

F(+)
n+m − δ1F(+)

n F(+)
m + δ2F(+)

n F(−)
m

)
un,m+1

+
(

F(−)
n+m − δ1F(−)

n F(+)
m + δ2F(−)

n F(−)
m

)
un+1,m+1

+ δ1

(
F(−)

m un,mun+1,m + F(+)
m un,m+1un+1,m+1

)

+ F(+)
n+mun,mun+1,m+1 + F(−)

n+mun+1,mun,m+1 = 0,

 

(12a)

2D2 :
(

F(−)
m − δ1F(+)

n F(−)
m + δ2F(+)

n F(+)
m − δ1λF(−)

n F(+)
m

)
un,m

+
(

F(−)
m − δ1F(−)

n F(−)
m + δ2F(−)

n F(+)
m − δ1λF(+)

n F(+)
m

)
un+1,m

+
(

F(+)
m − δ1F(+)

n F(+)
m + δ2F(+)

n F(−)
m − δ1λF(−)

n F(−)
m

)
un,m+1

+
(

F(+)
m − δ1F(−)

n F(+)
m + δ2F(−)

n F(−)
m − δ1λF(+)

n F(−)
m

)
un+1,m+1

+ δ1

(
F(−)

n+mun,mun+1,m+1 + F(+)
n+mun+1,mun,m+1

)

+ F(+)
m un,mun+1,m + F(−)

m un,m+1un+1,m+1 − δ1δ2λ = 0,

 

(12b)

3D2 :
(

F(−)
m − δ1F(−)

n F(−)
m + δ2F(+)

n F(+)
m − δ1λF(−)

n F(+)
m

)
un,m

+
(

F(−)
m − δ1F(+)

n F(−)
m + δ2F(−)

n F(+)
m − δ1λF(+)

n F(+)
m

)
un+1,m

+
(

F(+)
m − δ1F(−)

n F(+)
m + δ2F(+)

n F(−)
m − δ1λF(−)

n F(−)
m

)
un,m+1

+
(

F(+)
m − δ1F(+)

n F(+)
m + δ2F(−)

n F(−)
m − δ1λF(+)

n F(−)
m

)
un+1,m+1

+ δ1

(
F(−)

n un,mun,m+1 + F(+)
n un+1,mun+1,m+1

)

+ F(−)
m un,m+1un+1,m+1 + F(+)

m un,mun+1,m − δ1δ2λ = 0,

 

(12c)

D3 : F(+)
n F(+)

m un,m + F(−)
n F(+)

m un+1,m + F(+)
n F(−)

m un,m+1

+ F(−)
n F(−)

m un+1,m+1 + F(−)
m un,mun+1,m

+ F(−)
n un,mun,m+1 + F(−)

n+mun,mun+1,m+1

+ F(+)
n+mun+1,mun,m+1 + F(+)

n un+1,mun+1,m+1

+ F(+)
m un,m+1un+1,m+1 = 0,

 

(12d)

1D4 : δ1

(
F(−)

n un,mun,m+1 + F(+)
n un+1,mun+1,m+1

)

+ δ2

(
F(−)

m un,mun+1,m + F(+)
m un,m+1un+1,m+1

)

+ un,mun+1,m+1 + un+1,mun,m+1 + δ3 = 0,

 

(12e)

G Gubbiotti and R I Yamilov J. Phys. A: Math. Theor. 50 (2017) 345205
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2D4 : δ1

(
F(−)

n un,mun,m+1 + F(+)
n un+1,mun+1,m+1

)

+ δ2

(
F(−)

n+mun,mun+1,m+1 + F(+)
n+mun+1,mun,m+1

)

+ un,mun+1,m + un,m+1un+1,m+1 + δ3 = 0,

 

(12f)

where the coefficients F(±)
k  are given by (10). Then algebraic entropy [26–29] was computed. 

The result of this computation showed that the rate of growth of the degrees of the iterates 
of all the trapezoidal H4 (11) and of all H6 equation (12) is linear. This fact according to the 
algebraic entropy conjecture [28, 30] implies the linearizability. To support this result two 
explicit examples of linearization were given.

In [13] a particular example, the tHε
1 equation, was studied and it was found that it pos-

sessed three-point generalized symmetries depending on arbitrary functions. This property 
was later linked in [25] to the fact that the tHε

1 was Darboux integrable. In addition in [25] it 
was proved that some other consistend around the Cube linearizable quad-equations [31, 32], 
were in fact Darboux integrable. These facts provide some evidence of an intimate connection 
between linearizable equations with the consistency around the cube property and Darboux 
integrability.

The scope of this paper is to generalize the result obtained for the tHε
1 equation in [13, 25]. 

Our main statement is enclosed in the following theorem:

Theorem 1.1. Every trapezoidal H4 equation (11) and every H6 equation (12) is Darboux 
integrable.

The fact that an equation is Darboux integrable is a formal proof that it is linearizable, as 
it will be discussed in more detail in section 2. In this paper we relate different forms of inte-
grability, namely the CAC the algebraic entropy test and the Darboux integrability. Comparing 
various definitions of integrability and relating the outcome of different integrability tests is 
very important in the theory of integrable systems, and in mathematical physics in general. 
Indeed such kind of study provides an understanding of the limitation and of the benefits of the 
various integrability tests which can be applied to relevant physical models.

The plan of the paper is the following: in section 2 we recall the basic facts about Darboux 
integrability and discuss the methodologies employed in the case of non-autonomous, two-
periodic quad-equations. In section 3 we give the proof of theorem 1.1 presenting the first 
integrals of the trapezoidal H4 equation (11) and of the H6 equation (12). In the section 4 we 
present some conclusions and provide an outlook on how first integrals can be used to obtain 
general solutions.

2. Darboux integrability

We start by giving the following definition:

Definition 2.1. A hyperbolic partial differential equation (PDE) in two variables

uxt = f (x, t, u, ut, ux) (13)

is said to be Darboux integrable if it possesses two independent first integrals T , X depending 
only on derivatives with respect to one variable:

T = T (x, t, u, ut, . . . , unt) ,
dT
dx

∣∣∣∣
uxt=f

≡ 0, (14a)

G Gubbiotti and R I Yamilov J. Phys. A: Math. Theor. 50 (2017) 345205
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X = X (x, t, u, ux, . . . , umx) ,
dX
dt

∣∣∣∣
uxt=f

≡ 0, (14b)

where ukt = ∂ku/∂tk and ukx = ∂ku/∂xk  for every k ∈ N.

Definition 2.1 was given by Euler and Laplace [33, 34] in the linear case. Definition 2.1 
was extended to nonlinear hyperbolic equation  (13) in the 19th and early 20th centuries 
[35–39]. The method was then used at the end of the 20th century mainly by Russian math-
ematicians as a source of new exactly solvable PDEs in two variables [40–46]. We note that 
in many papers Darboux integrability is defined as the stabilization to zero of the so-called 
Laplace chain of the linearized equation. However it can be proved that the two definitions 
are equivalent [43, 47–49].

The most famous equation belonging to the class of Darboux integrable equations is the 
Liouville equation [50]:

uxt = eu (15)

which possesses the two following first integrals:

X = uxx −
1
2

u2
x , T = utt −

1
2

u2
t . (16)

In the case of quad-equations we can state the following definition:

Definition 2.2. A quad-equation, possibly non-autonomous:

Qn,m (un,m, un+1,m, un,m+1, un+1,m+1) = 0, (17)

is Darboux integrable if there exist two independent first integrals, one containing only shifts 
in the first direction and the other containing only shifts in the second direction, i.e. that there 
exist two functions:

W1 = W1,n,m(un+l1,m, un+l1+1,m, . . . , un+k1,m), (18a)

W2 = W2,n,m(un,m+l2 , un,m+l2+1, . . . , un,m+k2), (18b)

where l1 < k1 and l2 < k2 are integers, and Tnhn,m = hn+1,m, Tmhn,m = hn,m+1, Idhn,m = hn,m 
such that:

(Tn − Id)W2,n,m = 0, (19a)

(Tm − Id)W1,n,m = 0 (19b)

hold true identically on the solutions of (17).

Remark 2.1. The numbers ki − li in (18), where i = 1, 2, are called the orders of the first 
integrals Wi.

Definition 2.2 was introduced in [51], where it was used to obtain a discrete analogue of 
the Liouville equation (15).

In [51] was proved the following proposition:

Proposition 2.1. Assume we are given a Darboux integrable quad-equation (17). Then this 
equation is linearizable in two different ways.

Proof. Since the quad-equation (17) is Darboux integrable according to definition 2.2 it 
possesses two first integrals of the form (18). Define the following transformations:

G Gubbiotti and R I Yamilov J. Phys. A: Math. Theor. 50 (2017) 345205
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un,m → ũn,m = W1,n,m, (20a)

un,m → ûn,m = W2,n,m. (20b)

Then due to equation (19) the two functions ũn,m and ûn,m satisfy the following trivial linear 
equations:

ũn,m+1 − ũn,m = 0, (21a)

ûn+1,m − ûn,m = 0. (21b)

Equation (21) gives the desired linearization. □ 

Proposition 2.1 gives the relationship between the Darboux integrability and linearization.

Corollary 2.2. Assume we are given a Darboux integrable quad-equation (17) whose first 
integrals are given by (18). Then the following equations hold true:

W1,n,m = λn, (22a)

W2,n,m = ρm, (22b)

where λn and ρm  are arbitrary functions of the lattice variables n and m, respectively.

Proof. It follows trivially by applying the transformations (20) along with the relations (21). 
 □ 

Remark 2.2. The relations (22) obtained in corollary 2.2 can be seen as ordinary differ-
ence equations which must be satisfied by any solution un,m of a Darboux integrable quad-
equation (17). Therefore we can say that a Darboux integrable quad-equation is in fact an 
over-determined system consisting of a quad-equation and of two ordinary difference equa-
tion. This observation was first made by S. Lie in the case of PDEs [52]. The transformations 
(20) and the ordinary difference equation (22) may be quite complicated. However in case of 
the trapezoidal H4 (11) and the H6 equation (12), one can prove [53] that also (22), defined 
by the first integrals, are linearizable. Therefore we can use Darboux integrability in order to 
obtain the general solutions of these equations. In section 4 we will present an example of this 
procedure for the tHε

1 equation.
After the introduction of definition 2.2 in [51], various papers were devoted to the study 

of Darboux integrability for quad-equations [54–58]. Computational methods to establish the 
existence of first integrals were developed in [54, 56, 58]. A method to find first integrals with 
fixed li, ki of a given autonomous equation was presented in [54]. A slight modification of this 
method was applied in [56] to autonomous equations with non-autonomous first integrals. 
Finally in [58] it was applied to equations with two-periodic coefficients. In the present paper, 
we present a further modification of this method aimed to deal with non-autonomous equa-
tions with two-periodic coefficients straightforwardly.

Let us consider the operator

Y−1 = Tm
∂

∂un,m−1
T−1

m (23)

and apply it to the definition of first integral in the n-direction (19b):

Y−1W1 ≡ 0. (24)
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The application of the operator Y−1 is to be understood in the following sense: first we must 
apply T−1

m  and then we should express, using the equation (17), un+i,m−1 in terms of the func-
tions un+j,m and un,m−1 which will be considered in this problem as independent variables. 
Then we can differentiate in (24) with respect to un,m−1 and apply Tm [56].

Taking in (24) the coefficients at powers of the independent variable un,m+1, we obtain 
a system of PDEs for W1. If this is sufficient to determine W1 up to arbitrary functions of a 
single variable, then we are done, otherwise we can add other equations by considering the 
‘higher-order’ operators

Y−k = Tk
m

∂

∂un,m−1
T−k

m , k ∈ N. (25)

Equation (19b) implies that the infinite family of equations:

Tk
mW1 = W1, ∀k ∈ Z (26)

holds true. The members of this infinite family of difference equation are called the difference 
consequences of (19b). Applying the operator (25) to equation (26) we have:

Y−kW1 ≡ 0, k ∈ N, (27)

with the same computational prescriptions as above. So we can add equations until we find a 
non-constant function3 W1 which depends on a single combination of the variables un,m+l1,…, 
un,m+k1. If we find a non-constant solution W1 of the equations generated by (23) and possibly 
(25), then we must insert it into (19b) to specify it.

In the same way first integrals in the m-direction W2 can be found by considering the 
operators

Z−k = Tk
n

∂

∂un−1,m
T−k

n , k ∈ N, (28)

which provide the equations

Z−kW2 ≡ 0, k ∈ N, (29)

through the difference consequences of (19a):

Tk
nW2 = W2, ∀k ∈ Z. (30)

In the case of non-autonomous equations with two-periodic coefficients, we can assume 
that a decomposition analogue of the quad-equation (9) holds for the first integrals:

Wi = F(+)
n F(+)

m W(+,+)
i + F(−)

n F(+)
m W(−,+)

i

+ F(+)
n F(−)

m W(+,−)
i + F(−)

n F(−)
m W(−,−)

i ,
 

(31)

with F(±)
k  given by (10). We can then derive from (27, 29) a set of equations for the functions 

W(±,±)
i  by considering the even/odd points on the lattice. The final form of the functions Wi 

will be then fixed by substituting in (19).
When successful, the above procedure gives first integrals depending on arbitrary func-

tions. This fact has to be understood as a restatement of the trivial property that any autono-
mous function of a first integral is again a first integral. So, in general, one does not need first 
integrals depending on arbitrary functions. Therefore we can take these arbitrary functions in 
the first integrals to be linear function in their arguments.

3 Obviously constant functions are trivial first integrals.
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As an example let us consider the problem of finding the first integrals of the tHε
1 equa-

tion (11a). We have the following proposition:

Proposition 2.3. The tHε
1 equation (11a) is Darboux integrable since it possesses the fol-

lowing first integrals:

W1 = F(+)
m

α2

un+1,m − un,m
+ F(−)

m
un+1,m − un,m

1 + ε2un,mun+1,m
, (32a)

W2 = F(+)
m α

1 + ε2un,m+1un,m−1

un,m+1 − un,m−1
+ F(−)

m β (un,m+1 − un,m−1) , (32b)

where α and β are two arbitrary constants.

Remark 2.3. The first integrals (32) of the tHε
1 equation (11a) were first presented in [25]. 

Therein they were found by direct inspection.

Proof. Since all the H4 equations and the tHε
1, in particular, are non-autonomous only in the 

direction m, we can consider a simplified version of (31):

Wi = F(+)
m W(+)

i + F(−)
m W(−)

i . (33)

If we assume that W1 = W1,n,m (un,m, un+1,m), then, separating the even and odd terms with 
respect to m in (24), we find the following equations:

∂W(+)
1

∂un+1,m
+

∂W(+)
1

∂un,m
= 0, (34a)

(
1 + ε2u2

n+1,m

) ∂W(−)
1

∂un+1,m
+
(
1 + ε2u2

n,m

) ∂W(−)
1

∂un,m
= 0. (34b)

Their solution is:

W1 = F(+)
m F (un+1,m − un,m) + F(−)

m G
(

un+1,m − un,m

1 + ε2un,mun+1,m

)
, (35)

where F and G are arbitrary functions. Inserting (35) into the difference equation (19b), we 
obtain that F and G must satisfy the following identity:

G (ξ) = F
(
α2

ξ

)
. (36)

This yields the first integral

W1 = F(+)
m F

(
α2

un+1,m − un,m

)
+ F(−)

m F
(

un+1,m − un,m

1 + ε2un,mun+1,m

)
. (37)

For the m-direction we may also suppose that our first integral W2 = W2,m (un,m, un,m+1) 
is of the first order or a two-point first integral. It easy to see from (29) with k = 1 that this 
yields the trivial solution W2 = constant. Therefore we consider the case of a second order, 
three-point first integral: W2 = W2,m (un,m−1, un,m, un,m+1). From (29) with k = 1, separating 
the even and odd terms with respect to m, we obtain:
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α2
(
1 + ε2u2

n,m+1

) ∂W(+)
2

∂un,m+1
−
[
(un,m − un+1,m)

2
+ ε2α2

2

] ∂W(+)
2

∂un,m

+ α2
(
1 + ε2u2

n,m−1

) ∂W(+)
2

∂un,m−1
= 0,

 

(38a)

α2
(
1 + ε2u2

n+1,m

) ∂W(−)
2

∂un,m+1
− (un,m − un+1,m)

2 ∂W(−)
2

∂un,m

+ α2
(
1 + ε2u2

n+1,m

) ∂W(−)
2

∂un,m−1
= 0.

 

(38b)

Taking the coefficients with respect to un+1,m and then solving, we have:

W2 = F(+)
m F

(
1 + ε2un,m+1un,m−1

un,m+1 − un,m−1

)
+ F(−)

m G (un,m+1 − un,m−1) . (39)

Inserting (39) into (19a) we do not have any further restriction on the form of the first int-
egral. So we conclude that we have two independent first integrals in the m-direction, as it was 
observed in [25].

Now we can take the first integrals to be linear in the arguments of the arbitrary functions. 
Therefore from equations (37) and (39) we have that the first integrals of the tHε

1 equation are 
given by (32). □ 

In next section we present the explicit form of first integrals for the remaining H4 and H6 
equations computed by the method presented in this section. We will not present the details 
of the calculations as we did in the proof of proposition 2.3. Indeed such computations are 
algorithmic and can be implemented in any computer algebra system available. The result of 
this computations will be the proof of theorem 1.1.

3. First integrals for the H4 and H6 equations

In this section we present the first integrals of the tHε
2 equation (11b), the tHε

3 equation (11c) 
and the whole family of the H6 equation (12).

3.1. Trapezoidal H4 equations

Let us consider the tHε
2 equation (11b). We have the following proposition:

Proposition 3.1. The tHε
2 equation  (11b) is Darboux integrable. If ε �= 0 it possesses a 

four-point, third order first integral in the n-direction:

W1 = F(+)
m

(−un+1,m + un−1,m) (un,m − un+2,m)

ε2α4
2 + 4εα3

2 + [(8α3 − 2un,m − 2un+1,m) ε− 1]α2
2 + (un,m − un+1,m)

2

− F(−)
m

(−un+1,m + un−1,m) (un,m − un+2,m)

(−un−1,m + un,m + α2) (un+1,m + α2 − un+2,m)
 

(40a)
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and a five-point, fourth order first integral in the m-direction:

W2 = F(+)
m α

(un,m−1 − un,m+1)
2
(un,m+2 − un,m) (un,m − un,m−2)(

(α2 + α3 + un,m−1)
2
ε− un,m−1 + α3 − un,m

)
·(

(α3 + α2 + un,m+1)
2
ε− un,m+1 + α3 − un,m

)

+ F(−)
m β




−ε (un,m−2 − un,m+2) u2
n,m − (α3 + α2)

2
(un,m−2 − un,m+2) ε

+(−2 (un,m−2 − un,m+2) (α3 + α2) ε+ un,m−1 − un,m+2 − un,m+1 + un,m−2) un,m

+(−α3 + un,m+1) un,m−2 + un,m+2 (α3 − un,m−1)




(−un,m+2 + un,m) (−un,m−2 + un,m) (un,m−1 − un,m+1)
.

 (40b)

If ε = 0 its first integrals are given by:

Wε=0
1 = (−1)m 2α2 − un−1,m + 2un,m − un+1,m

un−1,m − un+1,m
, (41a)

Wε=0
2 =

(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m + un,m+1 − α3
. (41b)

The first integral in the n-direction (41a) it is a three-point, second order first integral. On the 
contrary, the first integral in the m-direction (41b) is a four-point, third order first integral.

Proof. By direct computation using the method explained in section 2. □ 

Remark 3.1. We note that if ε = 0 the tHε
2 equation (11b) is autonomous. We denote this 

sub-case by tHε=0
2 . Despite the tHε=0

2  equation is autonomous its first integral in the n direc-
tion (41a) is still non-autonomous.

Moreover the tHε=0
2  equation is related to the equation (1) from List 3 in [56]:

(ûn+1,m+1 − ûn+1,m) (ûn,m − ûn,m+1) + ûn,m + ûn+1,m + ûn,m+1 + ûn+1,m+1 = 0
 

(42)

through the transformation:

un,m = −α2ûm,n +
1
4
α2 +

1
2
α3. (43)

Note that in this formula (43) the two lattice variables are exchanged. So it was already known 
in the literature that the tHε=0

2  equation was Darboux integrable.

Let us consider the tHε
3 equation (11c). We have the following proposition:

Proposition 3.2. The tHε
3 equation (11c) is Darboux integrable. If ε �= 0 it possesses the 

following four-point, third order first integral in the n-direction:

W1 = F(+)
m

(un−1,m − un+1,m) (−un+2,m + un,m)

α2
4ε2δ2 − α2

3un+1,mun,m +
(
un,m

2 + u2
n+1,m − 2ε2δ2

)
α2

2 − α2un,mun+1,m + ε2δ2

− F(−)
m

(un+1,m − un−1,m) (un+2,m − un,m)

α2 (−un−1,m + α2un,m) (−un+2,m + un+1,mα2)
 

(44a)

and a five-point, fourth order first integral in the m-direction:
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W2 = F(+)
m α

(un,m−1 − un,m+1)
2
(un,m+2 − un,m) (un,m − un,m−2)(

δ2α2
3 + u2

n,m−1ε
2 − α3un,m−1un,m

) (
δ2α2

3 + u2
n,m+1ε

2 − α3un,mun,m+1
)

− F(−)
m β




−u2
n,mα3un,m−1 + u2

n,mα3un,m+1 − u2
n,mε

2un,m+2

+u2
n,mε

2un,m−2 + α3un,mun,m−1un,m+2 − α3un,mun,m−2un,m+1

−δ2α3
2un,m+2 + δ2α3

2un,m−2




(un,m − un,m+2) (−un,m−2 + un,m) (un,m−1 − un,m+1)
.

 

(44b)

If ε = 0 it possesses the following first integrals:

Wε=0
1 = (−1)m

[
α2un,m − un−1,m

un+1,m − un−1,m
+

1
2

]
, (45a)

Wε=0
2 =

(un,m+2 − un,m) un,m−1 − un,m+1un,m+2 + α3δ
2

α3δ2 − un,mun,m+1
. (45b)

The first integral in the n-direction (45a) it is a three-point, second order first integral. The 
first integral in the m-direction (45b) is a four-point, third order first integral.

Proof. By direct computation using the method explained in section 2. □ 

Remark 3.2. With the same notation as in remark 3.1, we note that also the tHε
3 equa-

tion (11c) if ε = 0 becomes autonomous. Despite the tHε=0
3  equation is autonomous its first 

integral in the n direction (45a) is still non-autonomous.
Moreover the tHε=0

3  equation  is related through the inversion of two lattice parameters 
un,m = ûm,n and the choice of parameters:

b2 = − 1
α2

, c4 =
δ2α3

(
1 − α2

2

)
α2

 (46)

to equation (2) from List 3 in [56]:

ûn+1,m+1 (ûn,m + b2ûn,m+1) + ûn+1,m (b2ûn,m + ûn,m+1) + c4 = 0. (47)

So it was already known in the literature that the tHε=0
3  equation was Darboux integrable.

We can state the following:

Theorem 3.3. The trapezoidal H4 equation (11) are Darboux integrable.

Proof. Just use propositions 2.3, 3.1 and 3.2. □ 

Remark 3.3. As a final remark we can say that the first integrals of the tHε
2 and tHε

3 equa-
tions have the same order in each direction. Furthermore, they share the important property 
that in the direction m, which is the direction of the non-autonomous factors F(±)

m , the W2 int-
egrals are built up from two different ‘sub’-integrals as in the known case of the tHε

1 equation.

3.2. H6 equations

We now present the first integrals of the H6 equation (12) in both directions.
We consider the 1D2 equation (12a). We have the following proposition:

Proposition 3.4. The 1D2 equation  (12a) is Darboux integrable. If δ1 �= 0 and 
δ1 �= (1 + δ2)

−1 it possesses the following three-point, second order first integrals:
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W1 = F(+)
n F(+)

m α
[(1 + δ2) un,m + un+1,m] δ1 − un,m

[(1 + δ2) un,m + un−1,m] δ1 − un,m

+ F(+)
n F(−)

m α
1 + (un+1,m − 1) δ1

1 + (un−1,m − 1) δ1

+ F(−)
n F(+)

m β (un+1,m − un−1,m)

− F(−)
n F(−)

m β
(un+1,m − un−1,m) [1 − (1 − un,m) δ1]

δ2 + un,m
,

 

(48a)

W2 = F(+)
n F(+)

m α
un,m+1 − un,m−1

un,m + δ1un,m−1

+ F(+)
n F(−)

m β (un,m+1 − un,m−1)

− F(−)
n F(+)

m α
un,m+1 − un,m−1

1 + δ1 (un,m+1 − 1)

− F(−)
n F(−)

m β
un,m+1 − un,m−1

δ2 + un,m
.

 

(48b)

If δ1 = 0 it possesses the following three-point, second order first integrals:

W(0,δ2)
1 = F(+)

n F(+)
m α

un+1,m − un−1,m

un,m
− F(+)

n F(−)
m α (un+1,m − un−1,m)

+ F(−)
n F(+)

m β (un+1,m − un−1,m) + F(−)
n F(−)

m β
un−1,m − un+1,m

δ2 + un,m
,

 
(49a)

W(0,δ2)
2 = F(+)

n F(+)
m α

un,m+1 − un,m−1

un,m
+ F(+)

n F(−)
m β (un,m+1 − un,m−1)

− F(−)
n F(+)

m α (un,m+1 − un,m−1)− F(−)
n F(−)

m β
un,m+1 − un,m−1

δ2 + un,m
.

 
(49b)

If δ1 = (1 + δ2)
−1 it possesses the following first integrals:

W((1+δ2)
−1,δ2)

1 = F(+)
n F(+)

m α
un+1,m

un−1,m
+ F(+)

n F(−)
m α

δ2 + un+1,m

δ2 + un−1,m

+ F(−)
n F(+)

m β (un+1,m − un−1,m)− F(−)
n F(−)

m β
(un+1,m − un−1,m)

δ2 + 1
,

 

(50a)

W((1+δ2)
−1,δ2)

2 = F(+)
n F(+)

m α [(1 + δ2) un,m + un,m+1]

+ F(+)
n F(−)

m β
un,m + (1 + δ2) un,m+1

δ2 + 1

− F(−)
n F(+)

m α
(δ2 + 1) un,m

δ2 + un,m+1
− F(−)

n F(−)
m β

un,m+1

δ2 + un,m
.

 

(50b)

In this case the first integral in the m-direction (50b) is a two-point, first order first integral. 
On the contrary, the first integral in the n-direction (50a) is still a three-point, second order 
first integral.

Proof. By direct computation using the method explained in section 2. □ 

We consider the 2D2 equation (12b). We have the following proposition:
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Proposition 3.5. The 2D2 equation  (12b) is Darboux integrable. If δ1 �= 0 and 
δ1 �= (1 + δ2)

−1 it possesses the following three-point, second order first integrals:

W1 = F(+)
n F(+)

m α
δ2 + un+1,m

δ2 + un−1,m

+ F(+)
n F(−)

m α
(1 − (1 + δ2) δ1) un,m + un+1,m

(1 − (1 + δ2) δ1) un,m + un−1,m

+ F(−)
n F(+)

m β
(un+1,m − un−1,m) (un,m + δ2)

1 + (−1 + un,m) δ1

− F(−)
n F(−)

m β (un+1,m − un−1,m) ,

 

(51a)

W2 = F(+)
n F(+)

m α (un,m+1 − un,m−1)

− F(+)
n F(−)

m β
un,m+1 − un,m−1

(λ− un,m) δ1 − un,m−1

− F(−)
n F(+)

m α
un,m+1 − un,m−1

1 + (−1 + un,m) δ1

− F(−)
n F(−)

m β
un,m+1 − un,m−1

un,m+1 + δ2
.

 

(51b)

If δ1 = 0 it possesses the following first integrals:

W(0,δ2)
1 = F(+)

n F(+)
m α (δ2 + un+1,m) un,m − F(+)

n F(−)
m α (un+1,m + un,m)

+ F(−)
n F(+)

m β (δ2 + un,m) un+1,m − F(−)
n F(−)

m β (un+1,m + un,m) ,
 

(52a)

W(0,δ2)
2 = F(+)

n F(+)
m α (un,m+1 − un,m−1) + F(+)

n F(−)
m β

un,m+1

un,m−1

− F(−)
n F(+)

m α (un,m+1 − un,m−1)− F(−)
n F(−)

m β
un,m+1 − un,m−1

un,m+1 + δ2
.

 
(52b)

In this case the first integral in the n-direction (52a) is a two-point, first order first int egral. 
The first integral in the m-direction (52b) is a three-point, second order first integral. If 
δ1 = (1 + δ2)

−1 it possesses the following first integrals:

W((1+δ2)
−1,δ2)

1 = F(+)
n F(+)

m α
δ2 + un+1,m

δ2 + un−1,m
+ F(+)

n F(−)
m α

un+1,m

un−1,m

− F(−)
n F(+)

m β (un−1,m − un+1,m)− F(−)
n F(−)

m β
un+1,m − un−1,m

1 + δ2
,

 

(53a)

W((1+δ2)
−1,δ2)

2 = F(+)
n F(+)

m α [(1 + δ2) un,m + un,m+1]

+ F(+)
n F(−)

m β [un,m + (1 + δ2) un,m+1]

+ F(−)
n F(+)

m α
δ2λ− (1 + δ2) un,m+1 + λun,m

un,m + δ2

+ F(−)
n F(−)

m β
δ2λ− (1 + δ2) un,m + λun,m+1

un,m+1 + δ2
.

 

(53b)

In this case the first integral in the m-direction (53b) is a two-point, first order first integral. 
The first integral in the n-direction (53a) is still a three-point, second order first integral.

G Gubbiotti and R I Yamilov J. Phys. A: Math. Theor. 50 (2017) 345205



17

Proof. By direct computation using the method explained in section 2. □ 

We consider the 3D2 equation (12c). We have the following proposition:

Proposition 3.6. The 3D2 equation  (12c) is Darboux integrable. If δ1 �= 0 and 
δ1 �= (1 + δ2)

−1 it possesses the following three-point, second order first integrals:

W1 = F(+)
n F(+)

m α
(un−1,m + δ2) [1 + (un+1,m − 1) δ1]

(un+1,m + δ2) [1 + (un−1,m − 1) δ1]

+ F(+)
n F(−)

m α
un,m + (1 − δ1 − δ1δ2) un−1,m

un,m + (1 − δ1 − δ1δ2) un+1,m

+ F(−)
n F(+)

m β (un+1,m − un−1,m) (δ2 + un,m)

− F(−)
n F(−)

m β (un+1,m − un−1,m) ,

 

(54a)

W2 = F(+)
n F(+)

m α (un,m+1 − un,m−1)

− F(+)
n F(−)

m β
un,m+1 − un,m−1

λ (1 + δ2) δ1
2 − [(1 + δ2) un,m−1 + un,m + λ] δ1 + un,m−1

+ F(−)
n F(+)

m α (un,m−1 − un,m+1) [1 + (un,m − 1) δ1]

+ F(−)
n F(−)

m β
un,m+1 − un,m−1

(δ2 + un,m+1) [1 + (1 − δ1) un,m−1]
.

 

(54b)

If δ1 = 0 it possesses the following first integrals:

W(0,δ2)
1 = F(+)

n F(+)
m αun,m (δ2 + un+1,m)− F(+)

n F(−)
m α (un+1,m + un,m)

+ F(−)
n F(+)

m βun+1,m (δ2 + un,m)− F(−)
n F(−)

m β (un+1,m + un,m) ,
 

(55a)
W(0,δ2)

2 = F(+)
n F(+)

m α (un,m+1 − un,m−1) + F(+)
n F(−)

m β
un,m+1

un,m−1

− F(−)
n F(+)

m α (un,m+1 − un,m−1) + F(−)
n F(−)

m β
δ2 + un,m−1

δ2 + un,m+1
.

 
(55b)

In this case the first integral in the n-direction (55a) is a two-point, first order first int egral. 
The first integral in the m-direction (55b) is a three-point, second order first integral. If 
δ1 = (1 + δ2)

−1, it possesses the following three-point, second order first integrals:

W((1+δ2)
−1,δ2)

1 = F(+)
n F(+)

m α
un+1,m − un−1,m

(δ2 + un+1,m) (δ2 + un−1,m)

+ F(+)
n F(−)

m α
un+1,m − un−1,m

(δ2 + 1) un,m

− F(−)
n F(+)

m β (un−1,m − un+1,m) (δ2 + un,m)

− F(−)
n F(−)

m β (un+1,m − un−1,m) ,

 

(56a)

W((1+δ2)
−1,δ2)

2 = F(+)
n F(+)

m α (un,m+1 − un,m−1) + F(+)
n F(−)

m β
un,m+1 − un,m−1

un,m

− F(−)
n F(+)

m α
(un,m+1 − un,m−1) (δ2 + un,m)

δ2 + 1

+ F(−)
n F(−)

m β
un,m+1 − un,m−1

(δ2 + un,m+1) (un,m−1 + δ2)
.

 

(56b)
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Proof. By direct computation using the method explained in section 2. □ 

We consider the D3 equation (12d). We have the following proposition:

Proposition 3.7. The D3 equation (12d) is Darboux integrable. It possesses the following 
four-point, third order first integrals:

W1 = F(+)
n F(+)

m α
(un+1,m − un−1,m) (un+2,m − un,m)

u2
n+1,m − un,m

+ F(+)
n F(−)

m α
(un+1,m − un−1,m)

(
un+2,m−un,m

)
un,m + un−1,m

− F(−)
n F(+)

m β
(un+1,m − un−1,m) (un+2,m − un,m)

un+1,m − u2
n,m

+ F(−)
n F(−)

m β
(un+1,m − un−1,m) (un+2,m − un,m)

un+1,m + un+2,m
,

 

(57a)

W2 = F(+)
n F(+)

m α
(un,m+1 − un,m−1) (un,m+2 − un,m)

u2
n,m+1 − un,m

− F(+)
n F(−)

m β
(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m+1 − u2
n,m

+ F(−)
n F(+)

m α
(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m + un,m−1

+ F(−)
n F(−)

m β
(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m+1 + un,m+2
.

 

(57b)

Proof. By direct computation using the method explained in section 2. Since the D3 equa-
tion (12d) is invariant under the exchange of lattice variables n ↔ m its W2 first integral (57b) 
can be obtained from the W1 one (57a) simply by exchanging the indices n and m. □ 

We consider the 1D4 equation (12e). We have the following proposition:

Proposition 3.8. The 1D4 equation (12e) is Darboux integrable. If δ1, δ2, δ3 �= 0 we have 
the following four-point, third order first integrals:

W1 = F(+)
n F(+)

m α
u2

n+1,mδ1 + un+1,mun+2,m + un−1,m (un,m − un+2,m)− δ2δ3

un+1,m (δ1 + un,m)− δ2δ3

+ F(+)
n F(−)

m α
(un,m − un+2,m + δ1un+1,m) un−1,m + un+1,mun+2,m

(un,m + δ1un−1,m) un+1,m

+ F(−)
n F(+)

m β
(un+1,m − un−1,m) (un+2,m − un,m)

u2
n,mδ1 + un+1,mun,m − δ2δ3

+ F(−)
n F(−)

m β
(un+1,m − un−1,m) (un+2,m − un,m)

un,m (un+2,mδ1 + un+1,m)
,

 

(58a)
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W2 = F(+)
n F(+)

m α
(un,m+2 − un,m) un,m−1 + δ1δ3 − δ2u2

n,m+1 − un,m+1un,m+2

δ1δ3 − un,mun,m+1 − δ2u2
n,m+1

− F(+)
n F(−)

m β
(un,m+1 − un,m−1) (un,m+2 − un,m)

δ1δ3 − δ2un,m
2 − un,mun,m+1

+ F(−)
n F(+)

m α
(un,m − un,m+2 + δ2un,m+1) un,m−1 + un,m+1un,m+2

(un,m + δ2un,m−1) un,m+1

+ F(−)
n F(−)

m β
(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m (un,m+2δ2 + un,m+1)
.

 

(58b)

If δ1 = δ2 = 0, but δ3 �= 0 it possesses the following three-point, second order first integrals:

W(0,0,δ3)
1 = (−1)m un+1,m − un−1,m

un,m
, (59a)

W(0,0,δ3)
2 = (−1)n un,m+1 − un,m−1

un,m
. (59b)

If δ1 = δ2 = δ3 = 0 it possesses the following two-point, first order, non-autonomous first 
integrals:

W(0,0,0)
1 = (−1)m un+1,m

un,m
, W(0,0,0)

2 = (−1)n un,m+1

un,m
. (60)

Proof. By direct computation using the method explained in section  2. Notice that if 
δ1 = δ2 = 0 and δ3 is arbitrary the equation has the discrete symmetry n ↔ m, therefore the 
first integral in the m direction can be obtained from the first integral in the n direction using 
such transformation. □ 

Remark 3.4. If δ1 = δ2 = 0 the 1D4 equation  (12e) becomes autonomous. Despite the 
equation being autonomous its first integrals (59) and (60) are non-autonomous.

In particular we notice that the sub-case δ1 = δ2 = 0 δ3 �= 0 is linked to the equation (4) 
with b3 = 1 of List 3 in [56]:

ûn+1,m+1ûn,m + ûn+1,mûn,m+1 + 1 = 0 (61)

through the transformation un,m =
√
δ3ûn,m. Moreover the sub-case with δ1 = δ2 = δ3 = 0 is 

linked to one of the linearizable and Darboux integrable cases presented in [25, 32, 59].

We consider the 2D4 equation (12f  ). We have the following proposition:

Proposition 3.9. The 2D4 equation (12f ) is Darboux integrable. If δ1, δ2 �= 0 it possesses 
the following four-point, third order first integrals:

W1 = F(+)
n F(+)

m α

[
(un,m − un+2,m − δ1δ2un−1,m) u2

n+1,m

+un+1,mun+2,mun−1,m + δ3un−1,m

]

(
δ2u2

n+1,mδ1 − δ3 − un,mun+1,m
)

un−1,m

− F(+)
n F(−)

m α
un+2,mun−1,m + (−un+2,m + un,m) un+1,m + δ3

un−1,mun,m + δ3

− F(−)
n F(+)

m β
(un+1,m − un−1,m) (un+2,m − un,m) un,m

un+2,m (δ2δ1un,m
2 − un,mun+1,m − δ3)

+ F(−)
n F(−)

m β
(un+1,m − un−1,m) (un+2,m − un,m)

un+1,mun+2,m + δ3
,

 

(62a)
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W2 = F(+)
n F(+)

m α
(un,m+2 − un,m) un,m−1 + δ1δ3 − δ2u2

n,m+1 − un,m+1un,m+2

δ1δ3 − δ2u2
n,m+1 − un,mun,m+1

− F(+)
n F(−)

m β
(un,m+1 − un,m−1) (un,m+2 − un,m)

δ1δ3 − δ2u2
n,m − un,mun,m+1

+ F(−)
n F(+)

m α
un,m+2δ2un,m + un,m−1un,m + un,m+1un,m+2 − un,mun,m+1

un,m+2 (δ2un,m + un,m−1)

+ F(−)
n F(−)

m β
(un,m+1 − un,m−1) (un,m+2 − un,m)

(δ2un,m+1 + un,m+2) un,m−1
.

 

(62b)

If δ1 = δ2 = 0 it possesses the following first integrals:

W(0,0,δ3)
1 = (−1)m

(
un,mun+1,m +

δ3

2

)
, W(0,0,δ3)

2 =

(
un,m+1

un,m−1

)(−1)n

. (63)

In this case the W1 first integral is two-point first order and the W2 first integral is three-point, 
second order.

Proof. By direct computation using the method explained in section  2. Notice that if 
δ1 = δ2 = 0 and δ3 is arbitrary we have the equation has the discrete symmetry n ↔ m, there-
fore the first integral in the m direction can from the first integral in the n direction using such 
transformation. If also δ3 = 0 the computations do not change. □ 

Remark 3.5. If δ1 = δ2 = 0 the 2D4 equation  (12f) becomes autonomous. Despite the 
equation being autonomous its first integrals (59) are non-autonomous. This case δ1 = δ2 = 0 
corresponds to the equation (9) of List 4 in [56]:

ûn,mûn+1,m + ûn,m+1ûn+1,m+1 + c4 = 0, (64)

with the identification un,m = ûn,m and c4 = δ3.

We can state the following theorem:

Theorem 3.10. The H6 equation (11) are Darboux integrable.

Proof. Just use propositions 3.4–3.9. □ 

Remark 3.6. The first integrals of the H6 equations are rather peculiar. Excluding the au-
tonomous particular cases given in remarks 3.4 and 3.5, we have that all the H6 equations pos-
sess two different integrals in every direction. This is due to the presence of two arbitrary 
constants α and β in the expressions of the first integrals. We believe that this reflects the fact 
that the H6 equations on the lattice have two-periodic coefficients in both directions.

Therefore we can now give:

Proof of theorem 1.1. Apply theorems 3.3 and 3.10. □ 

4. Conclusions and outlook

In this paper we have presented a non-autonomous modified version of the algorithm devel-
oped in [54, 56, 58] to compute the first integrals of two-dimensional partial difference 
equations. Applying this algorithm, we were able to prove theorem 1.1 which states that the 
trapezoidal H4 equation (11) and the H6 equation (12), are Darboux integrable. This proof is 
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carried out by constructing explicitly the first integrals of those equations as required by defi-
nition 2.2. This result confirms the outcome of the Algebraic Entropy test presented in [22].

Furthermore the first integrals, even those of higher order, can be used to find the general 
solutions of these equations. Since this procedure is not trivial and not standard, we leave its 
application to a future work [53]. To be concrete, we will give an example on how this proce-
dure can be carried out in the case of the tHε

1 equation given by (11a), whose first integrals are 
given by (32) and have been first presented in [25].

We wish to solve the tHε
1 equation using both first integrals. We are going to construct those 

general solutions, slightly modifying the construction scheme presented in [58]. In particular 
we will prove the following proposition:

Proposition 4.1. The tHε
1 equation (11a) is exactly solvable using both its first integrals 

(32). These solutions are defined up to a discrete integration, i.e. up to the solution of the dif-
ference equation:

uk+1 − uk = vk, (65)

where uk  is the unknown function and vk is an assigned function.

Proof. Let us start from the integral W1 (32a). This is a two-point, first order integral. From 
corollary 2.2 we have that the tHε

1 equation (11a) can be rewritten as the relation (19b) for the 
first integral W1:

(Tm − Id)
(

F(+)
m

α2

un+1,m − un,m
+ F(−)

m
un+1,m − un,m

1 + ε2un,mun+1,m

)
= 0. (66)

From (66) we can derive the general solution of (11a) itself. In fact (66) implies:

F(+)
m

α2

un+1,m − un,m
+ F(−)

m
un+1,m − un,m

1 + ε2un,mun+1,m
= λn, (67)

where λn  is an arbitrary function of n. This is a first order difference equation in the n- 
direction in which m plays the role of a parameter. For this reason we can safely separate 
the two cases: m even and m odd.

Case m = 2k  In this case (67) is reduced to the linear equation

un+1,2k − un,2k =
α2

λn
 (68)

  which has the solution

un,2k = θ2k + ωn, (69)

  where θ2k is an arbitrary function and ωn is the solution of the simple ordinary difference 
equation

ωn+1 − ωn =
α2

λn
, ω0 = 0. (70)

Case m = 2k + 1 In this case (67) is reduced to the discrete Riccati equation:

λnε
2un,2k+1un+1,2k+1 − un+1,2k+1 + un,2k+1 + λn = 0. (71)

  By using the Möbius transformation
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un,2k+1 =
i
ε

1 − vn,2k+1

1 + vn,2k+1
, (72)

  this equation can be recast into the linear equation

(i + ελn) vn+1,2k+1 − (i − ελn) vn,2k+1 = 0. (73)

  If we introduce a new function κn, such that

κn+1

κn
=

i − ελn

i + ελn
, (74)

  then we have that the general solution of (73) is:

vn,2k+1 = κnθ2k+1, (75)

  where θ2k+1 is an arbitrary function. Using (72) and (74) we then obtain:

un,2k+1 =
i
ε

1 − κnθ2k+1

1 + κnθ2k+1
, λn =

i
ε

κn − κn+1

κn + κn+1
. (76)

  So we have the general solution of (11a) in the form:

un,m = F(+)
m (θm + ωn) + F(−)

m
i
ε

1 − κnθm

1 + κnθm
, (77)

  where θm,κn are arbitrary functions, ωn is defined via λn by (70), and λn is defined via κn 
by (76).

Now we pass to the integral in the direction m, namely, W2 given by (32b). This case is 
more interesting, as now we are dealing with a three-point, second order integral. We can 
choose without loss of generality α = β = 1. From corollary 2.2 we have the relation (22b), 
i.e. W2 = ρm, from which we can derive two different equations, one for the even and one for 
the odd m. This gives a priori a coupled system. However in this case, choosing m = 2k  and 
m = 2k + 1, we obtain the following two equations:

1 + ε2un,2k+1un,2k−1 = ρ2k (un,2k+1 − un,2k−1) , (78a)

un,2k+2 − un,2k = ρ2k+1. (78b)

So the system consists of two uncoupled equations.
The first one (78a) is a discrete Riccati equation which can be linearized through the non-

autonomous Möbius transformation:

un,2k−1 =
1

vn,k
+ αk, ρ2k =

1 + ε2αk+1αk

αk+1 − αk
, (79)

from which we obtain:
(
1 + ε2α2

k+1

)
vn,k+1 + ε2αk+1 =

(
1 + ε2α2

k

)
vn,k + ε2αk. (80)
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This equation is equivalent to a total difference and therefore its solution is given by:

vn,k =
θn − ε2αk

1 + ε2α2
k

, (81)

with an arbitrary function θn . Putting αk = κ2k−1, we obtain the solution for un,2k−1:

un,2k−1 =
1 + κ2k−1θn

θn − ε2κ2k−1
. (82)

The second equation is just a linear ordinary difference equation which can be written as a 
total difference, performing the substitution ρ2k+1 = κ2k+2 − κ2k, and we get:

un,2k = ωn + κ2k. (83)

The resulting solution reads:

un,m = F(+)
m (ωn + κm) + F(−)

m
1 + κmθn

θn − ε2κm
. (84)

This solution depends on three arbitrary functions, as we started from a second order first int-
egral, which is a consequence of the quad-equation. This means that there must exist a relation 
between θn  and ωn. This relation can be retrieved by inserting (84) into (11a). As a result we 
obtain the following definition for ωn:

ωn − ωn+1 = α2
ε2 + θnθn+1

θn+1 − θn
, (85)

which gives us the final expression for the solution of (11a) up to the discrete integration given 
by (85). □ 

Remark 4.1. The general solution (77) obtained from the first integral (32a) is the same as 
the general solution (84) obtained from the first integral (32b) in the sense that one of them 
can easily be transformed into the other one.

As a final remark we note that it has been proved in [51, 57] the following theorem:

Theorem 4.2. Given a Darboux integrable quad-equation (17) then it possesses general-
ized symmetries depending on arbitrary function. In particular if the generalized symmetry 
generator is given by the vector field:

X̂ = gn,m
(
uD

n,m

)
∂un,m , uD

n,m = {un+i,m+j}i=l1,...,k1,j=l2,...,k2
, (86)

then the characteristic of the generalized symmetry gn,m
(
uD

n,m

)
 has the following form:

gn,m
(
uD

n,m

)
= g(1)

n,m (un+li,m, . . . , un+k1,m) + g(2)
n,m (un,m+l2 , . . . , un,m+k2) , (87)

and the functions g(1)
n,m and g(2)

n,m are given by:

g(1)
n,m = R(1) (Fn (T p1

n W1, . . . , Tq1
n W1)) , (88a)

g(2)
n,m = R(2) (Gm (T p2

m W2, . . . , Tq2
m W2)) , (88b)
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with pi < qi and R(i) are difference operators called Laplace operators and have the form:

R(1) =

h1∑
r=j1

λr
(
un+l′i ,m, . . . , un+k′1,m

)
Tr

n, (89a)

R(2) =

h2∑
r=j2

µr
(
un,m+l′2 , . . . , un,m+k′2

)
Tr

m, (89b)

with ji < hi and l′i < k′i.

The three-point generalized symmetries, i.e. the generalized symmetries of the form (87) 
with ki = −li = 1, of the trapezoidal H4 equation  (11) and of the H6 equation  (12) were 
derived in [13, 23]. The tHε

1 equation  (11a) possesses three-points generalized symmetries 
depending on arbitrary functions. This is due to fact that the first integrals of the tHε

1 equa-
tion (11a), displayed in (32) are of first and second order respectively. Theorem 1.1 alongside 
with theorem 4.2 implies that there should exists an order at which all the other trapezoidal H4 
equation (11) and the H6 equation (12) possess generalized symmetries depending on arbitrary 
functions. Therefore the discovery of the Darboux integrability of the trapezoidal H4 equa-
tion (11) and the H6 equation (12) poses the challenging problem of finding the explicit form of 
such generalized symmetries. These symmetries will be highly nontrivial, especially in the case 
of the tHε

2 equation (11b) and of the tHε
3 equation (11c), where the order of the first integrals is 

particularly high.
Another important open problem is the continuum limits of the trapezoidal H4 equa-

tion  (11) and of the H6 equation  (12), which as far as we know are still unknown. The 
continuum limits for the trapezoidal H4 equation (11) and of the H6 equation (12) which 
are two-periodic quad-equations must be understood as the continuum limits of the systems 
arising from these equations getting rid of the two-periodic factors. This can be done by con-
sidering the cases when n and m are even or odd and then defining new unknown functions 
as follows [22, 53]:

u2k,2l = vk,l, u2k+1,2l = wk,l, (90a)

u2k,2l+1 = yk,l, u2k+1,2l+1 = zk,l. (90b)

An interesting result would be to show that they can arise as discretization of continuous 
systems of hyperbolic Darboux integrable PDEs. This might shed light on the preservation of 
integrability properties upon discretization which is another important topic in mathematical 
physics.
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