
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: grustem

IP Address: 81.30.49.38

This content was downloaded on 10/09/2015 at 10:32

Please note that terms and conditions apply.

Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for

known Volterra and Toda type semidiscrete equations

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 621 012005

(http://iopscience.iop.org/1742-6596/621/1/012005)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/621/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Integrable discrete nonautonomous quad-equations

as Bäcklund auto-transformations for known Volterra

and Toda type semidiscrete equations

Rustem N Garifullin and Ravil I Yamilov
Ufa Institute of Mathematics, Russian Academy of Sciences,
112 Chernyshevsky Street, Ufa 450008, Russian Federation

E-mail: rustem@matem.anrb.ru and RvlYamilov@matem.anrb.ru

Abstract. We construct integrable discrete nonautonomous quad-equations as Bäcklund auto-
transformations for known Volterra and Toda type semidiscrete equations, some of which are
also nonautonomous. Additional examples of this kind are found by using transformations
of discrete equations which are invertible on their solutions. In this way we obtain integrable
examples of different types: discrete analogs of the sine-Gordon equation, the Liouville equation
and the dressing chain of Shabat. For Liouville type equations we construct general solutions,
using a specific linearization. For sine-Gordon type equations we find generalized symmetries,
conservation laws and L−A pairs.

1. Introduction
In this paper we consider discrete quad-equations

Fn,m(un+1,m, un,m, un,m+1, un+1,m+1) = 0, n,m ∈ Z, (1)

which may explicitly depend on the discrete variables n, m. These equations are supposed to be
polylinear, i.e. the functions Fn,m are polynomials of the first order in each of their argument.
Most of the known integrable equations of this kind have two generalized symmetries of the form

dun,m
dt1

= φn,m(un+1,m, un,m, un−1,m), (2)

dun,m
dt2

= ψn,m(un,m+1, un,m, un,m−1), (3)

see, e.g., [1–4]. Recently a few examples of quad-equations with more complicated generalized
symmetries have been found [5–8], but such equations are out of consideration in this paper.

Almost all known equations of the form (1) possessing the symmetries (2), (3) are auto-
nomous. In the essentially more difficult nonautonomous case, we study in this paper, only
a few examples are known [4].

The discrete equation (1) can be interpreted as a chain of Bäcklund auto-transformations
for the lattice equations (2), (3). Such transformations allow one to construct a new solu-
tion un,m+1 in the case of equation (2) and un+1,m in the case of equation (3), starting from
a given solution un,m, see a more detailed comment in [1].
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In this paper we start from known integrable equations of the form (2) and look for the
discrete equations (1) generating for them chains of the Bäcklund auto-transformations. Such
problem has been solved up to now only once by one example and only in the autonomous
case [9]. Discrete equations obtained in this way may be not integrable. We select integrable
cases by requiring the existence of a second symmetry of the form (3). In such way we can
construct integrable discrete equations, using known integrable equations of the Volterra type
presented in [10,11] or using their nonautonomous generalizations given in [12].

More precisely, we are going to use differential-discrete equations of the form:

dun
dt

= Pn(un)(un+1 − un−1). (4)

It has been shown in [12] that nonlinear integrable equations of this form are described by the
following conditions:

Pn = αu2
n + βnun + γn, (5)

where α is an arbitrary constant, and βn, γn are the two-periodic functions:

βn+2 = βn, γn+2 = γn. (6)

Up to the transformations

t̃ = ηt, ũn = µnun + νn, ũn = un+1,

where µn and νn are the two-periodic functions, we have five cases: the Volterra equation with
Pn = un, its three modifications with Pn = u2

n, Pn = u2
n − 1, Pn = u2

n − χn and an equation
with Pn = χnun +χn+1. The last equation is nothing but one of forms of the Toda model, as it
has been shown in [12]. Here χn is given by

χn =
1 + (−1)n

2
. (7)

We fix the generalized symmetry (2) in the direction n in one of the following five ways:

dun,m
dt1

= un,m(un+1,m − un−1,m), (8)

dun,m
dt1

= u2
n,m(un+1,m − un−1,m), (9)

dun,m
dt1

= (u2
n,m − 1)(un+1,m − un−1,m), (10)

dun,m
dt1

= (u2
n,m − χn)(un+1,m − un−1,m), (11)

dun,m
dt1

= (χnun,m + χn+1)(un+1,m − un−1,m). (12)

In all these cases we find all corresponding polylinear discrete equations (1). A more general
form of such symmetry is possible:

dun,m
dt1

= (αmu
2
n,m + βn,mun,m + γn,m)(un+1,m − un−1,m), (13)

where βn+2,m = βn,m and γn+2,m = γn,m for all n, m. In this case we will construct some
examples.
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As a result we find nonautonomous integrable examples of several different types. According
to their symmetry properties, equations (1) are the discrete analogs of the hyperbolic type
equations uxy = f(x, y, u, ux, uy). Some examples obtained in this paper are of the sine-Gordon
type. Such equations have two generalized symmetries (2), (3) and are not Darboux integrable,
see definitions in the next section. We also find a few Darboux integrable equations which can be
called the discrete analogs of the Liouville equation. For all equations of this type, we construct
general solutions. One more new interesting integrable example presented here is a discrete
analog of the well-known dressing chain studied in [13–15].

In Section 2 we give some definitions and obtain theoretical results necessary for the paper.
In Section 3 we enumerate all the discrete equation (1) corresponding to the differential-
discrete equations (8)–(12) and also obtain some examples in the case of equation (13). In
Section 4 a discrete analog of the dressing chain is discussed. The problem of construction of
the second symmetry (3) for examples obtained in Section 3 is solved in Section 5. In Section 6
some additional examples are found by using special transformations of the discrete equations
invertible on their solutions.

2. Theory
In this section we give necessary definitions and derive some conditions for the discrete equations
which allow us to make the class (1) of the discrete equations essentially more narrow.

We consider equations of the form (1) which are polylinear and nondegenerate. It is convenient
to formulate definitions in terms of the function

Fn,m(x1, x2, x3, x4)

which depends on four continuous complex variables x1, x2, x3, x4 and on two integer discrete
variables n, m. An equation of the form (1) is polylinear if

∂2Fn,m
∂x2

i

= 0, i = 1, 2, 3, 4,

for all n,m ∈ Z. So, we consider a class of polynomial equations with 16 n,m-dependent
coefficients. The nondegeneracy is defined following [2]. If the function Fn,m depends on x4 for
all n, m, then we can rewrite the equation Fn,m = 0 in the form

x4 = fn,m(x1, x2, x3) (14)

and we require the function fn,m to depend essentially on all its continuous variables for all n, m.
So, we have the following nondegeneracy condition in terms of Fn,m and fn,m:

∂Fn,m
∂x4

,
∂fn,m
∂x1

,
∂fn,m
∂x2

,
∂fn,m
∂x3

6= 0 for all n,m ∈ Z. (15)

The discrete equation (1) is equivalent to

un+1,m+1 = fn,m(un+1,m, un,m, un,m+1). (16)

The compatibility conditions of equations (16) and (2), (3) have the form:

φn+1,m+1 = φn+1,m
∂fn,m
∂un+1,m

+ φn,m
∂fn,m
∂un,m

+ φn,m+1
∂fn,m
∂un,m+1

, (17)

ψn+1,m+1 = ψn+1,m
∂fn,m
∂un+1,m

+ ψn,m
∂fn,m
∂un,m

+ ψn,m+1
∂fn,m
∂un,m+1

. (18)
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These relations are obtained by differentiating equation (16) with respect to the times t1 and t2
of equations (2), (3). For fixed values of n, m we can express, using equation (16), all functions
un+k,m+l (kl 6= 0) in terms of the functions

un+k,m, un,m+l, k, l ∈ Z, (19)

which can be considered as independent variables. Equations (17), (18) must be identically
satisfied for all values of the independent variables as well as for any n,m ∈ Z. If equations (16)
and (2), (3) are compatible, then (2), (3) are the generalized symmetries of (16) and, on the other
hand, equation (16) defines chains of the Bäcklund auto-transformations for equations (2), (3),
see [1].

Equation (16) is called Darboux integrable if it has two first integrals Wn,m, Vn,m depending
of a finite number of the independent variables (19) and satisfying the relations

(T1 − 1)Wn,m = 0, (T2 − 1)Vn,m = 0, for all n,m ∈ Z, (20)

on the solutions of equation (16). Here T1, T2 are the shift operators in the first and second
directions, respectively:

T1hn,m = hn+1,m, T2hn,m = hn,m+1.

It is easy to show that the first integrals Wn,m and Vn,m depend only on the independent
variables un,m+i and un+j,m, respectively. Applying the shift operators, we can represent these
first integrals as:

Wn,m = Wn,m(un,m, un,m+1, . . . , un,m+k1),

Vn,m = Vn,m(un,m, un+1,m, . . . , un+k2,m).
(21)

The Darboux integrable equations are linearizable, with linearizing transformations wn,m =
Wn,m, vn,m = Vn,m, and are analogs of the Liouville equation.

A discrete equation (16) is of the sine-Gordon type if it has two generalized symmetries (2), (3)
and is not Darboux integrable. Such equations should be integrable by the inverse scattering
method. It is difficult to prove that a given equation has no first integrals (21), see [16] for
possible difficulties. For examples obtained below, we check that fact for ki ≤ 4.

Let us derive two conditions necessary for the compatibility of the discrete equation (16) and
an equation of the form

dun,m
dt1

= Pn,m(un,m)(un+1,m − un−1,m). (22)

The only restriction here is that Pn,m(x) 6= 0 for all n, m. The equations (8)–(13) are particular
cases of equation (22).

Differentiating the compatibility condition (17) with respect to un+2,m and applying T−1
1 , we

obtain the relation

T2

(
∂φn,m
∂un+1,m

)
∂fn,m
∂un+1,m

=
∂φn,m
∂un+1,m

T−1
1

(
∂fn,m
∂un+1,m

)
. (23)

This is nothing but one of so-called integrability conditions obtained in [9]. Here we just present
it in the most general non-autonomous case and write it down in a form more convenient for
the present paper. In the case of equation (22) it takes the form:

Pn,m+1(un,m+1)
∂fn,m
∂un+1,m

= Pn,m(un,m)T−1
1

(
∂fn,m
∂un+1,m

)
. (24)
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Applying T−1
1 to equation (16), we can easily rewrite it in one more form

un−1,m+1 = f̂n,m(un−1,m, un,m, un,m+1) (25)

equivalent to equation (1). The function f̂n,m essentially depends on all its continuous variables
for all n, m. The compatibility condition for (25) and (2) reads:

φn−1,m+1 = φn−1,m
∂f̂n,m
∂un−1,m

+ φn,m
∂f̂n,m
∂un,m

+ φn,m+1
∂f̂n,m
∂un,m+1

. (26)

The following condition analogous to (24) is derived from (26) in a quite similar way:

Pn,m+1(un,m+1)
∂f̂n,m
∂un−1,m

= Pn,m(un,m)T1

(
∂f̂n,m
∂un−1,m

)
. (27)

Theorem 1 If the discrete equation (1) is compatible with (22), then the conditions (24)
and (27) must be satisfied.

Using the conditions (24) and (27), we can essentially simplify the form of the polylinear
discrete equation (1). The resulting form is

(κ1,n,mun,m + κ2,n,mun,m+1 + κ3,n,m)un+1,m+1

+(κ4,n,mun,m + κ5,n,mun,m+1 + κ6,n,m)un+1,m

+(κ7,n,mun,m + κ8,n,mun,m+1 + κ9,n,m) = 0,

(28)

where κi,n,m are arbitrary n,m-dependent functions. This form corresponds to the following
restrictions

∂2Fn,m
∂un+1,m+1∂un+1,m

=
∂2Fn,m

∂un,m+1∂un,m
= 0. (29)

Theorem 2 If a nondegenerate polylinear equation (1) is compatible with an equation of the
form (22), then it must have the form (28).

Proof. The relation (24) depends on the following independent variables: un−1,m, un,m, un,m+1,

un+1,m, and only the term
∂fn,m

∂un+1,m
depends on un+1,m. Differentiating (24) with respect to

un+1,m and taking into account the restriction Pn,m(x) 6= 0, we obtain

∂2fn,m
∂u2

n+1,m

= 0. (30)

In quite similar way the relation (27) implies

∂2f̂n,m
∂u2

n−1,m

= 0. (31)

Applying the conditions (30) and (31) to the discrete polylinear equation (1) and using its
nondegeneracy, we are led to the form (28). �
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3. Bäcklund auto-transformations
Here we describe all polylinear discrete equations (1) compatible with equations (8)–(12). At
the end we construct an example corresponding to an equation of the form (13).

We fix one of equations (8)–(12) as the generalized symmetry (2). To find corresponding
discrete equation, we use in the first step more simple necessary conditions (24), (27) instead of
the compatibility condition (17). The relations (24), (27) are equivalent to a nonlinear algebraic
system of equations for eighteen functions κi,n,m, κi,n−1,m. It is interesting that not only in this
system but also in case of the compatibility condition (17) the discrete variable m is not changed.
So we can define the dependence of κi,n,m on n only.

Such problem is not difficult in the autonomous case. We just need to solve an algebraic
system for nine unknown coefficients ki, using any computer algebra system like Reduce. In the
nonautonomous case, we can only find from that algebraic system a set of solutions which have
the form of relations between the functions ki,n,m and ki,n−1,m in a fixed point n = n0. Another
difficulty is that there are many divisors of zero αn 6≡ 0 and βn 6≡ 0, such that αnβn ≡ 0.

Nevertheless, comparing sets of solutions at n = n0 and n = n0 + 1, one can choose
consistent pairs of nondegenerate solutions, i.e. such that corresponding discrete equation (28)
is nondegenerate, and can determine in this way the dependence of the functions ki,n,m on n. In
case of the nonautonomous equations (11) and (12), we need to solve the corresponding algebraic
system twice, at n = 2k0 and n = 2k0 + 1, to avoid a dependence on the function χn. This the
way we find the discrete equations.

In case of the Toda lattice (12), we have checked that there is no polylinear and nondegenerate
discrete equation (1) compatible with (12). However, in Section 6 we present an example of
the sine-Gordon type, corresponding to (12), which is not polylinear. In case of the Volterra
equation (8) we get a positive result.

Theorem 3 If a polylinear nondegenerate discrete equation (1) is compatible with equation (8),
then, up to the multiplication by a function νn,m nonzero for any n,m ∈ Z, it can be expressed
as:

Ωn,m(un+1,m+1un,m+1 − un+1,mun,m)

+ Ωn+1,m(un+1,m+1 + un,m+1 − un+1,m − un,m + km) = 0,

Ωn,m =
1 + ωm(−1)n

2
,

(32)

where ω2
m = 1 for all m ∈ Z and km is an arbitrary m-dependent function.

In the case of equations (9)–(11) the problem of finding discrete equations (1) is easier. We
solve an algebraic system, corresponding to equations (24) and (27) in a fixed point n, and see
that all possible nondegenerate solutions have the same structure:

k1,n,m = k5,n,m = 0, k4,n,m = −k2,n,m 6= 0 for all n,m ∈ Z.

Deviding the discrete equation (28) by k2,n,m, we obtain a very simple ansatz of the form

un+1,m+1un,m+1 − un+1,mun,m + κ3,n,mun+1,m+1 + κ6,n,mun+1,m

+ κ7,n,mun,m + κ8,n,mun,m+1 + κ9,n,m = 0.
(33)

Now we can interpret algebraic systems of equations for κi,n,m, κi,n+1,m, κi,n−1,m, corresponding
to the conditions (24), (27) and (17), as systems of ordinary difference equations for the func-
tions ki,n,m and then we can specify equation (33) with no difficulties.

The resulting discrete equation in the case of (9) is not interesting:

un+1,m+1un,m+1 = un+1,mun,m. (34)

It can be linearized by the point transformation vn,m = log un,m.
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Theorem 4 Up to the multiplication by a nonzero function νn,m, a polylinear and nondegenerate
discrete equation (1) must be of the form:

(un+1,m + an+1,m)(un,m − an,m) = (un+1,m+1 + bn+1,m+1)(un,m+1 − bn,m+1),

an+2,m = an,m, bn+2,m = bn,m, a2
n,m = b2n,m = 1,

(35)

if it is compatible with equation (10), and of the form:

(un+1,m +Amχn+1)(un,m −Amχn) = (un+1,m+1 +Bm+1χn+1)(un,m+1 −Bm+1χn),

A2
m = B2

m = 1,
(36)

in the case of equation (11).

Let us construct now a generalization of equations (35) and (36), using a pair of Miura type
transformations, see [17] and a more close to the discrete quad-equations [18].

Equation (13) with αm 6= 0 for any m can be transformed into

dun,m
dt1

=
(
u2
n,m − a2

n,m

)
(un+1,m − un−1,m), an+2,m = an,m for all n,m. (37)

A transformation has the form ũn,m = µmun,m+νn,m, where µm 6= 0, νn+2,m = νn,m for all n, m.
Equation (37) is transformed into the Volterra equation (8) by a Miura type transformation,
such that

ûn,m = (un+1,m + an+1,m)(un,m − an,m). (38)

Introducing bn,m, such that
bn+2,m = bn,m, b2n,m = a2

n,m,

we have another Miura type transformation of equation (37) into (8):

ûn,m−1 = (un+1,m + bn+1,m)(un,m − bn,m). (39)

Excluding ûn,m we are led to the discrete equation

(un+1,m + an+1,m)(un,m − an,m) = (un+1,m+1 + bn+1,m+1)(un,m+1 − bn,m+1),

an+2,m = an,m, bn+2,m = bn,m, a2
n,m = b2n,m for all n,m.

(40)

It can be checked that the quad-equation (40) is compatible with (37).
One can see that equations (35) and (36) correspond to particular cases of the general

formula (40). In the second case, we have a2
n,m = b2n,m = χn and we can represent

an,m = Amχn, bn,m = Bmχn.

4. Discrete analog of the dressing chain
Let us consider a particular case of equation (40), presented in [9], namely:

(un+1,m + δm)(un,m − δm) = (un+1,m+1 − δm+1)(un,m+1 + δm+1), (41)

where δm is an arbitrary m-dependent coefficient. It is a complete analogue of the well-known
dressing chain, see [13–15]:

d

dx
(um+1 + um) = u2

m+1 − u2
m + δm+1 − δm. (42)
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Equation (42) can be constructed by two Miura transformations into the Korteweg–de Vries
equation as well as equation (41) is constructed by two discrete Miura transformations into the
Volterra equation which also is called the discrete Korteweg–de Vries equation. There is in [9]
an L−A pair for equation (41) which is the direct analog of an L−A pair for (42) constructed
in [14]. In this section we present a generalization of equation (41) together with its L−A pair.

That generalization is a particular case of equation (40) corresponding to bn,m = −cman,m
with c2

m ≡ 1:

(un+1,m+1 − cm+1an+1,m+1)(un,m+1 + cm+1an,m+1)

= (un+1,m + an+1,m)(un,m − an,m), an+2,m = an,m, c2
m ≡ 1,

(43)

and we lose, e.g., the case bn,m = (−1)nan,m. In the case when an,m 6= 0 and cm = 1 for all n, m,
we can introduce a new function ûn,m: un,m = ûn,man,m/δm, where δ2

m = an+1,man,m. The last
product does not depend on n, as an,m is two-periodic with respect to n. This function ûn,m
satisfies an equation of the form (41), i.e. we get nothing new in this case. So, only the case
when cm = −1 or an,m = 0 for some n, m is interesting, and we will show examples of this kind
in next sections.

An L−A pair for equation (43) reads:

Ln,m =

(
λ −(un+1,m + an+1,m)(un,m − an,m)
1 0

)
,

An,m =

(
λ an+1,m+1(un,m+1 + an,m+1)(1 + cm+1)

−an,m+1(1+cm+1)
un,m+1−an,m+1

λ(un,m+1+cm+1an,m+1)
un,m+1−an,m+1

)
,

(44)

and these matrices satisfy the standard relation Ln,m+1An,m = An+1,mLn,m. In particular
case (41), this L−A pair coincides with one of [9]. A hierarchy of conservation laws for equa-
tion (41) has been constructed in [19] by using that L−A pair of [9].

We also can construct conservation laws for (43), using the L−A pair (44) and the same
scheme of [19]. Discrete conservation laws are of the form

(T2 − 1)p(i)
n,m = (T1 − 1)q(i)

n,m (45)

and, for i = 0, 1, 2, are given by the following functions p
(i)
n,m and q

(i)
n,m:

p(0)
n,m = log(un+1,m + an+1,m)(un,m − an,m),

q(0)
n,m = log

un,m+1 + cm+1an,m+1

un,m+1 − an,m+1
;

(46)

p(1)
n,m = (un+1,m + an+1,m)(un,m − an,m),

q(1)
n,m = −(un,m+1 − an,m+1)(1 + cm+1)an+1,m+1;

(47)

p(2)
n,m = (un+1,m + an+1,m)(un,m − an,m)(2un+2,mun+1,m + un+1,mun,m

− 2un+2,man+1,m + un+1,man,m + an+1,mun,m − 3an+1,man,m),

q(2)
n,m = −2(1 + cm+1)an+1,m+1(un,m+1 − cm+1an,m+1)(un+1,mun,m − un+1,man,m

+ an+1,m+1un,m+1 + an+1,mun,m − an+1,m+1an,m+1 − an+1,man,m).

(48)

Equations of the sine-Gordon type possess two hierarchies of generalized symmetries and
conservation laws. Equation (43) probably has, in general, only one hierarchy of conservation
laws and generalized symmetries, see a comment below. Nevertheless, it has the L−A pair and is
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integrable for this reason. It deserves further study as a direct discrete analogue of the dressing
chain (42).

The discrete equation (41) has the generalized symmetry (37) with an,m = δm in the
direction n. However, in the case when δm 6= 0 for all m, we can show that if the second
generalized symmetry of the form (3) exists, then the following relation must take place:

δ2
m = δ2

0 for all m.

In this case, using rescaling un,m = ûn,mδm, we can transform this equation into:

(un+1,m+1 − 1)(un,m+1 + 1) = (un+1,m + 1)(un,m − 1). (49)

This is the well-known integrable equation found in [20, 21]. A generalized symmetry in the
m-direction can be found in [9], L−A pairs of different forms have been presented, e.g., in [18,20].

A new sine-Gordon type example of the form (43), which is essentially nonautonomous, will
be discussed in Section 6. That equation has two hierarchies of generalized symmetries as well
as two hierarchies of conservation laws which can be derived from the L−A pair (44).

5. Second generalized symmetry
Among discrete equations, we consider in this paper, there may be integrable equations which do
not have two generalized symmetries of the form (2), (3). Nevertheless, we use here the existence
of two generalized symmetries of such form as an integrability criterion. It is constructive and
allows us not only to check an equation for integrability, but also to solve some classification
problems, as it is demonstrated below, see also [6].

For some of discrete equations found in Section 3, we select in this section cases in which
a generalized symmetry of the form (3) exists. The symmetry must be nondegenerate, i.e. its
right hand side must differ from zero for any n, m.

When searching for generalized symmetries, we use a scheme developed in [2,9,22]. To check
the Darboux integrability of an equation, we use results of [6, 23]. In both cases some special
annihilation operators introduced in [23] play an important role.

5.1. Volterra case
In the case of equation (32) we have two possibilities up to the transformation ũn,m = un+1,m.
We have km ≡ 0 in both cases. In the first case ωm = (−1)m, therefore Ωn,m = χn+m, and
equation (32) takes the form:

χn+m(un+1,m+1un,m+1 − un+1,mun,m)

+ χn+m+1(un+1,m+1 + un,m+1 − un+1,m − un,m) = 0,
(50)

where χn+m is defined by (7). Nonautonomous integrable equations of this kind are known,
see [4]. Examples of [4] and equation (50) are essentially different, as corresponding generalized
symmetries strongly differ from each other.

The second generalized symmetry (3) in the m-direction of equation (50) reads:

dun,m
dt2

= un,m

(
Cm

un,m+1 − un,m
+

Cm−1

un,m − un,m−1

)
, Cm = αm+ β, (51)

where α, β are arbitrary constants. Equation (51) with α = 0, β = 1 is a representative of the
well-known complete list of integrable Volterra type equations presented in [10,11]. Equation (51)
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with α = 1, β = 0 is its master symmetry found in [24]. It generates generalized symmetries for
equation (51) with α = 0, β = 1 and, therefore, for the discrete equation (50), for instance:

dun,m
dτ2

=
un,m+1un,m

(un,m+2 − un,m+1)(un,m+1 − un,m)2
+

un,mun,m−1

(un,m − un,m−1)2(un,m−1 − un,m−2)

+
u2
n,m(un,m+1 − un,m−1)

(un,m+1 − un,m)2(un,m − un,m−1)2
.

(52)

It can be proved that equation (50) does not have first integrals (21) with ki ≤ 4 and, for
this reason, probably is not Darboux integrable.

In the second case, ωm ≡ 1 in equation (32), hence Ωn,m = χn, and this equation is of the
form:

χn(un+1,m+1un,m+1 − un+1,mun,m)

+ χn+1(un+1,m+1 + un,m+1 − un+1,m − un,m) = 0.
(53)

Its generalized symmetry of the form (3) reads:

dun,m
dt2

= cm
(un,m+1 − un,m)(un,m − un,m−1)

un,m+1 − un,m−1
, (54)

where cm is an arbitrary function, such that cm 6= 0 for any m. This example is Darboux
integrable, as it possesses the following first integrals, see (20), (21):

Vn,m = χnun+1,mun,m + χn+1(un+1,m + un,m),

Wn,m =
(un,m+3 − un,m)(un,m+2 − un,m+1)

(un,m+3 − un,m+2)(un,m+1 − un,m)
.

(55)

In the next section, a general solution of equation (53) will be constructed.
There exist examples with degenerate generalized symmetries, too. Such examples can be

taken from the following statement: equation (54) is the symmetry of equation (32) iff

cm(ωm − ωm−1) = cmkm = cmkm−1 = 0 for all m.

There may be very few points of degeneration of a symmetry, for instance, if

km ≡ 0, ωm = −1, m ≤ −1, ωm = 1, m ≥ 0,

then c0 = 0 and cm may be a nonzero constant in all the other points m. Such examples probably
have not been considered in the literature up to now. Equations of this kind seem to be very
close to the integrable ones and, in our opinion, deserve further study.

5.2. General solution
In this section we present, by an example, a scheme of construction of the general solution for the
Darboux integrable discrete equations. We use an observation of [6] for polylinear equations (1)
that, in many cases, first integrals of the first order (i.e. such that k1 = 1 or k2 = 1 in (21)) can
be rewritten as a linear equation. Using this fact, the corresponding discrete equation can be
equivalently rewritten as a nonautonomous linear equation.

We see that Vn,m of (55) is a first integral of the first order, and the relation (T2−1)Vn,m = 0
is equivalent to the discrete equation (53). We can solve this relation and obtain

Vn,m = χnun+1,mun,m + χn+1(un+1,m + un,m) = ηn, (56)
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where ηn is an arbitrary n-dependent function of integration. We see that this is the discrete
Riccati equation. As it is known for such type equations, if we know a particular solution, then
we can rewrite the equation as a linear one and find its general solution.

Let ρn be a particular solution of equation (56):

χnρn+1ρn + χn+1(ρn+1 + ρn) = ηn.

Then the discrete Riccati equation (56) is linearized by the following point transformation:

un,m =
1

vn,m
+ ρn, (57)

and we get

(χn+1 + χnρn)vn,m + (χn+1 + χnρn+1)vn+1,m + χn = 0.

Using an integrating factor χnνn − χn+1κn, we can represent this linear equation as a total
difference:

(T1 − 1)wn,m = 0, wn,m = (χnκn−1 − χn+1κn)vn,m + χnκn + χn+1κn+1,

if νn = κn − κn+2 and κn satisfies the following linear equation:

(χnνn + χn+1νn−1)ρn = χnκn−1 + χn+1κn.

We are led to the relation wn,m = θm with a new function of integration θm. From this relation
we find vn,m and, taking into account (57), we obtain

un,m = χn
κn−1(θm + κn+2)

(κn+2 − κn)(θm + κn)
+ χn+1

κn(θm + κn−1)

(κn+1 − κn−1)(θm + κn+1)
. (58)

This formula (58) defines the general solution of the discrete equation (53) in the sense that
this solution depends on two arbitrary functions of one discrete variable, namely, κn and θm.
Probably, the formula (58) does not describe all solutions of equation (53), as it corresponds to
a special choice of the function ηn in equation (56).

5.3. Modified Volterra case
Here we consider the discrete equations (35), (36) corresponding to the modified Volterra
equations (10), (11).

As bn,m of equation (35) is a 2-periodic function with respect to n, we can introduce dm =
bn,mbn+1,m which does not depend on n. After rescaling un,m → −un,mbn,m, an,m → −an,mbn,m,
we obtain instead of (10), (35) the following equations:

dun,m
dt1

= dm(u2
n,m − 1)(un+1,m − un−1,m), (59)

dm+1(un+1,m+1 − 1)(un,m+1 + 1) = dm(un+1,m + an+1,m)(un,m − an,m), (60)

where d2
m = a2

n,m = 1, an+2,m = an,m for all n, m.
There are here two cases with a nondegenerate second generalized symmetry. In both cases

dm ≡ 1 and an,m = Am, i.e. it does not depend on n. In the first case Am ≡ 1, and equation (60)
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is nothing but the known equation (49). In the other case Am ≡ −1, and the second generalized
symmetry reads:

dun,m
dt2

= cm
(un,m+1 − un,m)(un,m − un,m−1)

un,m+1 − un,m−1
, (61)

where cm is an arbitrary function, such that cm 6= 0 for any m. This discrete equation coincides,
up to an autonomous Möbius transformation, with an example found in [25]. This equation is
Darboux integrable, its first integrals and a general solution are presented in [25], too.

There is a degenerate example of the form (60) with dm ≡ 1, an,m = Am:

(un+1,m+1 − 1)(un,m+1 + 1) = (un+1,m +Am)(un,m −Am), (62)

where Am is such that A2
m = 1 and it is not constant. Equation (62) has a second symmetry of

the form

dun,m
dt2

= cm(Am − 1)(Am−1 − 1)
(un,m+1 − un,m)(un,m − un,m−1)

un,m+1 − un,m−1

+ ĉm(Am − 1)(Am−1 + 1)
(un,m+1 − un,m)(un,m + un,m−1)

un,m+1 + un,m−1
,

(63)

with two arbitrary functions cm, ĉm, such that cm 6= 0, ĉm 6= 0 for any m. If Am = 1 for some

m = M , then
dun,M

dt2
= 0. For example, if A0 = 1 and Am = −1 for m 6= 0, then

dun,m

dt2
= 0 iff

m = 0.
In case of the discrete equation (36), we cannot enumerate all particular cases possessing the

second symmetry of the form (3). We just discuss here two Darboux integrable examples.
The first of them is equation (36) with Am ≡ Bm ≡ −1:

(un+1,m − χn+1)(un,m + χn) = (un+1,m+1 − χn+1)(un,m+1 + χn). (64)

Its first integrals read:

Vn,m = (un+1,m − χn+1)(un,m + χn),

Wn,m =
(un,m+1 − un,m−1)(un,m+1χn + un,mχn+1)

un,m+1(un,m − un,m−1)
.

(65)

Following the scheme described in Section 5.2, we construct a general solution with two arbitrary
functions κn, θm:

un,m = χn
(κn + κn+2)θm − 1

(κn+2 − κn)θm
+ χn+1

κnθm
2κn+1θm − 1

. (66)

The discrete equation (64) is a particular case of equation (43) corresponding to an,m = −χn
and cm ≡ −1. We have q

(i)
n,m ≡ 0 for all three conservation laws given by (45)–(48). So, all these

conservation laws turn into first integrals, providing Vn,m of (65), in particular. This is natural
for the Darboux integrable equations.

The second case corresponds to Am ≡ 1, Bm ≡ −1 in equation (36), and this equation takes
the form

(un+1,m + χn+1)(un,m − χn) = (un+1,m+1 − χn+1)(un,m+1 + χn). (67)
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The first integrals in this case are more complicated:

Vn,m = un+1,mun−1,m(u2
n,m − 1)χn + (un+1,m + un−1,m)un,mχn+1,

Wn,m = (un,m+1 + un,m)(un,m + un,m−1)

(
χn

u2
n,m − 1

+
χn+1

un,m+1un,m−1

)
.

(68)

This discrete equation is a particular case of equation (43) corresponding to an,m = χn and

cm ≡ 1. It can be checked that the conservation law (48) becomes trivial in the sense that p
(2)
n,m

is expressed in terms of a first integral and a total difference:

p(2)
n,m = T1

(
2Vn,mχn + V 2

n,mχn+1

)
+ (1− T1)

(
u2
n,m(un+1,m + 1)2χn+1

)
, (69)

and conservation laws (45) with i ≥ 3 are trivial in the same sense, too. As the first integrals (68)
are not of the first order, we cannot apply the scheme of Section 5.2. A general solution for
equation (67) will be constructed in the next section in a different way.

6. Transformations
In this section we construct a few new integrable discrete examples, using equations found
in Section 5.1 and some special transformations invertible on solutions of discrete equations.
Those transformations provide Miura type transformations for both discrete equations and their
generalized symmetries. We use a transformation theory developed in [17,26,27]. A formulation
more close to the discrete equations together with some applications can be found in [25].

6.1. Transformation 1

Let us start from equation (32) with km ≡ 0. Multiplying by the function
Ωn,m

un,m+1un+1,m
+Ωn+1,m,

which is nonzero for any n, m, we can rewrite the equation as:

Ωn,m
un+1,m+1

un+1,m
+ Ωn+1,m(un+1,m+1 − un+1,m)

= Ωn,m
un,m
un,m+1

+ Ωn+1,m(un,m − un,m+1),

Ωn,m =
1 + ωm(−1)n

2
, ω2

m ≡ 1.

(70)

Denoting the right hand side of equation (70) by vn,m, we get two formulas

vn−1,m = Ωn−1,m
un,m+1

un,m
+ Ωn,m(un,m+1 − un,m),

vn,m = Ωn,m
un,m
un,m+1

+ Ωn−1,m(un,m − un,m+1)
(71)

relating the functions un,m, un,m+1 and vn,m, vn−1,m. These formulas define a transformation of
the discrete equation (70) invertible on its solutions. The inverse transformation has the form:

un,m = −Ωn−1,m
vn,m

vn−1,m − 1
− Ωn,m

vn,mvn−1,m

vn,m − 1
,

un,m+1 = −Ωn,m
vn−1,m

vn,m − 1
− Ωn−1,m

vn,mvn−1,m

vn−1,m − 1
.

(72)

After an additional point transformation:

wn,m = 2Ωn,mvn,m + Ωn+1,m
1 + vn,m
1− vn,m

, (73)
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we obtain the following discrete equation:

(wn+1,m+1 − Ωn+1,m+1)(wn,m+1 + Ωn,m+1) = (wn,m − Ωn,m)(wn+1,m + Ωn+1,m). (74)

The generalized symmetry (8) of equation (70) turns into

dwn,m
dt1

= (w2
n,m − Ωn,m)(wn+1,m − wn−1,m) (75)

up to scaling t1, and this is a symmetry of equation (74) in the n-direction.
It should be remarked that the symmetry (75) is a particular case of equations (13), (37).

The discrete equation (74) is a particular case of equation (40) and of equation (43) with cm ≡ 1
and has, for this reason, an L−A pair of the form (44).

As it has been stated in Section 5.1, there are two subcases among equations (32) possessing
the second generalized symmetry of the form (3). The first of them is given by km ≡ 0,
Ωn,m = χn and is equation (53). In this case equation (74) coincides with equation (67) and is
Darboux integrable. Using the composition of transformations (71), (73) and the solution (58)
of equation (53), we obtain a general solution for equation (67):

wn,m = χn

(
1− 2(θm + κn+2)(θm+1 + κn)

(κn+2 − κn)(θm+1 − θm)

)
− χn+1

2κn(θm+1 − θm)

(θm+1 + κn+1)(θm + κn+1)
. (76)

The second case is given by Ωn,m = χn+m, and equation (74) takes the form:

(wn+1,m+1 − χn+m)(wn,m+1 + χn+m+1) = (wn,m − χn+m)(wn+1,m + χn+m+1). (77)

Its second symmetry corresponding to (51) reads:

dwn,m
dt2

=χn+m+1(Cm−1wn,m−1 − Cm+1wn,m+1)

−χn+m

(Cm−1wn,m+1 − Cm+1wn,m−1)(w2
n,m − 1)

wn,m+1wn,m−1
,

(78)

where Cm = αm + β. After the point transformation ξn,m = χn+mwn,m + χn+m+1/wn,m, this
symmetry takes the form:

dξn,m
dt2

= (ξ2
n,m − χn+m)(Cm+1ξn,m+1 − Cm−1ξn,m−1). (79)

equation (79) with Cm ≡ 1 and equation (75) with Ωn,m = χn+m are the same up to the
transformation n ↔ m. Equation (79) with Cm ≡ 1 is, for any fixed value of n, a 1 + 1-
dimensional differential-difference equation equivalent to the well-known modified Volterra
equation (4) with Pn(un) = u2

n − χn. Equation (79) with Cm ≡ m is the master symmetry
of equation (79) with Cm ≡ 1. So, we can see that the discrete equation (77) possesses two
hierarchies of generalized symmetries in both directions n and m.

Equation (77) is a particular case of (43) with cm ≡ 1 and an,m = χn+m and possesses, for
this reason, an L−A pair of the form (44). In addition to (45) we can construct in this case the
second hierarchy of conservation laws

(T1 − 1)q̂(i)
n,m = (T2 − 1)p̂(i)

n,m, (80)
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using this L−A pair and the scheme of [19]. First three conservation laws (80) of equation (77)
are defined by:

q̂(0)
n,m = log

(
χn+m

1− wn,m
+ χn+m+1wn,m

)
,

p̂(0)
n,m =− χn+m+1 log(wn,m(1− wn+1,m));

q̂(1)
n,m =

1− wn,m
1 + wn,m

χn+m −
1 + wn,m+1

wn,m
χn+m+1,

p̂(1)
n,m =

2

wn+1,m
χn+m;

q̂(2)
n,m =

(1 + wn,m+2)(1− 2wn,m − wn,m+2)

w2
n,m+1

χn+m

+
(1− wn,m+1)(2wn,m+2wn,m+1 + 2wn,m+2 + wn,m+1wn,m − wn,m)

w2
n,m+2wn,m

χn+m+1,

p̂(2)
n,m =

4wn+1,m(wn,m+1 + 1)2

(1 + wn+1,m)2w2
n,m

χn+m+1.

6.2. Transformation 2
Let us start now from equation (50) and rewrite it in the form:

χn+mun+1,m+1un,m+1 + χn+m+1(un+1,m+1 + un,m+1)

=χn+mun+1,mun,m + χn+m+1(un+1,m + un,m).
(81)

Denoting the right hand side of (81) by Un,m+1, we get two formulas

Un,m = χn+m+1un+1,mun,m + χn+m(un+1,m + un,m),

Un,m+1 = χn+mun+1,mun,m + χn+m+1(un+1,m + un,m),
(82)

which define a transformation invertible on the solutions of equation (81). The inverse
transformation is given by:

un,m = −χn+m+1

2

(
Un,m+1 +

√
U2
n,m+1 − 4Un,m

)
− χn+m

2

(
Un,m +

√
U2
n,m − 4Un,m+1

)
,

un+1,m =
χn+m+1

2

(√
U2
n,m+1 − 4Un,m − Un,m+1

)
+
χn+m

2

(√
U2
n,m − 4Un,m+1 − Un,m

)
.

(83)

In terms of new function Un,m, we obtain the following discrete equation:

χn+m+1

(
Un,m+1 − Un+1,m −

√
U2
n+1,m − 4Un+1,m+1 −

√
U2
n,m+1 − 4Un,m

)
+χn+m

(
Un,m − Un+1,m+1 −

√
U2
n+1,m+1 − 4Un+1,m −

√
U2
n,m − 4Un,m+1

)
= 0.

(84)

Unlike all the other examples presented in this paper, this equation is not polylinear and even not
polynomial. Equations of this kind, with the square roots, have been discussed, e.g., in [28,29].

A generalized symmetry in the n-direction, obtained from (8) by the invertible transforma-
tion (82), reads:

dUn,m
dt1

= (χn+m − χn+m+1Un,m)(Un+1,m − Un−1,m). (85)
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In any fixed pointm this equation is equivalent, up to the shift and rescaling Un,m, to equation (4)
with Pn(un) = χnun+χn+1. So, equation (84) defines a chain of Bäcklund auto-transformations
for the Toda lattice equation.

A symmetry in the m-direction obtained from (51) is of the form:

dUn,m
dt2

=
Cmχn+m+1

(
Un,m−1Un,m+1 − 4Un,m +

√
U2
n,m−1 − 4Un,m

√
U2
n,m+1 − 4Un,m

)
2(Un,m+1 − Un,m−1)

+
χn+mCm

(
U2
n,m − 4Un,m+1 +

√
U2
n,m − 4Un,m+1

√
U2
n,m − 4Un,m−1

)
2(Un,m+1 − Un,m−1)

+ χn+mCm+1,

(86)

where Cm = αm + β. Equation (86) with Cm ≡ m provides the master symmetry for equa-
tion (86) with Cm ≡ 1.

If we choose Cm ≡ 2 and introduce Vm = Un,m for any fixed n, we are led to the following
equation up to the shift of m:

dVm
dt2

=
Rm(Vm+1, Vm, Vm−1) +

√
Rm(Vm+1, Vm, Vm+1)

√
Rm(Vm−1, Vm, Vm−1)

Vm+1 − Vm−1
,

Rm(x1, x2, x3) = χm(x2
2 − 2x1 − 2x3) + χm+1(x1x3 − 4x2).

(87)

This equation is, probably, a new nonautonomous generalization of the well-known integrable
lattice equation presented in [10,11].

The formulas (82) define two Miura type transformations of the discrete equation (50)
into (84) and of the symmetry (8) into (85). Each of these transformations converts any solu-
tion un,m of (50) into a solution of equation (84). These formulas also define transformations
of the symmetry (51) into (86), but only on the solutions of the discrete equation (81). The
inverse transformations (83) define two Miura type transformations which relate equations (84)
and (81) as well as their symmetries (86) and (51). The formulas (71) and (72) define Miura
type transformations of discrete equations and their symmetries as well.

7. Conclusions
In this paper we have constructed a number of new examples of integrable nonautonomoues
discrete equations of the form (1).

In Section 3 we describe all polylinear nonautonomous Bäcklund auto-transformations for
the differential-discrete equations (4)–(6) of the Volterra and Toda type. In this way we obtain
discrete equations possessing one generalized symmetry of the form (2). In Section 5 we find
cases in which there is the second generalized symmetry (3) and obtain in this way new integrable
examples. In Section 6 we obtain some additional examples, using transformations invertible on
the solutions of discrete equations.

As a result we get discrete equations of the sine-Gordon (50), (77), (84) and Liouville (53),
(64), (67) type. For Liouville type equations, which are Darboux integrable, we construct the
general solutions (58), (66), (76) by using a special linearization, see for details Section 5.2.
The most interesting example of the Liouville type is equation (67) which has more complicated
first integrals (68). Among sine-Gordon type equations, the most interesting from our point
of view example is equation (77). For this equation we find an L−A pair and construct two
hierarchies of conservation laws and generalized symmetries. The discrete equation (84) is the
only example which is not polylinear. It generates a chain of Bäcklund auto-transformations for
the Toda lattice equation. Its second symmetry provides a new nonautonomous generalization
of the well-known integrable differential-discrete equation.
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In Section 4 a discrete analog of the well-known dressing chain has been constructed. We
find for it an L−A pair and one hierarchy of generalized symmetries and conservation laws. In
particular, this example includes equation (77) and provides it by an L−A pair.

We also have found two degenerate examples of discrete equations, see Sections 5.1 and 5.3.
One of their symmetries is degenerate in the sense that ψn,m of (3) may be zero in some points.
Examples of this kind seem to be very close to integrable ones and, in our opinion, deserve
further study too.
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