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Abstract
We carry out the generalized symmetry classification of polylinear autonomous
discrete equations defined on the square, which belong to a twelve-parametric
class. The direct result of this classification is a list of equations containing no
new examples. However, as an indirect result of this work we find a number
of integrable examples pretending to be new. One of them has a nonstandard
symmetry structure, the others are analogues of the Liouville equation in the
sense that they are Darboux integrable. We also enumerate all equations of
the class, which are linearizable via a two-point first integral, and specify the
nature of integrability of some known equations.

PACS numbers: 02.30.Ik, 02.30.Jr
Mathematics Subject Classification: 39A14, 70G65, 70S10, 37K10

1. Introduction

We consider a class of autonomous discrete equations:

F(un,m, un+1,m, un,m+1, un+1,m+1) = 0, n, m ∈ Z, (1)

which are analogues of the hyperbolic equations

F(u, ux, uy, uxy) = 0. (2)

In (1) F is a polylinear function (a function linear in each of its variables). This class depends
on 16 arbitrary constants. We restrict ourselves to the case when

∂2F

∂un+1,m+1∂un+1,m
= 0,

and the resulting equation depends on 12 parameters and can be written in the form
Aun+1,m+1 + Bun+1,m + C = 0,

A = a1un,mun,m+1 + a2un,m + a3un,m+1 + a4,

B = b1un,mun,m+1 + b2un,m + b3un,m+1 + b4,

C = c1un,mun,m+1 + c2un,m + c3un,m+1 + c4.

(3)
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The reason we choose this class is technical. The first of the integrability conditions (18)
presented in theorem 1 becomes simpler in this case (see a more detailed explanation right
after theorem 1).

We use in this paper the generalized symmetry method, see e.g. the review articles
[4, 23, 35] for the case of partial differential equations (PDEs) and difference–differential
equations. The generalized symmetry method for discrete equations has been developed in
[8, 18, 20, 21, 24], and we will use here some results of these works. A review of different
methods for testing and classifying discrete equations together with proper references can be
found e.g. in [21].

Following [8, 20], we use as an integrability criterion the existence of a non-autonomous
generalized symmetry of the form

d

dt
un,m = Gn,m(un+1,m, un−1,m, un,m, un,m+1, un,m−1). (4)

Almost all known integrable discrete equations (1), as well as their non-autonomous
generalizations [33], possess generalized symmetries of this form. One exception is discussed
in [2], the other one will appear in section 3.2. Equations which have such a symmetry (and
with no first integrals) are analogues of the sine-Gordon equation uxy = sin u. We are going to
enumerate all equations of the sine-Gordon type belonging to the class (3).

Some integrable discrete equations of the class (1) are called in the literature the discrete
KdV and mKdV equations or the discrete sine-Gordon and Liouville equations, see e.g. [9].
From the viewpoint of the generalized symmetry method, such equations are analogues of
the hyperbolic equations. As in the hyperbolic case [22, 37], the integrable discrete equations
have two hierarchies of the generalized symmetries in two different directions and may have
first integrals, i.e. may be Darboux integrable (see below). For this reason, we use such terms
as sine-Gordon-type equations and Liouville-type equations taken from the hyperbolic case.

In our approach, the analogues of the Liouville equation uxy = eu appear in a natural
way as equations whose generalized symmetries depend on some arbitrary functions. Such
equations are Darboux integrable, i.e. they have two first integrals W1,W2:

(T1 − 1)W2 = 0, W2 = w(2)
n (un,m+l2 , un,m+l2+1, . . . , un,m+k2 ), (5)

(T2 − 1)W1 = 0, W1 = w(1)
m (un+l1,m, un+l1+1,m, . . . , un+k1,m). (6)

Here l1, l2, k1 and k2 are integers, such that l1 < k1, l2 < k2, and T1 and T2 are the operators
of the shift in the first and second directions, respectively: T1hn,m = hn+1,m, T2hn,m = hn,m+1.
We will collect the Darboux integrable equations in a separate list.

In section 2, we present definitions and theoretical statements necessary for this paper. All
results are collected in section 3. Section 3.1 contains the complete list of sine-Gordon-type
discrete equations of the class (3). There are no new integrable examples in that list. New
examples appear in the following sections. In section 3.2, an equation with a nonstandard
symmetry structure is discussed. Some Darboux integrable equations are collected in
section 3.3. In section 3.4, we enumerate all equations linearizable via a two-point first
integral. In section 3.5, we specify the nature of integrability of some known equations. Those
equations have been known as equations possessing generalized symmetries. We show that
they are either Darboux integrable or equivalent to a linear equation.

2. Theory

2.1. Definitions and restrictions

Here we are going to discuss some restrictions for discrete equations used in the classification.
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We consider equations of the form (1) which are polylinear and nondegenerate. The first
property means

∂2F

∂u2
n,m

= ∂2F

∂u2
n+1,m

= ∂2F

∂u2
n,m+1

= ∂2F

∂u2
n+1,m+1

= 0.

One sometimes uses the following requirement as a nondegeneracy condition: the function
F must essentially depend on all its variables. This requirement, however, is not sufficient to
exclude equations like the following one:

F̃(un,m, un+1,m)F̂(un,m+1, un+1,m+1) = 0.

We rewrite equation (1) in the form

un+1,m+1 = f (un+1,m, un,m, un,m+1) (7)

and require the essential dependence of f on all its variables. So, we have the following
nondegeneracy condition in terms of F and f :

∂F

∂un+1,m+1
,

∂ f

∂un+1,m
,

∂ f

∂un,m
,

∂ f

∂un,m+1
�= 0. (8)

We consider generalized symmetries of the form (4) satisfying the conditions
∂Gn,m

∂un+1,m
,

∂Gn,m

∂un−1,m
,

∂Gn,m

∂un,m+1
,

∂Gn,m

∂un,m−1
�= 0 (9)

for all n, m ∈ Z. These conditions are analogous to the ones used in the papers [20, 21] in the
autonomous case. It can be proved, see [8], that the function Gn,m must have the form

Gn,m = �n,m(un+1,m, un,m, un−1,m) + �n,m(un,m+1, un,m, un,m−1). (10)

In practice, for all equations possessing the generalized symmetry (4), we always succeed to
find two generalized symmetries of the form

d

dt1
un,m = �n,m,

d

dt2
un,m = �n,m. (11)

Let us recall that the set of symmetries forms a Lie algebra, in particular,
d

dτ1
un,m = α�n,m + β�n,m,

d

dτ2
un,m = Dt1�n,m − Dt2�n,m

are symmetries too. Here α and β are arbitrary constants, and Dt1 and Dt2 are operators of total
derivative in virtue of equation (11). The existence of symmetries of the form (11) implies the
existence of a symmetry given by (10).

The generalized symmetries (11) as themselves are integrable differential–difference
equations. In the autonomous case they are integrable equations of the Volterra type of a
complete list obtained in [34]; see [35] for details. In the non-autonomous case, we may get
some non-autonomous generalizations of Volterra-type equations considered in [19].

It is well known that a function Gn,m defining the generalized symmetry (4) of
equation (7) must satisfy the linearization of this equation (7):

Gn+1,m+1 = Gn+1,m
∂ f

∂un+1,m
+ Gn,m

∂ f

∂un,m
+ Gn,m+1

∂ f

∂un,m+1
. (12)

For fixed values of n and m we can express, using equation (7), all functions un+k,m+l (k, l �= 0)
in terms of the functions

un+k,m, un,m+l, k, l ∈ Z, (13)

which can be considered as independent variables. Equation (12) must be identically satisfied
for all values of independent variables as well as for any n, m ∈ Z.

3
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An equation (7) is called Darboux integrable if it has two first integrals W1 and W2 defined
by equations (5) and (6). We assume that

∂W1

∂un+l1,m
,

∂W1

∂un+k1,m
,

∂W2

∂un,m+l2

,
∂W2

∂un,m+k2

�= 0

for any n, m ∈ Z, and Wi is called Ni-point first integral, where Ni = ki − li + 1 � 2. As in
the case of the generalized symmetries, we assume that equations (5) and (6) are identically
satisfied for all values of (13) and for all n, m ∈ Z. In other words, equations (5) and (6) must
be identically satisfied on solutions of the corresponding discrete equation.

It is not difficult to prove that the function W1 cannot depend on independent variables
un,m+l, l �= 0 and the function W2 cannot depend on variables un+k,m, k �= 0. It is obvious that,
for any first integrals W1 and W2, arbitrary functions �1 and �2 of the form

�1 = �1
(
n,W1, T ±1

1 W1, . . . , T ± j1
1 W1

)
�2 = �2

(
m,W2, T ±1

2 W2, . . . , T ± j2
2 W2

) (14)

are also the first integrals.
Darboux integrable equations are transformed into linear equations for W1 and W2 shown

in (5) and (6), whose solutions are obvious. So, in this case, solutions of equation (7) may be
found from ordinary discrete equations:

W1 = αn, W2 = βm. (15)

Here αn and βm are the arbitrary functions of integration which, in the discrete case, are nothing
but the sets of a priori independent arbitrary constants:

{α0, α±1, α±2, . . .}, {β0, β±1, β±2, . . .}.
One can often find for a Darboux integrable equation a more simple linearizing transformation
than those shown in (5) and (6), which may be more convenient for constructing solutions
[2, 5, 28]. Such transformations are not discussed in this paper.

The sine-Gordon equation has the generalized symmetries, but does not have any first
integrals. It is difficult to prove that an equation has no first integrals. We will search for
equations of the sine-Gordon type, but the second property will be checked for a fixed and
low number of points 2 � N � 5. The upper bound 5 is the number for which we are able to
solve the problem at the moment.

In our classification we are going to reject the linear equations as well as equations
equivalent to the linear ones. The following equations are transformed into some linear ones
by the point transform un,m = evn,m :

un+1,m+1un,mun,m+1 = νun+1,m,

un+1,m+1un,m = νun+1,mun,m+1,

un+1,m+1un,m+1 = νun+1,mun,m,

un+1,m+1 = νun+1,mun,mun,m+1,

(16)

where ν �= 0 is an arbitrary constant. We reject equations related to equation (16) or to a linear
equation by an autonomous Möbius (linear-fractional) transformation:

ûn,m = αun,m + β

γ un,m + δ
. (17)

While, in general, the class (3) is not invariant under the Möbius transformations, sometimes
a transformation (17) may leave an equation within the class (3).

In our classification, we will search for equations of the form (3) which have the following
properties.
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List 1 (Properties used in the classification).

(1) Equation (3) is nondegenerate, i.e. it satisfies conditions (8).
(2) It possesses a generalized symmetry of the form (4) and (9).
(3) It does not have any N-point first integrals with 2 � N � 5.
(4) Equation (3) is nonlinear and is not equivalent in the sense of (17) to any of equation

(16).

2.2. Method of classification

Let us recall that a conservation law of equation (7) is a relation of the form (T1 − 1)pn,m =
(T2 − 1)qn,m which holds on the solutions of this equation. Here pn,m, qn,m may depend
explicitly on the discrete variables n, m and on a finite number of the functions un+k,m+l . We
will use below four integrability conditions which have the form of conservation laws:

(T1 − 1)p( j)
n,m = (T2 − 1)q( j)

n,m, j = 1, 2, 3, 4. (18)

The following statement takes place.

Theorem 1. If equation (7) has a generalized symmetry of the form (4) and (9), then it must
have conservation laws (18), such that

p(1)
n,m = log fun+1,m, q(1)

n,m = q(1)
n,m(un+2,m, un+1,m, un,m);

p(2)
n,m = log

fun,m

fun,m+1

, q(2)
n,m = q(2)

n,m(un+2,m, un+1,m, un,m);

q(3)
n,m = log fun,m+1, p(3)

n,m = p(3)
n,m(un,m+2, un,m+1, un,m);

q(4)
n,m = log

fun,m

fun+1,m

, p(4)
n,m = p(4)

n,m(un,m+2, un,m+1, un,m),

(19)

where fun+k,m+l = ∂ f
∂un+k,m+l

.

Here the functions p(1)
n,m, p(2)

n,m, q(3)
n,m, q(4)

n,m are defined explicitly in terms of equation (7).
The other four functions must be found from equation (18) and must have the form shown in
(19). We do not give the proof, as this theorem has been taken from [20], where the completely
autonomous case is considered. In [8], the same result is presented for the partially non-
autonomous case we consider here. In this paper, we just give more precise definitions and
formulations suitable for the paper.

It should be remarked that in the case of the class (3) the function p(1)
n,m depends on two

variables un,m and un,m+1 only, while in the general case (1) it may depend on un+1,m too. This
property makes the calculation simpler and explains our choice of the class (3).

The conservation laws (18) and (19) follow from equation (12), and the unknown functions
q(1)

n,m, q(2)
n,m, p(3)

n,m, p(4)
n,m are related to Gn,m of equation (4) by the following formulae:

q(1)
n,m = −T1 log

∂Gn,m

∂un+1,m
, q(2)

n,m = T1 log
∂Gn,m

∂un−1,m
;

p(3)
n,m = −T2 log

∂Gn,m

∂un,m+1
, p(4)

n,m = T2 log
∂Gn,m

∂un,m−1
.

(20)

If for a given discrete equation the integrability conditions (18) and (19) are satisfied, i.e. there
exist some functions q(1)

n,m, q(2)
n,m, p(3)

n,m, p(4)
n,m of the form shown in (19), then we can construct, in

principle, a generalized symmetry by using equation (20) (see [21] for a detailed explanation).

5
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Our aim is to find a function f defining equation (7), for which equations (18) and (19)
are solvable. The problem is, however, that equations (18) and (19) are functional–difference
equations. We solve them, reducing to a system of linear PDEs for the unknown functions
q(1)

n,m, q(2)
n,m, p(3)

n,m, p(4)
n,m, and we do so by using some annihilation operators (or annihilators).

Conditions of solvability of such a system give an algebraic system of equations for coefficients
of equation (3). So, the classification problem is reduced to solving such algebraic systems.

The annihilators are defined as

Yk = T −k
2

∂

∂un,m+1
T k

2 , Y−k = T k
2

∂

∂un,m−1
T −k

2 , k > 0;

Zk = T −k
1

∂

∂un+1,m
T k

1 , Z−k = T k
1

∂

∂un−1,m
T −k

1 , k > 0.

(21)

These operators are the differentiation operators, and their action will be clarified by example
of Y1.

It is obvious that

Y1un,m+l = 0, l �= 0; Y1un,m = 1.

On the other independent variables (13) defined at a fixed point (n, m), it acts as follows:

Y1un+k,m =
k−1∏
j=0

T −1
2 T j

1

∂ f (1,1)

∂un,m+1
, k > 0;

Y1un+k,m =
0∏

j=k+1

T −1
2 T j

1

∂ f (−1,1)

∂un,m+1
, k < 0.

Here we denote

un+k,m+l = f (k,l)(un+k,m, un,m, un,m+l ), k, l ∈ {−1, 1}. (22)

In particular, f = f (1,1), and we have in (22) four equivalent and obvious forms of
equation (7). So, for functions depending on (13), we have

Y1 =
∞∑

j=−∞
Y1(un+ j,m)

∂

∂un+ j,m
.

In the case of the other operators Yk, Zk, k �= 0, as well as for a standard differentiation operator
L, we find at first the results L(un+k,m) and L(un,m+l ) of its action on the independent variables
(13) by using definition (21). Then we can use the general property of the differentiation
operators in order to apply L to an arbitrary function of the independent variables:

L =
∞∑

k=−∞
L(un+k,m)

∂

∂un+k,m
+

∞∑
l=−∞,l �=0

L(un,m+l )
∂

∂un,m+l
.

It is clear that, acting on functions which depend on a finite number of variables, we obtain
the finite expressions, for instance,

Y−1h(un+1,m, un,m, un−1,m) = T2

(
∂ f (1,−1)

∂un,m−1

)
∂h

∂un+1,m
+ ∂h

∂un,m
+ T2

(
∂ f (−1,−1)

∂un,m−1

)
∂h

∂un−1,m
.

The operators (21) have been introduced in [10] and applied there to the first integrals.
Particular cases of these operators have been applied to the conservation laws in [27] and to
the autonomous integrability conditions (18) and (19) in [21]. In [8], these operators have been
used in the study of the partially non-autonomous integrability conditions (18) and (19) and
of their generalizations.

6
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Lemma 1. The operators (21) annihilate the following functions:

Y−lq
( j)
n+k,m+l = 0, j = 1, 2,

for all l �= 0 and k;

Z−k p( j)
n+k,m+l = 0, j = 3, 4,

for all k �= 0 and l.

Proof. We give the proof in one of the cases, as the others are quite similar:

Y−lq
(1)

n+k,m+l = T l
2

∂

∂un,m−1
T −l

2 T l
2 q(1)

n+k,m

= T l
2

∂

∂un,m−1
q(1)

n+k,m(un+2+k,m, un+1+k,m, un+k,m) = 0,

where l > 0. �

The use of annihilators. When applying the operators

�2,l =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T −1

1

l−1∑
j=0

T j
2 , l > 0,

−T −1
1

−1∑
j=l

T j
2 , l < 0,

�1,k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T −1

2

k−1∑
j=0

T j
1 , k > 0,

−T −1
2

−1∑
j=k

T j
1 , k < 0,

to relations (18), we obtain

�2,l(T1 − 1)p( j)
n,m = (

T l
2 − 1

)
q( j)

n−1,m, l �= 0, j = 1, 2;(
T k

1 − 1
)
p( j)

n,m−1 = �1,k(T2 − 1)q( j)
n,m, k �= 0, j = 3, 4.

(23)

Then, applying Y−l, Z−k to equation (23), respectively, and taking into account lemma 1, we
are led to

Y−lq
( j)
n−1,m = r(l, j)

n,m , l �= 0, j = 1, 2; (24)

Z−k p( j)
n,m−1 = s(k, j)

n,m , k �= 0, j = 3, 4. (25)

Here the functions r(l, j)
n,m , s(k, j)

n,m as well as coefficients of Y−l, Z−k are explicitly expressed in
terms of equation (3).

We have an infinite system of linear non-homogeneous PDEs for each of four functions
q( j)

n−1,m, p( j)
n,m−1. We can add to equations (24) and (25) linear PDEs with the commutators

[Yl1 ,Yl2 ] and [Zk1 , Zk2 ] instead of the operators Y−l and Z−k. Also, we can decompose each
equation with respect to additional variables un,m+ j, j �= 0, in the case of (24) and with respect
to un+ j,m, j �= 0, in the case of (25).

Each of the unknown functions depends on three variables, so any four equations for each
of the unknown functions must be linearly dependent. This provides the necessary conditions
of integrability which are expressed in terms of the coefficients of equation (3) only. In practice,
equations (24) and (25) with l, k ∈ {±1,±2} are enough for the classification of equation (3).

7
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First integrals. Equations (5) and (6) for the first integrals imply the following relations:

T k
1 W2 = W2, T l

2W1 = W1, (26)

with the arbitrary integers k and l. The operators Z−k and Y−l annihilate the left-hand sides of
equation (26), respectively. We get infinite systems of linear homogeneous PDEs for the first
integrals W1 and W2:

Z−kW2 = 0, k �= 0, Y−lW1 = 0, l �= 0. (27)

By using the systems of equations (27), we can solve the classification problem for equations
like (3), see section 3.4. We can also find the first integrals for a given equation, see section 3.3.
Directly from the systems (27), we can find a dependence of first integrals on the independent
variables (13); an explicit dependence on n and m is specified as is shown in section 3.4.

3. Results

3.1. Classification theorem

As a result of the generalized symmetry classification, we are led to the following list of
discrete equations.

List 2 (Equation (3) of the sine-Gordon and Burgers type together with their symmetries of
the form (11)).
(1)

(un+1,m+1 − 1)(un,m+1 + 1) = (un+1,m + 1)(un,m − 1),

d

dt1
un,m = (

u2
n,m − 1

)
(un+1,m − un−1,m),

d

dt2
un,m = (

u2
n,m − 1

) (
1

un,m+1 + un,m
− 1

un,m + un,m−1

)
.

(2)

(un+1,m+1 − un+1,m + c2)(un,m − un,m+1 − c2) + un+1,m − un,m+1 + c4 = 0,

d

dt1
un,m = (un+1,m − un,m + c2 + c4)(un,m − un−1,m + c2 + c4),

d

dt2
un,m = (un,m+1 − un,m)(un,m − un,m−1) − c2 − c2

2

un,m+1 − un,m−1 + 2c2 + 1
.

(3)

un+1,m+1un,m+1 + b2un+1,mun,m + c1un,mun,m+1 = 0, b2, c1 �= 0,

d

dt1
un,m = un+1,mun,m

un−1,m
,

d

dt2
un,m = un,mun,m−1

un,m+1 − b2un,m−1
.

(4)

un+1,m+1un,m + un+1,mun,m+1 + a3un+1,m+1un,m+1 + b2un+1,mun,m

+ c1un,mun,m+1 = 0, c1, b2 �= 0,

d

dt1
un,m = (1 − a3b2)

un+1,mun,m

un−1,m
+ c1

(
un+1,m + u2

n,m

un−1,m

)
,

d

dt2
un,m = (un,m+1 + b2un,m)(un,m + b2un,m−1)

a3un,m+1 − b2un,m−1
.

8
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(5)

un+1,m+1un,m + un+1,mun,m+1 + a3un+1,m+1un,m+1 + c1un,mun,m+1 = 0, c1, a3 �= 0,

d

dt1
un,m = un+1,mun,m

un−1,m
+ c1

(
un+1,m + u2

n,m

un−1,m

)
,

d

dt2
un,m = un,m−1un,m

un,m+1
+ a3

(
un,m−1 + u2

n,m

un,m+1

)
.

(6) Discrete Burgers equation:

(un+1,m+1 + d)(un,m + a3)un,m+1 + b1(un,m+1 + d)(un+1,m + a3)un,m = 0, (28)

a3, b1, d, |d + b1a3| + |b2
1 − 1| �= 0,

d

dt1
un,m = (−b1)

−mun,m(un+1,m − un,m)C1 + (−b1)
m un−1,m − un,m

un−1,m
C2, (29)

d

dt2
un,m = (−b1)

n (un,m − un,m+1)(un,m + a3)

un,m+1 + d
C3

+ (−b1)
−n (un,m − un,m−1)(un,m + d)

un,m−1 + a3
C4. (30)

Theorem 2. An equation of the form (3) possesses properties enumerated in list 1 if and only
if it is equivalent to an equation of list 2 up to a linear transformation ûn,m = αun,m + β,

where α �= 0 and β are constants. For equation (6) of list 2, the property 3 of list 1 has been
checked for N = 2, 3.

Remark. More precisely, we search for equations possessing properties of list 1 and obtain
list 2. The resulting equations have properties 1, 2 and 4. Property 3 has been checked for all
equations of list 2 except for equation (6). In this case, we check the property only for N = 2, 3
because of computational complexity.

In reality, there are some special cases of equation (6) with more complicated first
integrals [7].

As for equations (1)–(5), we hope that these equations do not have any first integrals at
all; however, checking this property is an open problem which is also left for a future work.

All equations of list 2 are known. Equations (1)–(5) can be found in the paper [21], most
of them in a slightly different form. Sometimes, transformations of the form

ûn,m = αn,mun,m + βn,m

γn,mun,m + δn,m
, (31)

i.e. non-autonomous Möbius transformations, as well as the transformations n ↔ m and
m → −m leave the equations within the class (3). For example, the transform

ûn,m = un,m + αn + βm

changes in equation (2) of list 2 the coefficients c2 and c4 only, and we can get any values of
c2 and c4, in particular c2 = −1/2, c4 = 0. The form of equations (3)–(5) of list 2 is invariant
under the transform

ûn,m = un,mαnβm. (32)

9
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In the case of equation (3) we can make b2 = c1 = 1. The same transformation (32) allows
us to obtain a3 = 0, b2 = c1 = 1 or a3 = b2 = c1 �= 0 in equation (4) and a3 = c1 = 1
in equation (5). All the particular cases of equations (2)–(5), mentioned above, as well as
equation (1) are presented in [21]. As has been noted in [21], equations (4) with a3 = 0 and
(5) are equivalent to each other up to the transform m → −m.

A detailed discussion of equations (1)–(5) of list 2 and of their generalized symmetries
together with proper references is presented in the paper [21]. We just remark here that most
of these equations, namely equations (2)–(5), come from [14], where they are given in a
more general form. In [21], the authors have selected from those more general equations all
sine-Gordon-type particular cases which are out of the well-known Adler–Bobenko–Suris
list [3].

While equations (1)–(5) of the above list are pure analogues of the sine-Gordon equation,
equation (6) is a Burgers-type equation. The generalized symmetries (29) and (30) depend
on the arbitrary constants C1,C2,C3 and C4 which may be equal to zero, and this is natural
for Burgers-type equations. As well as in the continuous case, equation (6) is derived from a
linear equation by a discrete analogue of the Hopf–Cole transform:

un,m = vn+1,m

vn,m
. (33)

The following non-autonomous linear equation

vn+1,m+1 = αn,mvn+1,m + βn,mvn,m+1 + γn,mvn,m, (34)

where αn,m, βn,m, γn,m �= 0 for any values of n, m, is transformed by (33) into

(un+1,m+1 − βn+1,m)(αn,mun,m + γn,m)un,m+1

= (un,m+1 − βn,m)(αn+1,mun+1,m + γn+1,m)un,m. (35)

Equation (28) is a particular case of equation (35) corresponding to

αn,m = (−b1)
n, βn,m = −d, γn,m = a3(−b1)

n. (36)

The generalized symmetries (29) and (30) are derived from the symmetries

d

dt1
vn,m = C1(−b1)

−mvn+1,m + C2(−b1)
mvn−1,m,

d

dt2
vn,m = −C3vn,m+1 − C4vn,m−1

of equations (34) and (36) by the same transformation (33).
Equation (28) in the case b1 = −1 has been found in [13]. The general form (35)

together with the transformation (33) is presented in [26]. We have here a slight autonomous
generalization of equation (28) with b1 = −1 which, however, has the non-autonomous
generalized symmetries and which is related to a non-autonomous linear equation.

It is interesting that there are the Darboux integrable equations among such Burgers-type
equations. A non-degenerate equation of the form (28) has two N-point first integrals with
2 � N � 3 if and only if

a3, b1, d �= 0, d + b1a3 = b2
1 − 1 = 0. (37)

In the case b1 = 1, equations (28) and (37) are equivalent to equation (6) of list 3 (see below)
up to a rescale of un,m. In the case b1 = −1, we obtain equation (4) of list 4 by using a Möbius
transformation (17) and the transformation n ↔ m.

10
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3.2. Example with a nonstandard symmetry structure

Among integrable hyperbolic equations of the form (2), there are not only the sine-Gordon
and Louville equations but also the Tzitzeica equation

uxy = eu + e−2u, (38)

see e.g. [30, 36]. This equation is not Darboux integrable and it differs from the sine-Gordon
equation in a more complicated structure of the generalized symmetries. Here we present an
equation whose generalized symmetries have a more complicated structure than symmetries
presented in list 2.

The following equation

un+1,m+1(un,m − un,m+1) − un+1,m(un,m + un,m+1) + 1 = 0 (39)

satisfies all the integrability conditions ((18) and (19)) and does not have any N-point first
integral, such that 2 � N � 7. It has one of the generalized symmetries of the form (11)

d

dt2
un,m = (−1)n un,m+1un,m−1 + u2

n,m

un,m+1 + un,m−1
. (40)

However, there is no second symmetry of the form (11) in this case as well as no five-point
symmetry (4), (9).

We have found a more complicated generalized symmetry in the n-direction:

d

dt1
un,m = hn,mhn−1,m(anun+2,m − an−1un−2,m), (41)

where

hn,m = 1 − 2un+1,mun,m, an+2 = an.

We have done that by using a technique developed in [8]. The symmetry depends on an
arbitrary two-periodic function an which can be expressed in the form

an = ã + â(−1)n. (42)

There are here the autonomous particular case an = 1 and the non-autonomous one
an = (−1)n, and they generate all the other possible subcases as linear combinations. For
instance, we have

an = 1 + (−1)n

2
=

{
0, n = 2k + 1;
1, n = 2k.

(43)

The generalized symmetries (40) and (41) in themselves exemplify integrable differential–
difference equations. One can see that n is an outer parameter in equation (40), and this
equation is really a known (1+1)-dimensional autonomous equation of the Volterra type [35].
In the case of equation (41), we have the essentially non-autonomous differential–difference
equation with two-periodic coefficient an.

Equation (41) possesses the following two conservation laws:

d

dt1
p(i)

n,m = (T1 − 1)q(i)
n,m, i = 1, 2,

with the conserved densities

p(1)
n,m = log hn,m, p(2)

n,m = anhn+1,mhn−1,m − an−1hn,m − 2anun+2,mun−1,m.

11



J. Phys. A: Math. Theor. 45 (2012) 345205 R N Garifullin and R I Yamilov

The functions q(i)
n,m are found automatically, see e.g. [35]. There is the following generalized

symmetry of equation (41):

d

dt ′1
un,m = hn,mhn−1,m(bnun+4,mhn+2,mhn+1,m − bn−1hn−2,mhn−3,mun−4,m

+ 2un,m(bn−1un+3,mun−2,mhn+1,m − bnhn−2,mun+2,mun−3,m)

+ 2(2un+1,mun,mun−1,m − un+1,m − un−1,m)(bnu2
n+2,m − bn−1u2

n−2,m)

+ 2un,m(bn−1un+1,mun−2,m − bnun+2,mun−1,m)), bn+2 = bn. (44)

It can be checked that equation (44) is a generalized symmetry of the discrete equation (39)
too. It can also be checked that any two symmetries

Dt ′un,m = G
′
n,m, Dt ′′un,m = G

′′
n,m (45)

of the form (41) or (44) commute:

[Dt ′ , Dt ′′ ]un,m = Dt ′G
′′
n,m − Dt ′′G

′
n,m = 0.

Among the integrable differential–difference equations of the form

∂

∂τ
vn = H(vn+2, vn+1, vn, vn−1, vn−2), (46)

there exist not only generalized symmetries of Volterra-type equations but also the lowest
terms of their own hierarchies. Equations of the second type may be called the Itoh–Narita–
Bogoyavlensky equations, see e.g. [6, 25, 17], for example

∂τ vn = vn(vn+2 + vn+1 − vn−1 − vn−2). (47)

The most recent examples of this type can be found in [2, 29], and all such examples are
autonomous. Up to our knowledge, equation (41) is a new integrable example of this kind;
moreover, it is non-autonomous. The discrete equation (39) is possibly a new example similar
to the Tzitzeica equation. Another equation like that is discussed in [2].

Let us note that there is one more integrable equation of the class (3) which has the same
properties as equation (39):

un+1,m+1(un,m + un,m+1) + un+1,m(un,m − un,m+1) − 1 = 0.

This example is, however, trivial in the sense that it is related to equation (39) by the
transformation ûn,m = (−1)mun,m.

3.3. Darboux integrable equations

Classifying the discrete equations (3), we find the cases when the conservation laws (18) and
(19) and generalized symmetries (11) depend on arbitrary functions of the form (14). Such a
situation is explained by the existence of first integrals.

In cases like that the systems of PDEs (24) and (25), we use in the symmetry classification,
are degenerate, and their solutions also depend on some arbitrary functions. In all such cases
we verify whether a discrete equation is Darboux integrable. If the result is positive, we include
the equation in one of two lists given below.

List 3 contains equations which have N-point first integrals, such that N � 3. Any equation
presented in list 4 has one two-point first integral.

12
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List 3 (Darboux integrable equations with their first integrals W 1, W 2: both N-point integrals
are such that N � 3).

(1)

(un+1,m+1 − un+1,m)(un,m − un,m+1) + un+1,m+1 + un+1,m + un,m+1 + un,m = 0,

W1 = 2(un+1,m + un,m) + 1

(un+2,m − un,m)(un+1,m − un−1,m)
,

W2 = (−1)n un,m+1 + un,m−1 − 2(un,m + 1)

un,m+1 − un,m−1
.

(2)

un+1,m+1(un,m + b2un,m+1) + un+1,m(b2un,m + un,m+1) + c4 = 0, b2, |b2
2 − 1| + |c4| �= 0,

W1 = un+1,mun,m(b2
2 − 1) + b2c4

(un+2,m − un,m)(un+1,m − un−1,m)
,

W2 = (−1)n b2(un,m+1 + un,m−1) + 2un,m

un,m+1 − un,m−1
.

(3)

(un+1,m + a3un+1,m+1)(un,m + a3un,m+1) + un+1,m + un,m + 1

a3 + 1
= 0, a3 �= −1, 0,

W1 = (−a3)
−m (a3 + 1)(un+1,m + un,m) + 1

(un+2,m − un,m)(un+1,m − un−1,m)
,

W2 =
(

un,m−1 + a3un,m + 1√−a3(un,m + a3un,m+1)

)(−1)n

.

(4)

un+1,m+1un,m + b3un+1,mun,m+1 + 1 = 0, b3 = ±1,

W1 = (−b3)
m un+1,m − b3un−1,m

un,m
,

W2 = (−b3)
n un,m+1 − b3un,m−1

un,m
.

(5)

(un+1,m+1 + 1)(un,m + 1) − (un+1,m − 1)(un,m+1 − 1) = 0,

W1 = u2
n,m − 1

(un+1,m + un,m)(un−1,m + un,m)
,

W2 = u2
n,m − 1

(un,m+1 + un,m)(un,m−1 + un,m)
.

(6)

(un+1,m+1 − 1)(un,m + 1)un,m+1 + (un,m+1 − 1)(un+1,m + 1)un,m = 0,

W1 = (−1)m (un+1,mun,m − 1)un−1,m

un−1,mun,m − 1
,

W2 = (−1)n (un,m + un,m+1)(un,m−1 + 1)

(un,m+1 − 1)(un,m−1 + un,m)
.

13
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To our knowledge, the non-autonomous first integrals have not been considered in the
literature. Only equations (4) with b3 = −1 and (5) of this list, whose first integrals are
autonomous, are known. Equation (5) of list 3 has been found in [16]; its integrals and a
linearizing transformation are presented in [5].

Equation (4) of the list with an arbitrary parameter b3 satisfies all four integrability
conditions (18) and (19), but it does not have generalized symmetries of the form (4), (9)
as well as symmetries similar to equation (41). It can be proved that equation (4) possesses
N-point integrals with 2 � N � 7 iff b2

3 = 1. The case b3 = −1 is presented in [15]; the first
integrals of this equation in different forms are given in [28, 12].

List 4 (Darboux integrable equations: in all cases, one of two N-point first integrals is such
that N = 2).

(1)

un+1,m+1un,m+1 + b2(un+1,m + d)(un,m + d) = 0, b2 �= 0,

W1 = (−b2)
−m(un+2,m − un,m)(un+1,m − un−1,m),

W2 =
(√−b2(un,m + d)

un,m+1

)(−1)n

.

(2)

un,mun,m+1(un+1,m+1 + b1un+1,m) + un,m + b1un,m+1 = 0, b2
1 = 1,

W1 = (−b1)
m un+1,mun,m + 1

un,m
,

W2 = (un,m+2 + b1un,m+1)(un,m + b1un,m−1)

(un,m+2 − un,m)(un,m+1 − un,m−1)
.

(3)

un+1,m+1un,m+1 − un+1,mun,m + un,m+1 − un,m = 0,

W1 = un,m(un+1,m + 1),

W2 = (un,m+2 − un,m)(un,m+1 − un,m−1)

(un,m+2 − un,m+1)(un,m − un,m−1)
.

(4)

un+1,m+1un,m − un+1,mun,m+1 + un+1,m − un,m = 0,

W1 = un+1,m − un,m

un,m − un−1,m
, W2 = un,m+1 − 1

un,m
.

(5)

(un+1,m+1 − un+1,m + b4)(un,m+1 − un,m + b4) = d2, d �= 0,

W1 = un+1,m − un−1,m,

W2 = (−1)n un,m+1 − un,m + b4 − d

un,m+1 − un,m + b4 + d
.
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(6)

un+1,m+1(a2un,m + un,m+1) + a2
2un+1,mun,m = 0, a2 �= 0,

W1 = a−3m
2 un+1,mun,mun−1,m,

W2 = d−n a2un,m − dun,m+1

a2dun,m − un,m+1
, d = −1 + √

3i

2
, i2 = −1.

(7)

un+1,m+1(a2un,m + un,m+1) + un+1,m
(
a2

2un,m − a2un,m+1
) = 0, a2 �= 0,

W1 = (−a2
2

)−m
un+1,mun−1,m,

W2 = in
a2un,m + iun,m+1

a2iun,m + un,m+1
, i2 = −1.

(8)

un+1,m+1(a2un,m + un,m+1) + un+1,m
((

a2
2 − d2)un,m + a2un,m+1

) = 0, d �= 0,

W1 = un+1,m

un−1,m
, W2 = (−1)n (a2 + d)un,m + un,m+1

(a2 − d)un,m + un,m+1
.

(9)

un+1,m+1un,m+1 + un+1,mun,m + c4 = 0,

W1 = (−1)m(2un+1,mun,m + c4), W2 =
(

un,m+1

un,m−1

)(−1)n

.

Equations (2) of the last list with b1 = 1 and b1 = −1 are equivalent up to a
non-autonomous point transformation to each other and to an equation presented in [5].
Equation (3) coincides up to an autonomous Möbius transformation (17) with an example of
[28]. Some of the equations of lists 3 and 4 may be related by the non-invertible transformations
which, however, are not discussed here, see e.g. the examples in [9, 28].

The first integrals W2 of the form W2 = φ(−1)n
can be rewritten in the form

Ŵ2 = (−1)nφ̂, φ̂ = 1 + φ

1 − φ
; (48)

see the examples given in equation (3) of list 3 and in equations (1) and (9) of list 4.
The non-autonomous first integrals W2 of the form

W2 = (
k
√

1)n�

can be rewritten in the autonomous form

Ŵ2 = W k
2 = �k;

see the examples given in equations (1), (2) and (6) of list 3 and in equations (5)–(8) of list
4. The form of W2 we use is simpler in a sense, and the transition from Ŵ2 to W2 is not
single-valued. The same can be said about the first integrals W1 given in equation (6) of list 3
and (9) of list 4.

The equations of list 4 are more convenient from the viewpoint of finding their solutions
due to the existence of a two-point first integral; see a detailed discussion in section 3.4. It is
not an easy problem to construct solutions of Darboux integrable equations using transforms
given in equations (5) and (6). There may exist some more efficient linearizing transformations
convenient for the construction of exact solutions. As has been said above, one example with
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such a transformation is given by equation (5) of list 3. Another example, i.e. the discrete
Burgers equation, is discussed at the end of section 3.1. Examples of this kind together
with exact solutions are considered in [2, 5, 28]. The search for such effective linearizing
transformations for the other equations of lists 3 and 4 is an open problem.

3.4. Equations linearizable via a two-point first integral

In this section we search for equations of the class (3) which have at least one two-point first
integral. We show that all such equations are equivalent to a linear non-autonomous discrete
equation. As a result, we obtain lists 5 and 6, see below. The equations of list 4 have two first
integrals one of which is two-point one, and therefore all equations of this list are contained
in lists 5 and 6. Moreover, lists 5 and 6 will be complete, while list 4 is just a collection of
equations of a certain type.

The class of equations (3) is not symmetric under the transformation n ↔ m. For this
reason, we discuss separately two cases corresponding to two-point first integrals in different
directions.

3.4.1. Case 1. Here we consider two-point first integrals in the second direction (or in the
m-direction) which are of the form

(T1 − 1)W2 = 0, W2 = w(2)
n (un,m, un,m+1), (49)

where ∂un,mW2 �= 0, ∂un,m+1W2 �= 0 for all n. Equation (3), possessing such simple first integral,
is equivalent to relation (49) and, therefore, to the equation W2 = κm, where κm is an arbitrary
m-dependent function of integration.

For example, if equation (3) can be expressed in the form

T1φ = αφ + β, φ = ν1un,m+1 + ν2un,m + ν3

ν4un,m+1 + ν5un,m + ν6
, α �= 0, (50)

where α, β and ν j are constant coefficients, then there exists a first integral defined by

W2 =
⎧⎨⎩

φ − nβ, α = 1;
α−n

(
φ + β

α − 1

)
, α �= 1.

(51)

This statement is proved by direct calculation. It turns out that all equations (3) possessing a
first integral (49) can be rewritten in the form (50), see below. In the case when W2 is defined
by (51), the equation W2 = κm can be rewritten as

un,m+1 + μn,mun,m + ηn,m = 0. (52)

So, in this case, an equation of the form (3) is equivalent to a non-autonomous and non-
homogeneous linear equation (52).

For any equation of list 5 below, there is a relation of the form

T1φ = δ1φ + δ2

δ3φ + δ4
, (53)

shown in the list, and the function φ has the form shown in equation (50). By using an
autonomous linear-fractional transformation of the function φ, we reduce relation (53) to the
form (50), and that transformation changes in the formula for φ the coefficients ν j only. So,
all equations of list 5 are equivalent to a linear equation (52).

Equations of the following list are defined by some relationships for the coefficients aj, b j

and c j of equation (3), and all the equations have the following restriction:

a1 = b1 = c1 = 0.
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List 5 (Equations possessing a two-point first integral of the form (49)).

(1)

a3 �= 0, a2 �= b3, a4 �= c3, a2c3 �= a3c2,

b2 = a3c2(a2 − b3) + a2(b3a4 − a2c3)

a3(a4 − c3)
,

b4 = a3c2 − c3a2 + a4b3

a3
,

c4 = a3c2(a4 − c3) + c3(a2c3 − b3a4)

a3(a2 − b3)
;

T1φ = (a2 − b3)(a2c3 − a3c2)

(φ + a2)(a4 − c3)
− b3, φ = un,m+1a3(a2 − b3) + c3a2 − a4b3

un,m(a2 − b3) + a4 − c3
.

(2)

a3 �= 0, b3 �= 0, a3c4 �= a4c3,

a2 = b3, b2 = b2
3

a3
, b4 = a4b3

a3
, c2 = c3b3

a3
;

T1φ = −c3φ + c4a3

φ + a4
, φ = un,mb3 + un,m+1a3.

(3)

a2 �= 0, b3 �= 0,

a3 = 0, c3 = a4b3

a2
, b4 = a2(b3c2 + a4b2) − a4b2b3

a2
2

,

c4 = a4(a2c2(b3 + a2) − a4b2b3)

a3
2

;

T1φ = −φ
b3

a2
− b2, φ = un,m+1a2

2 + c2a2 − a4b2

un,ma2 + a4
.

(4)

a2
2 �= a3b2,

a4 = c3, b3 = a2, b4 = c2, c4 = 2a2c2c3 − c2
3b2 − a3c2

2

a2
2 − b2a3

;

T1φ = −a2φ + b2

a3φ + a2
, φ = un,m+1

(
a2

2 − a3b2
) + c2a2 − b2c3

un,m
(
a2

2 − a3b2
) + c3a2 − a3c2

.

(5)

a3 �= 0, a2b3 �= a3b2,

a4 = c3, b4 = c3b3

a3
, c2 = c3a2

a3
, c4 = c2

3

a3
;

T1φ = −b3φ + b2a3

φ + a2
, φ = un,m+1a3 + c3

un,m
.
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For example, any equation of the form

un+1,m+1(a2un,m + a3un,m+1) + un+1,m(b2un,m + b3un,m+1) = 0, a2b3 �= a3b2,

is a particular case of equation (3) (if a3 = 0) or of equation (5) (if a3 �= 0) of list 5.
Equations (6)–(8) of list 4 are of this form too.

Theorem 3. A nondegenerate and nonlinear equation (3) has a first integral (49) if and only
if it belongs to list 5. Any equation of list 5 is equivalent to a linear equation of the form (52).

The function W2 satisfies the system of equations

Y1W2 = Y−1W2 = Y2W2 = Y−2W2 = 0. (54)

Analyzing conditions of the solvability of this system, we are led to an algebraic system of
equations for the coefficients of equation (3). Then we collect for list 5 all solutions of that
algebraic system, such that the corresponding equation of the form (3) is nondegenerate and
nonlinear.

Directly from the system (54), we can find an autonomous function φ instead of the first
integral W2. Necessary relationships for φ are shown in list 5 for all equations. Then, using
φ, we can introduce an explicit dependence on n and construct a first integral W2 in the way
described above.

3.4.2. Case 2. Here the first integral is of the form

(T2 − 1)W1 = 0, W1 = w(1)
m (un,m, un+1,m), (55)

where ∂un,mW1 �= 0, ∂un+1,mW1 �= 0 for all m. Equation (3), possessing such a first integral, is
equivalent to relation (55) and hence to the equation W1 = κn.

For example, if there are the relations

T2φ = αφ + β, φ = ν1un+1,mun,m + ν2un+1,m + ν3un,m + ν4

ν5un,m + ν6
, α �= 0, (56)

with the constant coefficients α, β and ν j, then we can construct the first integral as follows:

W1 =
⎧⎨⎩

φ − mβ, α = 1;
α−m

(
φ + β

α − 1

)
, α �= 1.

(57)

Moreover, the equation W1 = κn can be rewritten in the form

ν1un+1,mun,m + ν2un+1,m + μ̂n,mun,m + η̂n,m = 0.

By using a non-autonomous Möbius transformation (31) of un,m, the last equation can be
expressed as

un+1,m + μn,mun,m + ηn,m = 0. (58)

So, in this case, an equation of the form (3) is equivalent to a non-autonomous and non-
homogeneous linear equation of the form (58).

For any equation of list 6 below, we define a function φ which satisfies relations of the
form (56). For this reason, there is the first integral defined by (55) in every case, and all
equations of the list are equivalent to a linear equation (58). As well as in the case of list 5, the
equations of list 6 are given by some relations for the coefficients a j, b j and c j of equation (3).
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List 6 (Equations possessing a two-point first integral of the form (55)).

(1)

a3 �= 0, b1 �= 0, b2 �= 0, |a3 − a2| + |b1c4 − c2b2| �= 0,

a1 = b1a3

b2
, a4 = a2b2

b1
, b3 = a2b2

a3
, b4 = a2b2

2

b1a3
,

c1 = b1(b2
2c2 + a3b2c2 − a3b1c4)

b3
2

, c3 = b1b2c4 + a3b2c2 − a3b1c4

b2
2

;

T2φ = −φ
b2

a3
− b2c2 − a3c2 + b1a3c4

b2
,

φ = un+1,mun,mb1b2a3 + un+1,ma2b2
2 + a3(b1c4 − b2c2)

un,mb1 + b2
.

(2)

a3 �= 0, b2 �= 0,

a1 = 0, a2 = 0, a4 = b4a3

b2
, b1 = 0, b3 = 0, c1 = 0, c3 = c2a3

b2
;

T2φ = −b2

a3
(φ + c4), φ = un+1,mun,mb2 + un+1,mb4 + un,mc2.

(3)

a4 �= 0, b3 �= 0, b4 �= 0,

a1 = 0, a2 = a4b3

b4
, a3 = 0, b1 = 0, b2 = 0,

c2 = c1b2
4 + b3a4c3 − a4b4c1

b3b4
, c4 = b3b4c3 + a4b3c3 − a4b4c1

b2
3

;

T2φ = −b4

a4
(φ + c1), φ = un+1,mb2

3 + b3c3 − c1b4

un,mb3 + b4
.

(4)

a1 �= 0, b1 �= 0, |b3| + |c3| �= 0,

a2 = a1b3

b1
, a3 = 0, a4 = 0, b2 = 0, b4 = 0, c2 = a1c3

b1
, c4 = 0;

T2φ = −b1

a1
(φ + c1), φ = un+1,mun,mb1 + un+1,mb3 + c3

un,m
.

(5)

a2 �= 0, b3 �= 0,

a1 = 0, a3 = 0, a4 = 0, b1 = 0, b2 = 0, b4 = 0, c2 = a2c3

b3
, c4 = 0;

T2φ = −b3

a2
(φ + c1), φ = un+1,mb3 + c3

un,m
.

For example, equations (2), (3) and (9) of list 4 are the particular cases of equations
presented in list 6.
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Theorem 4. A nondegenerate and nonlinear equation of the form (3) has the first integral
defined by (55) if and only if it belongs to list 6. Any equation of list 6 is equivalent to a linear
equation of the form (58) up to a non-autonomous Möbius transformation (31) of its solutions
un,m.

A proof of this theorem is completely analogous to the proof of theorem 3.

Remark. It seems to be true that for Darboux integrable autonomous equations (1), any
N-point non-autonomous first integral can be rewritten as an N + 1-point autonomous one,
cf for example [11] for the semidiscrete case. In this paper, due to remark (48), all non-
autonomous integrals have the form (51) or (57). The following formulae:

W̃2 =
{

T2(W2) − W2, α = 1;
T2(W2)/W2, α �= 1,

W̃1 =
{

T1(W1) − W1, α = 1;
T1(W1)/W1, α �= 1,

(59)

provide the autonomous first integrals corresponding to (51) and (57).

The use of the non-autonomous first integrals is, however, well motivated. In
section 3.3, we construct the first integrals of the lowest possible order, simplifying in this
way the calculation. In section 3.4, we use the simplest two-point first integrals. Consideration
of the non-autonomous first integrals essentially enlarges the set of possible examples. As
can be seen from lists 5 and 6, all ten examples, except for their particular cases, have the
non-autonomous first integral.

3.5. Additional results

Here we specify the nature of integrability of some known equations.
First of them is the QV equation introduced by Viallet in [31] which sometimes is called

the Adler equation [1] with free coefficients. All equations of the Adler–Bobenko–Suris list
are contained in the QV equation.

This equation is defined by the following conditions for the polylinear function F of
equation (1):

F(un,m, un+1,m, un,m+1, un+1,m+1) = F(un+1,m, un,m, un+1,m+1, un,m+1)

= F(un,m+1, un+1,m+1, un,m, un+1,m),

and it depends on seven arbitrary constant parameters. As has been shown in [32], the QV

equation has the generalized symmetries (11) for all values of these parameters. We are
interested in the intersection of our class (3) and the QV equation, which has the form

(un,mun+1,m + un,m+1un+1,m+1)k1 + (un,mun+1,m+1 + un+1,mun,m+1)k2

+ (un,m + un+1,m + un,m+1 + un+1,m+1)k3 + k4 = 0. (60)

If k1 = k2 = 0, then this equation is linear.

Theorem 5. Any equation of the form (60), such that k1 �= 0 or k2 �= 0, is Darboux integrable
or degenerate or it is equivalent to a linear equation up to an autonomous point transformation
ũn,m = ϕ(un,m).

Proof. Considering all possible cases, it is easy to check that equation (60) is either degenerate
or equivalent up to a linear transformation ûn,m = αun,m +β to one of the following equations:
one of equations (16) or one of equations (1), (2) and (4) of list 3 or equation (9) of list 4. �

The next two equations do not belong to the class (3), but a result will be interesting and
general.
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The QV equation is generalized by a class of polylinear equations defined in [32] by

F(un,m, un+1,m, un,m+1, un+1,m+1) = π1F(un+1,m, un,m, un+1,m+1, un,m+1)

= π2F(un,m+1, un+1,m+1, un,m, un+1,m), (61)

where π1 = ±1, π2 = ±1. All equations of the class (61) also have the generalized symmetries
(11), see [32]. In addition to the QV equation, we have here (up to the transformation n ↔ m)
two more equations:

(un+1,mun,m+1un+1,m+1 + un,mun,m+1un+1,m+1 − un,mun+1,mun+1,m+1

− un,mun+1,mun,m+1)k1 + (un,mun+1,m − un,m+1un+1,m+1)k2

+ (un,m + un+1,m − un,m+1 − un+1,m+1)k3 = 0, (62)

(un+1,mun,m+1un+1,m+1 − un,mun,m+1un+1,m+1 − un,mun+1,mun+1,m+1

+ un,mun+1,mun,m+1)k1 + (un,mun+1,m+1 − un+1,mun,m+1)k2

+ (un,m − un+1,m − un,m+1 + un+1,m+1)k3 = 0. (63)

It has been shown in [21] that both equations (62) and (63) are equivalent to a particular case
of the QV equation. We have here a more interesting result.

Theorem 6. Any equation of the form (62) or (63) is equivalent to a linear equation up to an
autonomous point transformation ũn,m = ϕ(un,m).

Proof. We do not consider the trivial case k1 = k2 = k3 = 0. Both classes (62) and (63) are
invariant under the autonomous Möbious transformations (17). By using such transformations,
we can always make k1 = 0 and k2k3 = 0 in both equations (62) and (63). In this way we
obtain either a linear equation or one of equations (16). �

As is has been said in [21], the following particular case of the QV equation

(un+1,mun,m+1un+1,m+1 + un,mun,m+1un+1,m+1 + un,mun+1,mun+1,m+1

+ un,mun+1,mun,m+1)k1 + (un,m + un+1,m + un,m+1 + un+1,m+1)k2 = 0 (64)

is transformed into an equation of the form (62) by the transformation ûn,m = (−1)mun,m.
This means that equation (64) is equivalent to a linear equation up to a non-autonomous point
transformation ũn,m = ϕm(un,m).

4. Conclusion

We have in this paper the following results, presented in section 3.

(1) We have performed the exhaustive classification of sine-Gordon-type integrable equations
of the class (3), more precisely, of equations possessing properties of list 1, section 2.1.
The resulting equations are collected in list 2, section 3.1. In this way, we have shown
that there are no longer new sine-Gordon-type equations in the class (3).

(2) We have found equation (39) with a nonstandard symmetry structure which pretends to
be a new example of integrable discrete equation. Its most simple generalized symmetries
(40) and (41) have a more complicated form than (11), unlike all equations of list 2.
Both of them are not autonomous; moreover, the symmetries (41) and (44) have arbitrary
n-dependent two-periodic coefficients. The generalized symmetry (41) in itself is possibly
a new example of an integrable differential–difference equation of the Itoh–Narita–
Bogoyavlensky type. Equation (39) should not be linearizable, at least not Darboux
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integrable, as we have checked that it does not have any N-point first integral with
2 � N � 7.

(3) When carrying out the generalized symmetry classification, we find some of the Darboux
integrable equations in a natural way. We have collected such equations in lists 3 and 4,
section 3.3. Most of those equations are possibly new, and most of equations have the
non-autonomous first integrals which are considered in the literature, probably for the
first time.

(4) In section 3.4, we consider equations which can be rewritten as a non-autonomous linear
equation by using a two-point first integral. We enumerate all equations of this kind within
the class (3) and put them in lists 5 and 6.

(5) In section 3.5, we specify the nature of integrability of some known equations introduced
in [31, 32], in particular, of the intersection of QV and the class (3). We show that all
nondegenerate equations of this intersection are either Darboux integrable or linearizable
via an autonomous point transformation.

The class (3) is a particular case of the general class of polylinear equations of the form
(1), which depends on 16 arbitrary constants. For this reason, the work in all directions, we
considered in this paper, can be continued.
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