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AN UNUSUAL SERIES OF AUTONOMOUS DISCRETE INTEGRABLE

EQUATIONS ON A SQUARE LATTICE

R. N. Garifullin∗ and R. I. Yamilov∗

We present an infinite series of autonomous discrete equations on a square lattice with hierarchies of

autonomous generalized symmetries and conservation laws in both directions. Their orders in both di-

rections are equal to κN , where κ is an arbitrary natural number and N is the equation number in the

series. Such a structure of hierarchies is new for discrete equations in the case N > 2. The symmetries

and conservation laws are constructed using the master symmetries, which are found directly together

with generalized symmetries. Such a construction scheme is apparently new in the case of conservation

laws. Another new point is that in one of the directions, we introduce the master symmetry time into the

coefficients of the discrete equations. In the most interesting case N = 2, we show that a second-order

generalized symmetry is closely related to a relativistic Toda-type integrable equation. As far as we know,

this property is very rare in the case of autonomous discrete equations.
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1. Introduction

The discrete integrable equation

(un,m+1 + 1)(un,m − 1) = (un+1,m+1 − 1)(un+1,m + 1) (1)

is well known [1], [2]. Several integrable generalizations of this equation were recently found [3]–[5]. All of
them are nonautonomous, and we write the two most interesting here. One of them is

(un,m+1 + χn+m+1)(un,m − χn+m) = (un+1,m+1 − χn+m)(un+1,m + χn+m+1),

χk =
1
2
(1 + (−1)k),

(2)

which is Eq. (77) in [4] up to the involution n ↔ m. The second example in fact represents a series of
discrete equations corresponding to some periods of an n-dependent coefficient. For any fixed N ≥ 1, the
equation is

αn(un,m+1 + 1)(un,m − 1) = αn+1(un+1,m+1 − 1)(un+1,m + 1),

αn+N = αn �= 0 for all n ∈ Z.
(3)
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It was studied in [5]. In both cases, these generalizations have hierarchies of generalized symmetries and
conservations laws in both directions and also L–A pairs, but all these objects are nonautonomous, i.e.,
they depend explicitly on the discrete variable n or m.

Here, we construct a series of autonomous integrable generalizations of (1). We show that all equations
of that series have autonomous L–A pairs, generalized symmetries, and conservations laws. In particular,
that series provides examples of autonomous discrete equations such that the minimum possible orders of
their autonomous generalized symmetries in any direction can be arbitrarily high. A series of equations
constructed here is a particular case of (3), but our results here are not a direct consequence of the results
in [5].

In Sec. 2, we consider an autonomous generalization of (1) with an arbitrary constant coefficient. This
generalization includes the whole series under consideration, and we construct hierarchies of generalized
symmetries and of conservation laws in the m direction for it. These results are needed in the subsequent
sections. In Sec. 3, we construct and study a series of autonomous integrable generalizations of (1), which is
our aim here. We construct autonomous generalized symmetries and conservation laws in the m direction in
Sec. 3.1 and discuss symmetries and conservation laws in the n direction in Secs. 3.2 and 3.4. We consider
the most interesting case N = 2 in more detail in Sec. 3.3 and discuss its relation to a relativistic Toda-type
equation. In Sec. 3.5, we construct autonomous L–A pairs for equations of the series. In Sec. 4 based on
our results, we formulate and discuss an important conjecture on the symmetry structure of equations of
the series and also briefly discuss all the new results obtained.

2. Autonomous generalization of (1) with an arbitrary constant
coefficient

The broadest generalization of Eq. (1) that we know is

(un,m+1 + an,m+1)(un,m − an,m) = (un+1,m+1 − bn+1,m+1)(un+1,m + bn+1,m),

an,m+2 = an,m, bn,m+2 = bn,m, a2
n,m = b2

n,m.
(4)

This is Eq. (40) in [4] up to the transformations n ↔ m and bn,m → −bn,m. Equations (1) and (2) are
particular cases of it. In the case bn,m = an,m �= 0 for all n and m, after the rescaling un,m = ûn,man,m, we
obtain the equation for ûn,m:

αn(un,m+1 + 1)(un,m − 1) = αn+1(un+1,m+1 − 1)(un+1,m + 1), αn �= 0, (5)

where αn = an,m+1an,m. This equation was introduced in Sec. 3 in [3] in a slightly different form.
There is an obvious autonomous subcase of (5) with an arbitrary constant coefficient β:

(un,m+1 + 1)(un,m − 1) = β(un+1,m+1 − 1)(un+1,m + 1), β �= 0. (6)

It corresponds to the restriction αn+1/αn = β for all n, i.e., we obtain αn = βn up to a factor. Equation (6)
has an L–A pair and hierarchies of generalized symmetries and conservation laws in the m direction, but
all these objects are nonautonomous. Equation (6) includes the whole series of equations that is our aim
here. The results we present here are needed in the subsequent sections.

An L–A pair for Eq. (6) is given by

Ψn+1,m = L(1)
n,mΨn,m, Ψn,m+1 = L(2)

n,mΨn,m, (7)
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where Ψn,m is a vector function,

L(1)
n,m =

⎛
⎝

1 2λβn(un,m + 1)

− 2
un,m − 1

un,m + 1
un,m − 1

⎞
⎠ ,

L(2)
n,m =

(
1 −λβn(un,m + 1)(un,m+1 − 1)

1 0

)
,

(8)

and λ is the spectral parameter. The L–A pair corresponding to (5) was presented in a more general form
in [5] and was first constructed in [3].

2.1. Generalized symmetries in the m direction. A differential–difference equation of the form

∂tun,m = hn,m(un,m+μ, un,m+μ−1, . . . , un,m−μ), μ > 0, (9)

is called a generalized symmetry in the m direction of the discrete equation

Φn,m(un,m, un+1,m, un,m+1, un+1,m+1) = 0 (10)

if Eqs. (9) and (10) are compatible. The compatibility condition is obtained by differentiating (10) with
respect to the time t by virtue of (9),

∑
i,j∈{0,1}

hn+i,m+j
∂Φn,m

∂un+i,m+j
= 0, (11)

and must be satisfied identically on solutions of (10).
We suppose that there exist numbers n1, m1, n2, and m2, such that

∂hn1,m1

∂un1,m1+μ
�= 0,

∂hn2,m2

∂un2,m2−μ
�= 0. (12)

The number μ is called the order of generalized symmetry (9). The form of Eq. (9) is symmetric in a sense.
An explanation why such a form is natural for integrable differential–difference equations can be found
in [6].

We first discuss the particular case of (6) where β = 1, which is known. It is important because we
construct generalized symmetries for general case (3) in terms of symmetries of this particular case. Its
simplest generalized symmetry in the m direction is

∂t′1
un,m = (u2

n,m − 1)(un,m+1 − un,m−1) = f (1)
n,m (13)

and is just the modified Volterra equation. The known master symmetry of (13) (see [7]) can be written in
the form

∂τ ′un,m = (u2
n,m − 1)((m + 1)un,m+1 − (m − 1)un,m−1) = gn,m. (14)

The hierarchy of Eq. (13) can be constructed as

∂t′
k
un,m = f (k)

n,m(un,m+k, un,m+k−1, . . . , un,m−k), k ≥ 1, (15)

f (k+1)
n,m = adgn,m f (k)

n,m = [gn,m, f (k)
n,m] = Dτ ′f (k)

n,m − Dt′k
gn,m =

=
k∑

j=−k

gn,m+j
∂f

(k)
n,m

∂un,m+j
−

1∑
j=−1

f
(k)
n,m+j

∂gn,m

∂un,m+j
. (16)
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Here, Dτ ′ and Dt′
k

are the operators of total derivatives by virtue of the respective Eqs. (14) and (15) with
the definition shown in (16).

We thus obtain the standard, known symmetries of the modified Volterra equation. Because [f (1)
n,m, f

(k)
n,m]

= 0 for the thus constructed functions and

gn,m = mf (1)
n,m + (u2

n,m − 1)(un,m+1 + un,m−1), (17)

it is easy to prove by induction that all the functions f
(k)
n,m do not depend explicitly on m, for example,

f (2)
n,m = (u2

n,m − 1)[(u2
n,m+1 − 1)(un,m+2 + un,m) − (u2

n,m−1 − 1)(un,m + un,m−2)]. (18)

It can be shown (see an explanation below) that (15) are also generalized symmetries of discrete equation (6)
with β = 1. We also note that both (13) and its master symmetry (14) are generalized symmetries of discrete
equation (6) with β = 1.

In general case (6), the simplest generalized symmetry in the m direction is

∂t1un,m = βnf (1)
n,m, (19)

and its master symmetry is given by
∂τ ′′un,m = βngn,m, (20)

but it is not a generalized symmetry of (6) and therefore allows constructing generalized symmetries for (19)
but not for (6). To solve this problem, we must introduce a special dependence on the master symmetry
time in discrete equation (6) and both Eqs. (19) and (20). Such a scheme with the time of the master
symmetry introduced into a discrete equation is probably used for the first time.

We consider a special generalization of (6):

An(τ)(un,m+1 + 1)(un,m − 1) = An+1(τ)(un+1,m+1 − 1)(un+1,m + 1), (21)

where
An(τ) = (β−n + 4τ)−1, A′

n(τ) = −4A2
n(τ), An(0) = βn, (22)

and τ is an external parameter. Here, τ is the time of a master symmetry. It can be verified that both the
equations

∂t1un,m = F (1)
n,m = An(τ)f (1)

n,m, (23)

∂τun,m = Gn,m = An(τ)gn,m (24)

are generalized symmetries of (21). In particular, the important relation A′
n = −4A2

n in (22) is a consequence
of the compatibility of (21) and (24). Because (24) does not commute with (23), it is reasonable to expect
that for any k ≥ 1, the functions

F (k+1)
n,m = adGn,m F (k)

n,m = [Gn,m, F (k)
n,m] = DτF (k)

n,m − Dtk
Gn,m =

=
∂F

(k)
n,m

∂τ
+

k∑
j=−k

Gn,m+j
∂F

(k)
n,m

∂un,m+j
−

1∑
j=−1

F
(k)
n,m+j

∂Gn,m

∂un,m+j
(25)
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define nontrivial generalized symmetries of (21). We see that (24) allows constructing a hierarchy of
generalized symmetries of (21). It also generates a hierarchy of conservation laws (see Sec. 2.2). Therefore,
Eq. (24) plays the role of the master symmetry not only for (23) but also for discrete equation (21).

We now study the structure of these generalized symmetries to later extract the autonomous ones
among them. By induction, we can prove the formula

F (k)
n,m = Ak

n(τ)
k−1∑
j=0

4jck,jf
(k−j)
n,m , (26)

where ck,j are some constants, for example,

c1,0 = 1, c2,0 = 1, c2,1 = −1, c3,0 = 1, c3,1 = −3, c3,2 = 2. (27)

Substituting (26) in (25), we obtain

F (k+1)
n,m =

∂Ak
n(τ)
∂τ

k−1∑
j=0

4jck,jf
(k−j)
n,m + Ak+1

n (τ)
k−1∑
j=0

4jck,j adgn,m f (k−j)
n,m . (28)

Taking (16) and (22) into account, we obtain

F (k+1)
n,m = −kAk+1

n (τ)
k∑

j=1

4jck,j−1f
(k+1−j)
n,m + Ak+1

n (τ)
k−1∑
j=0

4jck,jf
(k+1−j)
n,m . (29)

Comparing (26) and (29), we derive the recurrence relations

ck+1,j = ck,j − kck,j−1, ck,−1 = ck,k = 0, c1,0 = 1, 0 ≤ j ≤ k, k ≥ 1. (30)

We see that generalized symmetries of (21) have the form

∂tk
un,m = F (k)

n,m, k ≥ 1, (31)

where the functions F
(k)
n,m have form (26) and f

(k)
n,m, An(τ), and ck,j are given by (16), (22), and (30). The

order of such a symmetry is k. An explicit dependence on n and τ is defined by the factor Ak
n(τ), and there

is here no explicit dependence on m. If τ = 0, then Eq. (21) becomes (6), and symmetries (31) become
generalized symmetries of (6).

Theorem 1. Discrete equation (6) has generalized symmetries of the form

∂tk
un,m = βnk

k−1∑
j=0

4jck,jf
(k−j)
n,m , k ≥ 1, (32)

where f
(k)
n,m and ck,j are defined by (16) and (30). These symmetries do not depend explicitly on m, and a

dependence on n is given by the factor βnk.

In the case β = 1, we can see that not only the special linear combination of f
(k)
n,m given by (32) but

also any of the functions f
(k)
n,m define generalized symmetries of (6).
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2.2. Conservation laws in the m direction. We consider the relation

(Tn − 1)pn,m = (Tm − 1)qn,m, (33)

where the functions pn,m and qn,m depend on n, m, and un+i,m+j and where Tn and Tm are the shift
operators in the n and m directions: Tnhn,m = hn+1,m, Tmhn,m = hn,m+1. This relation is called the
conservation law of discrete equation (10) if (33) is satisfied identically on solutions of (10). Using (10), we
can rewrite pn,m and qn,m in terms of only n, m, and the functions un+i,m and un,m+j, and we represent them
in such a form. In the m-direction case, pn,m has the form pn,m = pn,m(un,m+k1 , un,m+k1−1, . . . , un,m+k2),
where k1 ≥ k2. This function pn,m can be called a conserved density by analogy with the discrete–differential
case.

For k1 > k2, we obtain conserved densities pn,m such that

∂2pn,m

∂un,m+k1∂un,m+k2

�= 0 for all n, m.

The number k1 − k2 can then be called the order of this conservation law (see, e.g., [6]). If k1 = k2 and
pn,m is not constant, then the conservation law is not trivial, and its order is equal to zero. Conservation
laws of different orders are essentially different.

Conservation laws for (6) were constructed in [8] using L–A pair (8). But we have only one way to
construct conservation laws and a few laws. In this one way, it is difficult to follow the structure of the
conservation laws and extract the autonomous ones among them. Here, we solve the problem using master
symmetry (24). Such a strategy for constructing conservation laws is apparently new.

It is known in the discrete–differential case that differentiating a conservation law by virtue of the
master symmetry, we obtain new conservation laws [6]. Here, we show that the same is true for discrete
conservation laws (33). We demonstrate this in detail in the example of discrete equation (21) and its
master symmetry (24). As in the preceding section, we then pass to Eq. (6) by choosing τ = 0.

It is easy to verify that the functions

p(1)
n,m = An(τ)(un,m+1 − 1)(un,m + 1), q(1)

n,m = −2An(τ)un,m (34)

define a conservation law for (21) in the m direction. Using it and master symmetry (24), we can construct
a hierarchy of conservation laws for Eq. (21):

(Tn − 1)p(k)
n,m = (Tm − 1)q(k)

n,m, k ≥ 1, (35)

all of which do not depend explicitly on m. We do this by induction, using the property that

(Tn − 1)Dτp(k)
n,m = (Tm − 1)Dτq(k)

n,m (36)

is also a conservation law, where Dτ is the total derivative by virtue of master symmetry (24), which is one
of generalized symmetries of (21) in the m direction. As a result, the operator Dτ automatically commutes
with Tm and commutes with Tn on solutions of discrete equation (21).

New conservation law (36) depends on m explicitly. To eliminate m, we use the fact that we can
add a function of the form (Tn − 1)(Tm − 1)hn,m to both sides of conservation law (33) and obtain a new
conservation law defined by

p̃n,m = pn,m + (Tm − 1)hn,m, q̃n,m = qn,m + (Tn − 1)hn,m. (37)
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In addition, we use the fact that p
(k)
n,m are also conserved densities for differential–difference equation (23),

Dt1p
(k)
n,m = (Tm − 1)r(k)

n,m, (38)

because (38) is satisfied for k = 1 with

r(1)
n,m = A2

n(τ)(un,m+1 − 1)(u2
n,m − 1)(un,m−1 + 1)

and it is known from the differential–difference case that if p
(k)
n,m is a conserved density of (23), then the

function Dτp
(k)
n,m is also a conserved density of it.

We suppose that the functions p
(k)
n,m, q

(k)
n,m, and r

(k)
n,m do not depend explicitly on m for some k ≥ 1.

The total derivative Dτp
(k)
n,m then depends on m linearly:

Dτp(k)
n,m = (m − 1)Dt1p

(k)
n,m + . . . . (39)

Because of (38), we can use transformation (37) with hn,m = −(m − 1)r(k)
n,m and as a result obtain

p(k+1)
n,m = Dτp(k)

n,m − (Tm − 1)[(m − 1)r(k)
n,m], (40)

q(k+1)
n,m = Dτ q(k)

n,m − (Tn − 1)[(m − 1)r(k)
n,m]. (41)

The function p
(k+1)
n,m is a new conserved density for discrete equation (21) and for its symmetry (23) and

does not depend explicitly on m.
We now explain how to construct the function r

(k+1)
n,m and why it has no explicit dependence on m. We

also give a simpler construction scheme for the functions p
(k)
n,m, which provides important information about

their structure and also a second, more rigorous justification that these functions are conserved densities
of (23).

The function
vn,m = An(τ)(un,m+1 − 1)(un,m + 1) (42)

satisfies the equations

∂t1vn,m = vn,m(vn,m+1 − vn,m−1), (43)

∂τvn,m = vn,m((m + 2)vn,m+1 + vn,m − (m − 1)vn,m−1), (44)

which is just the Volterra equation and its master symmetry [9]. Relation (42) is a slight nonautonomous
generalization of the well-known discrete Miura transformation. It transforms the problem of constructing
p
(k)
n,m and r

(k)
n,m into the well-known problem for the Volterra equation. In particular, the initial conserved

density p
(1)
n,m becomes p

(1)
n,m = vn,m, and it is a common density for all generalized symmetries of Volterra

equation (43). Therefore, it can be rigorously proved that the functions Dk
τ p

(1)
n,m for all k are conserved

densities for (43) (see Theorem 20 in [6]).
The function r

(1)
n,m becomes r

(1)
n,m = vn,mvn,m−1. All the functions p

(k)
n,m and r

(k)
n,m can also be expressed

in terms of vn,m+j , i.e., relations (38) become conservation laws of Volterra equation (43). The structure
of these conservation laws is described by the following lemma.

Lemma 1. For any k ≥ 1, the function p
(k)
n,m is an autonomous and homogeneous polynomial of degree

k and has the form

p(k)
n,m = P (k)(vn,m, vn,m+1, . . . , vn,m+k−1),

∂2P (k)

∂vn,m ∂vn,m+k−1
�= 0. (45)

The function r
(k)
n,m is also an autonomous and homogeneous polynomial of degree k + 1 and has the form

r(k)
n,m = R(k)(vn,m−1, vn,m, vn,m+1, . . . , vn,m+k−1). (46)
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We recall that for any k ≥ 1, two such functions define a conservation law of order k−1 for differential–
difference equation (43) (see, e.g., [6]). The functions p

(k)
n,m and r

(k)
n,m are autonomous in the sense that they

depend explicitly on neither n nor m.

Outline of proof. The lemma holds for k = 1. We suppose that it holds for some k ≥ 1 and prove
that it holds for k + 1. We use the same formula (40) to construct p

(k+1)
n,m . In this case, we can easily verify

that this function satisfies the conditions of the lemma. The function p
(k+1)
n,m is the next conserved density

of (43). There hence exists a function r
(k+1)
n,m satisfying relation (38) and depending on vn,m+j . It can be

easily constructed directly from (38) (see, e.g., [6]). Moreover, the left-hand side of (38) is an autonomous
homogeneous polynomial of vn,m+j of degree k + 2. If we seek r

(k+1)
n,m as a homogeneous polynomial, then

it exists and is unique and autonomous. The resulting function satisfies the assertion of the lemma.

If we replace vn,m+j with un,m+j in both p
(k)
n,m and r

(k)
n,m using (42), then we obtain a conservation law

for symmetry (23), and its order is k (see Theorem 18 in [6]). It is clear that the thus constructed functions
p
(k)
n,m and r

(k)
n,m do not depend explicitly on m. Because p

(k)
n,m in (45) is a homogeneous polynomial of degree

k, its structure in terms of un,m+j is

p(k)
n,m = Ak

n(τ)P̂ (k)(un,m, un,m+1, . . . , un,m+k), (47)

where P̂ (k) is an autonomous polynomial. The dependence on n and τ here is determined by only the factor
Ak

n(τ).
We can now show that q

(k+1)
n,m does not depend explicitly on m and the structure of q

(k)
n,m is similar

to (47).

Lemma 2. For any k ≥ 1, the function q
(k)
n,m has the form

q(k)
n,m = Ak

n(τ)Q̂(k)(un,m, un,m+1, . . . , un,m+k−1), (48)

where Q̂(k) is an autonomous polynomial. The function q
(k+1)
n,m can be constructed using the recurrence

relation

q(k+1)
n,m =

∂q
(k)
n,m

∂τ
+ An(τ)

k−1∑
j=0

(u2
n,m+j − 1)((j + 2)un,m+j+1 − jun,m+j−1)

∂q
(k)
n,m

∂un,m+j
. (49)

Proof. It follows from relations (39) and (41) that q
(k+1)
n,m depends on m linearly:

q(k+1)
n,m = (m − 1)W (k)

n,m + Z(k)
n,m, W (k)

n,m = Dt1q
(k)
n,m − (Tn − 1)r(k)

n,m.

Relation (35) where k is replaced with k + 1 and the fact that p
(k+1)
n,m is independent of m imply that

(Tm − 1)W (k)
n,m = 0 on solutions of (21).

The function W
(k)
n,m can be expressed in terms of only n, τ , and un,m+j. This is obvious for Dt1q

(k)
n,m

and holds for r
(k)
n,m by virtue of (42) and (46). Definition (42) of vn,m and discrete equation (21) imply that

vn+1,m = An(τ)(un,m+1 + 1)(un,m − 1). (50)

Therefore, Tnr
(k)
n,m = R(k)(vn+1,m−1, vn+1,m, . . . , vn+1,m+k−1) can also be expressed in this way. It is impor-

tant that the dependence on un,m+j in W
(k)
n,m is polynomial. Such a function W

(k)
n,m satisfies (Tm−1)W (k)

n,m = 0
if and only if it is independent of un,m+j, i.e., W

(k)
n,m = η

(k)
n (τ). This function vanishes if un,m+j = 1 for all

j, and therefore W
(k)
n,m ≡ 0.

For q
(k+1)
n,m , we now obtain the formula q

(k+1)
n,m = (Dτ − (m−1)Dt1)q

(k)
n,m, which can be rewritten as (49).

Structure (48) for q
(k+1)
n,m follows from (22), (34), and recurrence relation (49).
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We thus obtain the explicit formulas

p(1)
n,m = vn,m, q(1)

n,m = −2An(τ)un,m, r(1)
n,m = vn,mvn,m−1, (51)

p(2)
n,m = vn,m(2vn,m+1 + vn,m),

q(2)
n,m = −4A2

n(τ)(un,m+1u
2
n,m − un,m+1 − 2un,m),

r(2)
n,m = 2vn,mvn,m−1(vn,m+1 + vn,m),

(52)

p(3)
n,m = 2vn,m(3vn,m+2vn,m+1 + 3vn,m+1vn,m + 3v2

n,m+1 + v2
n,m),

q(3)
n,m = − 4A3

n(τ)[3(u2
n,m − 1)(un,m+2u

2
n,m+1 + u2

n,m+1un,m −

− un,m+2 − 4un,m+1 − 5un,m) + 16u3
n,m],

r(3)
n,m = 6vn,mvn,m−1(vn,m+2vn,m+1 + 2vn,m+1vn,m + v2

n,m+1 + v2
n,m),

(53)

where vn,m is given by (42). This illustrates the construction scheme described above.
If τ = 0, then discrete equation (21) becomes (6), and its conservation laws become conservation laws

of (6). Because An(0) = βn, we obtain the following result for the conservation laws of (6).

Theorem 2. For any k ≥ 1, discrete equation (6) has conservation law (35) of the order k defined by

functions of the forms
p(k)

n,m = βnkP̂ (k)(un,m, un,m+1, . . . , un,m+k),

q(k)
n,m = βnkQ̂(k)(un,m, un,m+1, . . . , un,m+k−1),

(54)

where the polynomials P̂ (k) and Q̂(k) depend explicitly on neither n nor m.

3. A series of autonomous integrable generalizations

In Sec. 2, we considered autonomous discrete equation (6) with an L–A pair and hierarchies of gen-
eralized symmetries and conservation laws in the m direction. But all those objects are essentially nonau-
tonomous. The symmetries, conservation laws, and L–A pairs of autonomous discrete equations that we
consider here are autonomous, and these equations have hierarchies of generalized symmetries and conser-
vation laws in both n and m directions. It was shown in [5] that discrete equation (3) that has a periodic
coefficient αn, should have hierarchies of generalized symmetries and conservation laws in both the n and m

directions. In the case of conservation laws, this was shown by using an L–A pair. In the case of symmetries,
we studied some particular cases.

Because we are interested in autonomous equations, we consider the intersection of Eqs. (3) and (6).
It follows from αn = βn that βN = 1. We therefore consider the equations

(un,m+1 + 1)(un,m − 1) = βN (un+1,m+1 − 1)(un+1,m + 1), βN
N = 1, N ≥ 1. (55)

To separate equations with different N , we here consider primitive roots of unity. It is clear that β1 = 1,
and this case is well-known (see (1)). If N > 1, then

βN
N = 1, βj

N �= 1 for all 1 ≤ j < N. (56)

In particular,

β1 = 1, β2 = −1, β3 = −1
2
± i

√
3

2
, β4 = ±i, (57)
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i.e., in the last two cases, we have two primitive roots corresponding to the signs + and −. For any N > 4,
at least two primitive roots exist, which are given by βN = e±2iπ/N . Hence, we below consider the series of
Eqs. (55) such that βN are primitive roots of unity.

Currently, we know only one similar series of integrable discrete equations [10]. Those equations are
Darboux integrable and of the Burgers type, and the minimum order of their first integrals can be arbitrarily
high. Equations of series (55) are integrable by the inverse scattering method.

For Eq. (55) with (56) and N = 2, we have β2 = −1, i.e., the equation is written as

(un,m+1 + 1)(un,m − 1) = −(un+1,m+1 − 1)(un+1,m + 1). (58)

This is the most interesting example in the series because it has real coefficients. It was found in [11], where
the authors sought discrete equations on a square lattice using five-point differential–difference equations
obtained in the recent symmetry classification [12], [13] as a generalized symmetry.

3.1. Autonomous generalized symmetries and conservation laws in the m direction. Here,
we construct autonomous generalized symmetries and conservation laws in the m direction for Eq. (55)
with (56) using the results in Sec. 2.

In Theorem 1, we constructed symmetries (32), where an explicit dependence on n was given by
the factor βnk. It follows from this theorem that Eqs. (55) with (56) have infinitely many autonomous
generalized symmetries in the m direction, which are given by (32) with k = N, 2N, 3N, . . . .

Corollary 1. For any N ≥ 2, discrete equation (55) with (56) has autonomous generalized symmetries

in the m direction given by (32), (16), and (30) with k = κN , κ ∈ N.

For Eq. (58), the simplest autonomous generalized symmetry in the m direction is given by

∂t2un,m = c2,0f
(2)
n,m + 4c2,1f

(1)
n,m. (59)

From (30), we find that c2,0 = 1 and c2,1 = −1, and using (13) and (18) for the functions f
(1)
n,m and f

(2)
n,m,

we obtain the explicit formulas

∂t2un,m = (u2
n,m − 1)[(u2

n,m+1 − 1)(un,m+2 + un,m) −

− (u2
n,m−1 − 1)(un,m + un,m−2) − 4(un,m+1 − un,m−1)]. (60)

This symmetry was first found in [11].
In Theorem 2, we constructed conservation laws for Eq. (6) given by (54) where an explicit dependence

on n was given by the factor βnk. It follows from this theorem that Eq. (55) with (56) have infinitely many
autonomous conservation laws in the m direction, and they are given by (54) with k = N, 2N, 3N, . . . .

Corollary 2. For any N ≥ 2, discrete equation (55) with (56) has infinitely many autonomous con-

servation laws, and their orders are multiples of N .

In the case of Eq. (58), the simplest autonomous conservation law, taken from (52), has the order 2
and is given by

p(2)
n,m = vn,m(2vn,m+1 + vn,m), vn,m = (un,m+1 − 1)(un,m + 1),

q(2)
n,m = −4(un,m+1u

2
n,m − un,m+1 − 2un,m).
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3.2. Generalized symmetries in the n direction. We consider generalized symmetries in the n

direction. Discrete equation (10) has a generalized symmetry in the n direction

∂θun,m = ζn,m(un+ν,m, un+ν−1,m, . . . , un−ν,m), ν > 0, (61)

if (10) and (61) are compatible, i.e., the equation

DθΦn,m =
∑

i,j∈{0,1}
ζn+i,m+j

∂∂Φn,m

un+i,m+j
= 0 (62)

is satisfied identically on solutions of (10). It is natural to suppose that there exist numbers n1, m1, n2,
and m2 such that

∂ζn1,m1

∂un1+ν,m1

�= 0,
∂ζn2,m2

∂un2−ν,m2

�= 0. (63)

The number ν is called the order of symmetry (61). The form of Eq. (61) is symmetric as in Sec. 2.1 for
the same reason as (9).

Two theorems for Eq. (5) and its “nondegenerate” symmetries of orders 1 and 2 were proved in [5].
Here, we prove analogous theorems for Eq. (6) and its symmetries of orders 1, 2 and 3 without using any
nondegeneracy conditions.

Theorem 3. The following two statements hold:

1. If Eq. (6) has a generalized symmetry (61) in the n direction of order N such that N = 1, 2, 3, then

βN = 1, i.e., Eq. (6) has form (55).

2. Equation (55) where N = 1, 2, 3 and βN is a primitive root of unity has a generalized symmetry of

order N and does not have generalized symmetries of lower orders.

Outline of proof. To construct generalized symmetries for the discrete equations, we use a method
developed in [3], [14] (see [15] for its most advanced version). Compatibility condition (62) is a functional
equation for the unknown function ζn,m. The method allows obtaining results from (62) in the form of
partial differential equations for ζn,m using the so-called annihilation operators introduced in [16].

1. If Eq. (6) has a generalized symmetry (61) of order N = 1, 2, 3, then the simplest differential
consequences of (62) have the forms

(βN − 1)
∂ζn,m

∂un+N,m
= 0, (βN − 1)

∂ζn,m

∂un−N,m
= 0, (64)

and these relations must be satisfied for all n and m. Conditions (63) and (64) imply that βN = 1.
2. For Eq. (55) where N = 1, 2, 3 and βN is a primitive root of unity, we seek symmetries of form (61)

with ν = N and we use no restriction like (63). We find the following generalized symmetries.
In the case N = 1, it has the form

∂θ1un,m = (u2
n,m − 1)

(
an+1

un+1,m + un,m
− an

un,m + un−1,m

)
, (65)

where an = b + cn with arbitrary constants b and c.
In the case N = 2, it has the form

∂θ2un,m = (u2
n,m − 1)(Tn − 1)

(
an+1(un+1,m + un,m)

Un,m
+

an(un−1,m + un−2,m)
Un−1,m

)
, (66)
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where
Un,m = (un+1,m + un,m)(un,m + un−1,m) − 2(u2

n,m − 1). (67)

The function an is given by an = bn + cn, where c is a constant and bn+2 ≡ bn is an arbitrary two-periodic
function on n. It can be represented as bn = b(1) + (−1)nb(2) with two arbitrary constants b(1) and b(2).

In the case N = 3, it has the form

∂θ3un,m = (u2
n,m − 1)(Tn − 1)

(
an+2Vn,m

Un,m
+

anWn,m

Un−2,m
+ (Tn + 1)

an+1Zn,m

Un−1,m

)
, (68)

where

Vn,m = β2
3(u2

n+1,m − 1) + un+1,m(un+2,m − un−1,m) − un+2,mun−1,m + 1,

Wn,m = β3(u2
n−2,m − 1) + un−2,m(un−1,m + un−3,m) + un−1,mun−3,m + 1,

Zn,m = (un+1,m + un,m)(un−1,m + un−2,m),

Un,m = β2
3(u2

n+1,m − 1)(un,m + un−1,m) + β3(u
2
n,m − 1)(un+2,m + un+1,m) +

+ (un+1,mun,m + 1)(un+2,m + un−1,m) + (un+1,m + un,m)(un+2,mun−1,m + 1).

Here, β3 is either of the two primitive roots in (57). The function an is given by an = bn + cn, where
c is a constant and bn+3 ≡ bn is an arbitrary three-periodic function. It can be represented as bn =
b(1) + b(2)βn

3 + b(3)β2n
3 , where b(1), b(2), and b(3) are arbitrary constants.

We see that such an Eq. (55) has a generalized symmetry of order N in all three cases. We can also
see that generalized symmetries of lower orders do not exist in the cases N = 2, 3 because the requirements
∂ζn,m/∂un+N,m ≡ 0 or ∂ζn,m/∂un−N,m ≡ 0 imply that ζn,m ≡ 0.

In the case N = 2, we have only the primitive root β2 = −1, and the formulas for bn in the cases
N = 2 and N = 3 are analogous. We have the following important corollary of Theorem 3 for autonomous
equations (55).

Corollary 3. Any of Eqs. (55) where N = 1, 2, 3 and βN is a primitive root of unity has an autonomous

generalized symmetry of order N given by (65)–(68) with an ≡ 1, and does not have autonomous generalized

symmetries of lower orders.

These autonomous symmetries exemplify integrable differential–difference equations with one contin-
uous variable θN and one discrete variable n, while the parameter m is not essential. Symmetry (65) with
an ≡ 1 was first found in [3] and corresponds to a well-known Volterra-type integrable equation [6], [17].
Symmetry (66) is a particular case of a nonautonomous symmetry of discrete equation (5) and was found
in [5]. Nevertheless, Eqs. (66) and (67) with an ≡ 1 provide new examples of autonomous integrable
differential–difference equations of orders 2 and 3.

If N = 2, then the subcases an ≡ 1 and an ≡ (−1)n of (66) are compatible, i.e., we here have two
commuting generalized symmetries of order 2. If N = 3, then the subcases an ≡ 1, an ≡ βn

3 , and an ≡ β2n
3

of (67) are compatible, i.e., we have three commuting generalized symmetries of order 3.
Equation (65) with an ≡ n is a known master symmetry for differential–difference equation (65) with

an ≡ 1 [18]. It is important for us that in all the three cases N = 1, 2, 3, the symmetry corresponding to
an ≡ n plays the role of the master symmetry for discrete equation (55) where βN is a primitive root of
unity. Compared with Sec. 2.1, these master symmetries are more convenient to use because they do not
depend explicitly on the time of the master symmetry.
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We let
∂θ̂N

un,m = Ξ(N)
n,m (69)

denote the generalized symmetry of discrete equation (55) with N = 2 or N = 3 corresponding to an ≡ n

in (66) or (67), which plays the role of the master symmetry. We show how to construct generalized
symmetries of higher orders

∂θ̃k,N
un,m = Υ(k,N)

n,m , k ∈ N, (70)

starting from symmetries (66) or (67) with a periodic coefficient an ≡ bn, which correspond to (70) with
k = 1. The order of such a symmetry is equal to kN . The right-hand sides of these symmetries are
constructed using the recurrence relation

Υ(k+1,N)
n,m = ad

Ξ
(N)
n,m

Υ(k,N)
n,m = D

θ̂N
Υ(k,N)

n,m − D
θ̃k,N

Ξ(N)
n,m =

=
kN∑

j=−kN

Ξ(N)
n+j,m

∂Υ(k,N)
n,m

∂un+j,m
−

N∑
j=−N

Υ(k,N)
n+j,m

∂Ξ(N)
n,m

∂un+j,m
, (71)

where Dθ̂N
and Dθ̃k,N

are the total derivatives by virtue of (69) and (70).

3.3. Comparison of the case N = 2 with a known example: Relation to relativistic Toda-
type equations. We consider discrete equation (58) in more detail. We know the only autonomous
example analogous to (58) from the standpoint of a generalized symmetry structure. It was found in [19]
and then studied in [20]. This example is

un+1,m+1(un,m − un,m+1) − un+1,m(un,m + un,m+1) + 2 = 0. (72)

Its generalized symmetries of orders 1 and 2 in the m direction are

∂t1un,m = (−1)n
un,m+1un,m−1 + u2

n,m

un,m+1 + un,m−1
, (73)

∂t2un,m =
(un,m+2 − un,m−2)(u

2
n,m+1 − u2

n,m)(u2
n,m − u2

n,m−1)
(un,m + un,m−2)(un,m+1 + un,m−1)2(un,m+2 + un,m)

. (74)

The simplest symmetry in the n direction has the order 2:

∂θ̃2
un,m = (un+1,mun,m − 1)(un,mun−1,m − 1)(bn+1un+2,m − bnun−2,m), (75)

where bn+2 ≡ bn is an arbitrary two-periodic function, i.e., bn = b(1) + b(2)(−1)n with arbitrary constant
coefficients b(1) and b(2). In the case of discrete equation (58), a symmetry analogous to (73) is

∂t1un,m = (−1)n(u2
n,m − 1)(un,m+1 − un,m−1). (76)

Generalized symmetries of Eq. (58) similar to (74) and (75) are (60) and (66) with an ≡ bn.
Autonomous discrete equations (58) and (72) have hierarchies of autonomous generalized symmetries

in both directions. The orders of those autonomous symmetries are even, and as can be seen from the
examples above, the simplest autonomous generalized symmetries in both directions have order 2.

In [20], we showed that differential–difference equation (75) is equivalent to a Tsuchida system [21] (see
details below). But in the class of five-point differential–difference equations, this in itself is an interesting
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integrable example. Equation (66) with an ≡ bn seems a new integrable example of a five-point differential–
difference equation. In [20], we briefly noted that Eq. (75) is similar to relativistic Toda-type equations
(see Secs. 4.2 and 4.3 in [22] and Sec. 3.3 in [6]) according to its generalized symmetry properties. In [5],
we demonstrated such a relation to relativistic Toda-type equations more explicitly for a nonautonomous
equation. Here, following [5], we demonstrate such an explicit relation for Eqs. (75) and (66) with an ≡ bn.

We first consider generalized symmetry (75). For any fixed m, we introduce vk = u2k,m, wk = u2k−1,m,
ς = b2k, and η = b2k−1 and rewrite (75) as a system:

∂θ̃2
vk = (ηvk+1 − ςvk−1)(wk+1vk − 1)(vkwk − 1),

∂θ̃2
wk = (ςwk+1 − ηwk−1)(vkwk − 1)(wkvk−1 − 1).

(77)

This is just Tsuchida system (3.13) in [21]. In either of the two cases ς = 1, η = 0 or ς = 0, η = 1, we
introduce Uk = log vk or Uk = − log wk and in any of these four cases obtain the relativistic Toda-type
equation

Ük = U̇k(U̇k+1 − U̇k−1 − eUk+1−Uk + eUk−Uk−1), (78)

where we set U̇k = ∂θ̃2
Uk. This is the known Eq. (Ld3) in [6] with μ = 0 and ν = 1.

We now consider symmetry (66) with an ≡ bn. For any fixed m, we introduce ũn:

un,m =
ũn + ũn+1

ũn − ũn+1
.

This transformation is not invertible but is linearizable, i.e., it is not of the Miura type in the terminology
in [23]. As a result, we obtain the integrable modification of (66) with an ≡ bn

∂θ̃2
ũn =

(ũn+2 − ũn)(ũn+1 − ũn)(ũn − ũn−1)
2(ũn+2ũn + ũn+1ũn−1) − (ũn+2 + ũn)(ũn+1 + ũn−1)

bn+1 +

+
(ũn+1 − ũn)(ũn − ũn−1)(ũn − ũn−2)

2(ũn+1ũn−1 + ũnũn−2) − (ũn+1 + ũn−1)(ũn + ũn−2)
bn. (79)

We now pass to the notation vk = ũ2k, wk = ũ2k−1, ς = b2k, and η = b2k−1 and obtain the system

∂θ̃2
vk =

(vk+1 − vk)(wk+1 − vk)(vk − wk)
2(vk+1vk + wk+1wk) − (vk+1 + vk)(wk+1 + wk)

η +

+
(wk+1 − vk)(vk − wk)(vk − vk−1)

2(wk+1wk + vkvk−1) − (wk+1 + wk)(vk + vk−1)
ς,

∂θ̃2
wk =

(wk+1 − wk)(vk − wk)(wk − vk−1)
2(wk+1wk + vkvk−1) − (wk+1 + wk)(vk + vk−1)

ς +

+
(vk − wk)(wk − vk−1)(wk − wk−1)

2(vkvk−1 + wkwk−1) − (vk + vk−1)(wk + wk−1)
η.

(80)

In either of the two subcases ς = 2, η = 0 or ς = 0, η = 2, we introduce Uk = vk or Uk = wk and in any of
these four cases obtain the relativistic Toda-type equation

Ük = U̇2
k

(
U̇k−1

(Uk − Uk−1)2
− U̇k+1

(Uk − Uk+1)2
+

1
Uk − Uk−1

+
1

Uk − Uk+1

)
,

where we set U̇k = ∂θ̃2
Uk. This is the known Eq. (L2) in [6] with r(x, y) = (x − y)2/2.

New examples of five-point differential–difference equations similar to (66) with an ≡ bn and (75)
recently appeared in [24].
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3.4. Conservation laws in the n direction. Because Eq. (55) with N = 1 is well known, we here
consider the cases N = 2 and N = 3 and conservation laws in the n direction, which are autonomous.

The relation
(Tn − 1)p̌n,m = (Tm − 1)q̌n,m, (81)

where p̌n,m and q̌n,m depend on n, m, and un+i,m+j, is called the conservation law of discrete equation (55)
with (56) if it is satisfied identically on solutions of this equation. Using (55), we can rewrite p̌n,m and
q̌n,m in terms of only n, m, and the functions un+i,m and un,m+j , and we write them in namely this
representation. In n-direction case, q̌n,m becomes

q̌n,m = q̌n,m(un+k1,m, un+k1−1,m, . . . , un+k2,m), k1 ≥ k2.

The function q̌n,m can be called the conserved density by analogy with the discrete–differential case.
For k1 > k2, we obtain the densities q̌n,m, such that

∂2q̌n,m

∂un+k1,m ∂un+k2,m
�= 0 for all n, m.

We then call k1 − k2 the order of such a conservation law. If k1 = k2 and the function q̌n,m is not constant,
then (81) is the nontrivial zeroth-order conservation law. Conservation laws of different orders are essentially
different.

We use master symmetries (69) to construct conservation laws in the cases N = 2, 3. They are simpler
than in Sec. 2.1 in the sense that they do not depend explicitly on the time θ̂N of the master symmetry.
But constructing conservation laws in such a way is new even in the θ̂N -independent case.

We construct a hierarchy of n-independent conservation laws for Eq. (55) with (56) with N = 2, 3:

(Tn − 1)p̌(k)
n,m = (Tm − 1)q̌(k)

n,m, k ≥ 1. (82)

Similarly to Sec. 2.2, we can construct the conservation laws by induction using the property that

(Tn − 1)D
θ̂N

p̌(k)
n,m = (Tm − 1)D

θ̂N
q̌(k)
n,m (83)

is also a conservation law. Here, Dθ̂N
is the total derivative by virtue of (69).

In both the N=2 and N=3 cases, the starting conservation law is constructed using (33) in [3]. We let

∂θ̃N
un,m = Ω(N)

n,m (84)

denote autonomous symmetries (66) and (67) with an ≡ 1 and rewrite the corresponding discrete equa-
tion (55) with (56) in the form

un+1,m+1 = ϕ(N)(un,m, un+1,m, un,m+1).

Then the starting conservation laws are

(1 − T N
n )T−1

n log
∂ϕ(N)

∂un+1,m
= (Tm − 1) log

∂Ω(N)
n,m

∂un+N,m
. (85)

Such a conservation law is autonomous with the conserved density q̌
(1)
n,m = log(∂Ω(N)

n,m/∂un+N,m), but
conservation law (83) depends explicitly on the variable n. How to eliminate this dependence on n from
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such a conservation law is explained in Sec. 2.2. We can do this because master symmetry (69) depends on
n linearly, the function q̌

(1)
n,m is also a conserved density of Eq. (84), and we can add a function of form (37)

to both sides of conservation law (83).
If N = 2, then we can rewrite conservation law (85) in the form

(Tm − 1)q̌(k)
n,m = (T 2

n − 1)p̆(k)
n,m, (86)

where k = 1,

q̌(1)
n,m = log

(u2
n+1,m − 1)(u2

n,m − 1)
U2

n+1,m

, p̆(1)
n,m = log

un,m + 1
un,m+1 − 1

, (87)

and Un,m is given by (68). The form of this conservation law is specific, but it is a particular case of (82)
with p̌

(k)
n,m = (Tn + 1)p̆(k)

n,m. Using master symmetry (69), we obtain the next conservation law, which can
be made autonomous and rewritten in the same specific form (86). It is given by

q̌(2)
n,m = −

(un+4,m + un+3,m)(u2
n+2,m − 1)(un+1,m + un,m)

Un+3,mUn+1,m
+

u2
n+1,m − 1
Un+1,m

,

p̆(2)
n,m =

(un+2,m + un+1,m)(un,m − 1)
Un+1,m

.

The orders of these conservation laws are 2 and 4. These conservation laws were constructed in [5] in a
slightly different form using an L–A pair.

If N = 3, then we can rewrite conservation law (85) in the form

(Tm − 1)q̌(k)
n,m = (T 3

n − 1)p̆(k)
n,m, (88)

where k = 1, p̆
(1)
n,m is given by (87) as before,

q̌(1)
n,m = log

(u2
n+2,m − 1)(u2

n+1,m − 1)(u2
n,m − 1)

U2
n+1,m

,

and Un,m is given by (68). Specific form (88) is also a particular case of (82). This conservation law is
autonomous and has the order 3. Using master symmetry (69), we can obtain the next conservation law,
which can be made autonomous and rewritten in the same specific form (88) with k = 2. It has the order 6.
But it is too cumbersome to show here.

We note that using nonautonomous generalized symmetries (66) and (67) with an ≡ bn and the same
formula (85) for starting conservation laws, we can try to obtain nonautonomous conservation laws, but
nothing new arises because the operator Tm − 1 annihilates the explicit dependence on n.

3.5. Autonomous L–A pairs. Here, we construct autonomous L–A pairs for the discrete equations
of series (55) with (56) using nonautonomous L–A pair (7), (8) for Eq. (6). In the N=1 case, we have
β1 = 1, and this L–A pair is obviously autonomous.

Applying the operator T N−1
n to the first equation in (7), we obtain the result

Ψn+N,m = L(1,N)
n,m Ψn,m, Ψn,m+1 = L(2)

n,mΨn,m, (89)

where N ≥ 2, L
(1,N)
n,m = L

(1)
n+N−1,mL

(1)
n+N−2,m · · ·L(1)

n+1,mL
(1)
n,m, and β is replaced with βN in the matrices

L
(1)
n,m and L

(2)
n,m. The compatibility condition for (89) is

L
(1,N)
n,m+1L

(2)
n,m = L

(2)
n+N,mL(1,N)

n,m . (90)
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Because βN
N = 1, we can see that the factor βn

N is unchanged not only in the matrix L
(1,N)
n,m+1 but also

in L
(2)
n+N,m. It therefore plays no role in relation (90), and we can replace βn

N with a constant. It can be
eliminated by scaling the spectral parameter λ, and we obtain the relation

Λ(1,N)
n,m+1Λ

(2)
n,m = Λ(2)

n+N,mΛ(1,N)
n,m , (91)

defined by the matrices
Λ(1,N)

n,m = Θ(N−1)
n,m Θ(N−2)

n,m · · ·Θ(1)
n,mΘ(0)

n,m. (92)

Here,

Θ(k)
n,m =

⎛
⎝

1 2λβk
N (un+k,m + 1)

− 2
un+k,m − 1

un+k,m + 1
un+k,m − 1

,

⎞
⎠ ,

Λ(2)
n,m =

(
1 −λ(un,m + 1)(un,m+1 − 1)
1 0

)
.

For any N ≥ 2, matrix relation (91) is a consequence of discrete equation (55) where (56) is satisfied.
By direct calculation, we verified that for N = 2, 3, 4, relation (91) is equivalent to (55) with condition (56).
It is quite likely that the same holds for any N ≥ 2, and for Eq. (55) with (56), we obtain the autonomous
L–A pair

Ψn+N,m = Λ(1,N)
n,m Ψn,m, Ψn,m+1 = Λ(2)

n,mΨn,m. (93)

4. Conclusions

We have constructed a series of autonomous integrable discrete equations (55) where βN is a primitive
root of unity. Equation (55) with N = 1 is well known. Equations (55) with (56) have hierarchies of
autonomous generalized symmetries and conservation laws in both directions and also autonomous L–A

pairs.
We constructed symmetries and conservation laws of (55) with (56) using the master symmetries.

Those master symmetries arise as generalized symmetries of these discrete equations and depend linearly
on one of two discrete variables (see Secs. 2.1 and 3.2). One of them also has an explicit dependence on its
time. In the case of conservation laws, such a construction scheme seems new. Introducing the time of the
master symmetry into the corresponding discrete equation also seems a new feature in the method.

It seems to us that the following conjecture on the generalized symmetry structure should hold.

Conjecture. Each autonomous equation (55) with condition (56) has an infinite hierarchy of au-

tonomous generalized symmetries in both directions of orders κN , κ ≥ 1. The minimum possible order of

an autonomous generalized symmetry in any direction is equal to N .

We do not know any examples of this kind in case of hyperbolic partial differential equations analogous
to discrete equations of the form (10). The results presented in Secs. 3.1 and 3.2 support this conjecture.
Corollary 1 states that there exist autonomous generalized symmetries of orders κN in the m direction.
In Theorem 3, in particular, we proved that Eqs. (55) with condition (56) for N = 2, 3 have autonomous
generalized symmetries of the order N in the n direction and do not have autonomous symmetries of lower
orders. We can prove a similar result for the m direction.

Theorem 4. Equations (55) with condition (56) for N = 2, 3 have autonomous generalized symmetries

of the order N in the m direction and do not have autonomous symmetries of lower orders.
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Proof. The proof is similar to the proof of Theorem 3 but is very cumbersome, and we do not give it
here.

This conjecture is important from the standpoint of the generalized symmetry method for discrete
equations when classifying discrete equations using the existence of generalized symmetries of a fixed or-
der [14], [19]. Because the minimum order of an autonomous generalized symmetry can be arbitrarily high,
we cannot classify all integrable discrete equations (10) in this way in the autonomous case.

As our results show, the hierarchies of autonomous conservation laws should have a similar structure.
Each autonomous equation (55) with condition (56) should have an infinite hierarchy of autonomous con-
servation laws of the orders κN , κ ≥ 1, in both directions. This is true in the m direction (see Corollary 2).

The case N = 2 is most interesting because discrete equation (58) has no complex coefficients. We
considered it in more detail in Sec. 3.3. For this Eq. (58) and its known analogue (72), we showed that
their second-order generalized symmetries in the n direction are closely related to integrable differential–
difference equations of the relativistic Toda-type. We do not know any autonomous discrete example,
except (58), (72), with generalized symmetries of this kind.

Finally, we note that although autonomous equations (55) with condition (56) are more or less obvious
particular cases of nonautonomous equations (5), many results related to these autonomous equations are
new.
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