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Abstract
Using the generalized symmetry method we finish a classification, started in 
article (Garifullin et al 2017 J. Phys. A: Math. Theor. 50 125201), of integrable 
autonomous five-point differential–difference equations. The resulting list, up 
to autonomous point transformations, contains 14 equations some of which 
seem to be new. We have found non-autonomous or non-point transformations 
relating most of the obtained equations  among themselves as well as their 
generalized symmetries.

Keywords: integrability, generalized symmetry, classification,  
non-invertible transformation

1. Introduction

Here we conclude a generalized symmetry classification started in article [20]. The general-
ized symmetry method uses the existence of generalized symmetries as an integrability crite-
rion and allows one to classify integrable equations of a certain class. Using this method some 
important classes of partial differential equations  [31, 32], of differential–difference equa-
tions (DΔEs) [9, 43] and of partial difference equations (PΔEs) [16, 30] have been classified.

Other integrability criteria have been introduced to classify integrable PΔEs, see e.g. the 
consistency around the cube technique introduced in [10, 35, 36], whose results are presented, 
for example, in [5, 6, 13, 14].

A class of PΔEs, particularly important among recently studied, is given by those equa-
tions  which are defined on a square, i.e. which relate four neighboring points in the two-
dimensional plane. The complete classification of the integrable PΔEs defined on a square is 
very difficult to perform.

R N Garifullin et al

Classification of five-point differential–difference equations II

Printed in the UK

065204

JPHAC5

© 2018 IOP Publishing Ltd

51

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/aaa14e

Paper

6

1

16

Journal of Physics A: Mathematical and Theoretical

IOP

2018

1751-8121/18/065204+16$33.00 © 2018 IOP Publishing Ltd Printed in the UK

J. Phys. A: Math. Theor. 51 (2018) 065204 (16pp) https://doi.org/10.1088/1751-8121/aaa14e

https://orcid.org/0000-0002-1373-3030
mailto:rustem@matem.anrb.ru
mailto:RvlYamilov@matem.anrb.ru
mailto:decio.levi@roma3.infn.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/aaa14e&domain=pdf&date_stamp=2018-01-12
publisher-id
doi
https://doi.org/10.1088/1751-8121/aaa14e


2

Almost all integrable known PΔEs have the lowest order associated generalized symme-
tries given by integrable evolutionary DΔEs which are defined on three-point lattices [21, 22, 
27, 30, 41] and belong to the classification presented in [28, 43]. This is the classification of 
Volterra type equations

u̇n = Φ(un+1, un, un−1) (1)

presented in [42], and the resulting list of equations is quite big, see the details in the review 
article [43]. Here u̇n is the derivative of un with respect to a continuous variable t and n is 
discrete integer variable.

Recently one has obtained examples of PΔEs defined on the square which have the lowest 
order generalized symmetries defined on more than three-point lattices [1, 16, 33, 37]. So an 
alternative classification that seems easier to perform is that of integrable five-point DΔEs

u̇n = Ψ(un+2, un+1, un, un−1, un−2). (2)

Few results in this line of research are already known, see e.g. [2–4, 19, 20]. The integrable 
PΔEs are then obtained as Bäcklund transformations of these DΔEs [17, 20, 25, 26, 29].  
Their construction scheme is discussed in more detail in [17] and [20, appendix B]. The 
best known integrable example in this class is the Ito–Narita–Bogoyavlensky (INB) 
 equation [11, 24, 34]:

u̇n = un(un+2 + un+1 − un−1 − un−2). (3)

The classification of five-point lattice equations of the form (2) will contain equations com-
ing from the classification of Volterra type equation (1) in two ways. On one hand, they appear 
as equations of the form

u̇n = Φ(un+2, un, un−2). (4)

If un is a solution of (4), then the functions ũk = u2k and ûk = u2k+1 satisfy (1) with k instead 
of n. Equation (4) is in fact a three-point lattice equation equivalent to (1). On other hand they 
appear as generalized symmetries of (1). Any integrable Volterra type equation has a five-point 
symmetry of the form (2). See the explicit results for Volterra type equations presented for 
example in [23, 38, 39, 43].

To avoid those two cases, which are included in the classification of Volterra type  equations, 
and to simplify the problem, we limit ourselves to consideration here of just equations of the 
form

u̇n = A(un+1, un,un−1)un+2 + B(un+1, un, un−1)un−2

+ C(un+1, un, un−1),
 (5)

where A, B and C are n-independent functions of their arguments. The majority of the exam-
ples of DΔEs of the form (2) known up to now belong to the class (5) [4, 8, 11, 12, 16, 20, 24, 
33, 34, 40]. So the class (5) is not void.

However also few equations of the Volterra classification (1) are included in the five-point 
classification of the equations of the class (5). They are those polynomial equations which are 
linearly dependent on un+1 and un−1 [43]. Such equations, rewritten in the form (4), belong to 
the class (5). Also their five-point symmetries are of the form (5).

The theory of the generalized symmetry method is well-developed in case of Volterra type 
equations [43] and it has been modified for the case of DΔEs depending on 5 and more lattice 
points in [2, 3]. The classification problem of class (5) equations seems to be technically quite 
complicate. For this reason we use a simpler version of the method, compared with the one 
presented in [2, 3], which has been developed in [20]. For equations analogous to (3), which 
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are the first members of their hierarchies, the simplest generalized symmetry has the form  
[1, 16, 20, 33, 44]:

un,τ = G(un+4, un+3, un+2, un+1, un, un−1, un−2, un−3, un−4), (6)
where un,τ  denotes τ-derivative of un. We will use the existence of such symmetry as an inte-
grability criterion.

The problem naturally splits into two cases depending on the form of the functions A and 
B of (5), see an explanation in section 2. In [20] we studied the case when the functions A and 
B in (5) satisfied the conditions:

A �= α(un+1, un)α(un, un−1), B �= β(un+1, un)β(un, un−1) (7)

for any functions α and β of their arguments. This class is called the Class I, and it includes 
such well-known examples as the INB equation (3) and the discrete Sawada–Kotera equa-
tion [40]. In this case the following simple criterion for checking conditions (7) takes place:

∂

∂un

an+1an−1

an
�= 0,

∂

∂un

bn+1bn−1

bn
�= 0, (8)

where

an = A(un+1, un, un−1), bn = B(un+1, un, un−1),

see [20].
In [20] it was presented, as a result of the classification of the Class I equations, a novel 

equation:

u̇n = (u2
n + 1)

(
un+2

√
u2

n+1 + 1 − un−2

√
u2

n−1 + 1
)

. (9)

In [18] it is shown that in the continuous limit (9) goes into the well-known Kaup–Kupershmidt 
equation, and its integrability has been proved by constructing an L–A pair and conservation 
laws of sufficiently high order.

In this paper we consider the case when

A = α(un+1, un)α(un, un−1) or B = β(un+1, un)β(un, un−1) (10)

for some functions α and β of their arguments, i.e. when

∂

∂un

an+1an−1

an
= 0 or

∂

∂un

bn+1bn−1

bn
= 0. (11)

We will call this case Class II. A known representative of Class II is given in [16]:

u̇n = (un+1un − 1)(unun−1 − 1)(un+2 − un−2). (12)

In this article we present a complete list of equations of the Class II possessing a general-
ized symmetry of the form (6). In this way we complete the classification of integrable equa-
tion (5) started in [20]. Among them there are a few probably new integrable examples. Then 
we find the non-point autonomous or point non-autonomous transformations relating most of 
resulting equations among themselves.

In section 2 we discuss a theory of the generalized symmetry method suitable to solve our 
specific problem for Class II equations. In particular, in section 2.2 some integrability conditions 
are derived and criteria for checking those conditions are proved. In section 3 we present the list 
of integrable equations and the relations between those equations expressed as autonomous non-
point or non-autonomous point transformations. In section 4 the generalized symmetries of the 
resulting equations are discussed. Section 5 is devoted to some concluding remarks.
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2. Theory

Here we briefly repeat the theory, presented in the previous paper [20] and necessary for our 
present work, as well as derive few additional results related just to the Class II case.

To simplify the notation let us represent (5) as:

u̇n = anun+2 + bnun−2 + cn ≡ fn, (13)

where

an = A(un+1,un, un−1), bn = B(un+1, un, un−1),
cn = C(un+1, un, un−1).

 (14)

In (13) we require

an �= 0, bn �= 0. (15)

For convenience we denote the symmetry (6) as:

un,τ = gn, (16)

with the restriction:

∂gn

∂un+4
�= 0,

∂gn

∂un−4
�= 0. (17)

The compatibility condition for (13) and (16) is

un,τ ,t − un,t,τ ≡ Dtgn − Dτ fn = 0. (18)

Here Dt and Dτ  are the operators of total differentiation with respect to t and τ given respec-
tively by:

Dt =
∑
k∈Z

fk
∂

∂uk
, Dτ =

∑
k∈Z

gk
∂

∂uk
. (19)

As (13) and (16) as well as the compatibility condition (18) are autonomous, their form do 
not explicitly depend on the point n. For this reason, we write down for short below the equa-
tions and the compatibility condition (18) at the point n  =  0: u̇0 = f0, u0,τ = g0,

Dtg0 = Dτ f0. (20)

We assume as independent variables the functions

u0, u1, u−1, u2, u−2, u3, u−3 . . . . (21)

The condition (20) must be identically satisfied for all values of the independent variables 
(21). Equation (20) depends on the variables u−6, u−5, . . . , u5, u6 and it is an overdetermined 
system of equations for the unknown function g0, for any given f0. Using a standard technique 
of the generalized symmetry method [43], we can calculate g0 step by step, obtaining some 
necessary conditions for the function f0.

2.1. General case

The first steps for the calculation of g0 can be carried out with no restriction on the form of f0.
In fact, differentiating (20) with respect to u6, we obtain as before (see [20]) up to a  

τ-scaling in (16):

∂g0

∂u4
= a0a2.

 
(22)
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By differentiating (20) with respect to u5 and taking into account (22), we can define

h+0 =
∂g0

∂u3
− a1

∂f0
∂u1

− a0
∂f2
∂u3

, (23)

and we can state the following lemma [20]:

Lemma 1. If h+
0 �= 0, then there exists α̂n = α(un, un−1), such that a0 = α̂1α̂0.

As a consequence of lemma 1 there are two possibilities:

 • Case 1. Let a0 �= α̂1α̂0 for any α̂n = α(un, un−1), see (7). Then h+
0 = 0 due to lemma 1.

 • Case 2. Let a0 = α̂0α̂1 for some α̂n = α(un, un−1). Then we can find:

h+0 = µ+α̂0α̂1α̂2 (24)

  with an arbitrary constant µ+.

In both cases (23) gives us ∂g0
∂u3

.
In quite similar way, differentiating (20) with respect to u−6 and u−5, we get a set of rela-

tions analogous to (22) and (23). Namely,

∂g0

∂u−4
= νb0b−2, (25)

where ν is an arbitrary nonzero constant, and

h−
0 =

∂g0

∂u−3
− νb−1

∂f0
∂u−1

− νb0
∂f−2

∂u−3
. (26)

We can state a lemma similar to lemma 1 and, as a consequence, we get again two cases:

 1. Let b0 �= β̂0β̂−1 for any β̂n = β(un+1, un), then h−
0 = 0.

 2. Let b0 = β̂0β̂−1, then we can find:

h−0 = µ−β̂0β̂−1β̂−2 (27)

  with an arbitrary constant µ−.

In both cases (26) provides us ∂g0
∂u−3

.
So the results presented in this subsection provide a natural frame for splitting further 

calcul ation into several different cases. Obviously, any of the equation (5) belongs either to 
Class I given by (7) or to Class II given by (10). In the following in this paper we consider the 
Class II defined in the introduction by (10).

2.2. Integrability conditions for equations of Class II

We can construct two types of integrability conditions for equations of Class II. The first of 
them is obtained when one of the conditions (10) is not satisfied. Up to the involution n → −n, 
this corresponds to the case

A �= α(un+1, un)α(un, un−1), B = β(un+1, un)β(un, un−1), (28)

i.e.

h+
0 = 0, h−0 = µ−β̂0β̂−1β̂−2.

R N Garifullin et alJ. Phys. A: Math. Theor. 51 (2018) 065204



6

As we know, in this case the partial derivatives ∂g0
∂u3

, ∂g0
∂u−3

, ∂g0
∂u4

 and ∂g0
∂u−4

 are given by (22), (23), 
(25) and (26).

Differentiating (20) with respect to u4 and u−4 and introducing the functions:

q+0 =
1
a0

∂g0

∂u2
− Dt log a0 −

∂f0
∂u0

− ∂f2
∂u2

− 1
a0

∂f0
∂u1

∂f1
∂u2

, (29)

q−
0 =

1
νb0

∂g0

∂u−2
− Dt log b0 −

∂f0
∂u0

− ∂f−2

∂u−2
− 1

b0

∂f0
∂u−1

∂f−1

∂u−2
, (30)

we obtain two relations. The first of them has the form of a conservation law [20]:

2Dt log a0 = q+
2 − q+

0 . (31)

The second one is more complicated:

2Dt log b0 + (T−3 − 1)
(
µ−

νβ̂0

∂f0
∂u−1

)
= q−−2 − q−

0 . (32)

Here T is the shift operator, such that Thn = hn+1. Relations (31) and (32) provide necessary 
conditions for the integrability. If (13) is integrable in the sense that a symmetry (16) exists, 
then there must exist the functions q+

n , q−n  depending on a finite number of independent vari-
ables (21), such that the relations (31) and (32) are satisfied.

When both conditions (10) are satisfied, i.e.

A = α(un+1, un)α(un, un−1), B = β(un+1, un)β(un, un−1), (33)

then differentiating (20) with respect to u4 we obtain instead of (31) the integrability condition

2Dt log a0 + (T3 − 1)
(
µ+

α̂0

∂f0
∂u1

)
= q+2 − q+0 , (34)

which is similar to (32).
The relation (31) has the form of conservation law. Due to (33), i.e a0 = α̂1α̂0, b0 = β̂0β̂−1, 

(32) and (34) can also be represented as conservation laws:

Dt log α̂0 = (T − 1)Q+
0 , Dt log β̂0 = (T−1 − 1)Q−

0 , (35)

where

Q+
0 =

1
4
(T + 1)q+

0 − 1
4
(T2 + T + 1)

(
µ+

α̂0

∂f0
∂u1

)
− 1

2
Dt log α̂0,

Q−
0 =

1
4
(T−1 + 1)q−0 − 1

4
(T−2 + T−1 + 1)

(
µ−

νβ̂0

∂f0
∂u−1

)
− 1

2
Dt log β̂0.

Equations (31) and (35) are conservation laws of the minimum possible order [43]. 
Consequently any integrable equation under consideration must have two conservation laws 
of the forms (31) or (35).

If, for a given equation (13), conditions (31) and (32) in the case (28) or (32) and (34) in 
the case (33) are satisfied and the functions q±

0  and Q±
0  are known, then partial derivatives 

∂g0
∂u2

, ∂g0
∂u−2

 can be obtained from (29) and (30). So the right hand side of symmetry (16) is 
defined up to one unknown function of three variables:

ψ(un+1, un, un−1). (36)

R N Garifullin et alJ. Phys. A: Math. Theor. 51 (2018) 065204
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This function can be found directly from the compatibility condition (18).
In this way we carry out the classification of the equations of Class II. At first we use the 

integrability conditions (31) and (32) or (32) and (34). Then we define the symmetry up to a 
function (36) and then try to derive it implementing the compatibility condition (18).

To derive simpler relations to check the integrability conditions (31), (32) and (34) we use 
the variational derivatives considered in [20].

For any function

ϕ = ϕ(um1 , um1−1, . . . , um2), m1 � m2, (37)

we define the formal variational derivative through the formula:

δϕ

δu0
=

m1∑
k=m2

T−k ∂ϕ

∂uk
, (38)

see e.g. [43], and its adjoint version [20]:

δ̄ϕ

δ̄u0
=

m1∑
k=m2

(−1)kT−k ∂ϕ

∂uk
. (39)

Then we can state the following lemma:

Lemma 2. The equations δϕδu0
= 0 and δ̄ϕ

δ̄u0
= 0 hold iff ϕ can be represented in the form

ϕ = κ+ (T2 − 1)ω, (40)

where κ is a constant, while ω is a function of a finite number of independent variables (21).

To check if a given function ϕ is of the form ϕ = (T2 − 1)ω, we have at first to check the 
conditions of lemma 2. Then we can represent ϕ in the form (40) and check if κ = 0.

So the criteria for checking (31) are of the form:

δ

δu0
Dt log a0 = 0,

δ̄

δ̄u0
Dt log a0 = 0, (41)

see [20]. In the case of the integrability conditions (32) and (34), we first get

Dt log a0 = (T + 1)Dt log α̂0, Dt log b0 = (T−1 + 1)Dt log β̂0

from

a0 = α̂1α̂0, b0 = β̂0β̂−1. (42)

Then from (32) and (34) we derive the following criteria for checking them:

δ

δu0
Dt log β̂0 = 0, µ− δ̄

δ̄u0

(
1

β̂0

∂f0
∂u−1

)
= 0, (43)

δ

δu0
Dt log α̂0 = 0, µ+ δ̄

δ̄u0

(
1
α̂0

∂f0
∂u1

)
= 0. (44)

R N Garifullin et alJ. Phys. A: Math. Theor. 51 (2018) 065204
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2.3. The classification

Using the method described in the previous subsections, we carry out the classification of 
integrable equations belonging to the Class II. It is easy to proof that there are no integrable 
equations in the asymmetric case (28). So here we discuss only the symmetric case (33).

Let us recall that the partial derivatives ∂g0
∂u±4

 and ∂g0
∂u±3

 are given by (22), (23) and (25) and (26), 
and that we have implicit definitions for ∂g0

∂u±2
 given by the relations (29), (30), (32) and (34).

Applying ∂
∂u3

 and ∂
∂u−3

 to (32) and (34) respectively, we get:

(ν + 1)
∂α̂0

∂u−1
= 0, (ν + 1)

∂β̂0

∂u1
= 0, (45)

where α̂0, β̂0 are defined in (42), while the parameter ν has been introduced in (25). By using 

(45) we find that if ν �= −1, i.e. when ∂α̂0
∂u−1

 and ∂β̂0
∂u1

 are zero, there are no integrable equations.
In the symmetric case with ν = −1, from (32) and (34) we can derive some simple inte-

grability conditions, see also (43) and (44). Differentiating (32) and (34), we can find the 

second derivatives of g0, i.e. ∂
2g0
∂u2

2
, ∂2g0

∂u2∂u−2
, ∂2g0

∂u2
−2

. Then using the following consequences of 

the compatibility condition (18):

∂

∂u2

(
1
a1

∂3

∂u3∂u2
−2

(Dtg0 − Dτ f0)

)
= 0,

∂

∂u−2

(
1

b−1

∂3

∂u−3∂u2
2
(Dtg0 − Dτ f0)

)
= 0,

together with formulae for the partial derivatives g0 with respect to u2 and u−2, we get the 
conditions:

∂α̂0

∂u−1

∂2α̂−1

∂u2
−2

= 0,
∂β̂0

∂u1

∂2β̂1

∂u2
2

= 0. (46)

From (46) we derive the simple integrability conditions:

∂2α(u0, u−1)

∂u2
−1

= 0,
∂2β(u1, u0)

∂u2
1

= 0, (47)

where the functions α,β  are defined in (33). In such a way we have reduced the classification 
to the calculation of four unknown functions of one variable instead of two functions α,β  of 
two variables.

In next section we will get all integrable equations of the form (5) and (33) with α,β  sat-
isfying (47). Since ν = −1, from (22) and (25) we get that the generalized symmetry (6) will 
have the form:

u0,τ = α̂0α̂1α̂2α̂3u4 − β̂0β̂−1β̂−2β̂−3u−4 + Ĝ(u3, u2, u1, u0, u−1, u−2, u−3).
 (48)

3. Complete list of integrable equations of Class II

In this section we present the complete list of integrable equations of Class II together with the 
non-point autonomous or point non-autonomous relations between them. These equations are 
referred by the numbers (E1)–(E14). Some of the obtained equations seem to be new.

R N Garifullin et alJ. Phys. A: Math. Theor. 51 (2018) 065204
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The classification is carried out in two steps: at first one finds all integrable equations of 
a certain class up to point transformations, then one searches for non-point transformations 
which link the different resulting equations. In this paper we use autonomous point transfor-
mations which, because of the specific form (5) of the equations, are linear transformations 
with constant coefficients:

û0 = c1u0 + c2, t̂ = c3t, c1c3 �= 0. (49)
The non-point transformations linking the different resulting equations are transformations 
of the form

û0 = ϕ(uk, uk−1, . . . , um), k > m, (50)
and their compositions. Some of the resulting equations are related among each other by point 
non-autonomous transformations.

Equations (50) transforms (2) into

û0,t = Ψ̂(û2, û1, û0, û−1, û−2). (51)
For any solution un of (2), formula (50) provides a solution ûn of (51).

The transformation (50) is explicit in one direction. If an equation A is transformed into B 
by a transformation (50), then this transformation has the direction from A to B, and we will 
write in diagrams below A −→ B, so indicating the direction in which it is explicit. Non-
autonomous point transformations

ûn = ξnun, t̂ = ct, c �= 0, ξn �= 0, ∀n, (52)

which are invertible, will be denoted by A ������ B.
The classification result is formulated in the following theorem:

Theorem 1. If a nonlinear equation of the form (13)–(15) belongs to Class II (10) and has a 
generalized symmetry (6), (16) and (17), then up to an autonomous point transformation (49) 
it is equivalent to one of the following equations (E1)–(E14). Any equation in (E1)–(E14) has 
a generalized symmetry of the form (6), (16) and (17).

For a better understanding of the results, we split the complete list into the Lists 1–4, where 
the equations are related among themselves either by autonomous non-point transformations 
or by non-autonomous point ones. For each of these lists we show the relations between the 
equations by a diagram, where the transformations (50) or (52) are shown by arrows and are 
denoted by the numbers (T1)–(T8).

All necessary transformations are given in the List T. Autonomous non-point transfor-
mations, which are linearizable [19], were constructed by using the transformation theory 
presented in [19]. A shorter version of this theory with some modifications can be found in  
[20, appendix A].

The generalized symmetries of (E1)–(E14) are discussed in section 4.
  List 1. Equations related to the double Volterra equation

u̇0 = u0 [u1(u2 − u0) + u−1(u0 − u−2)] (E1)

u̇0 = u1u0
2u−1 (u2 − u−2) . (E2)

  The equation (E2) has been presented in [7]. Both equations of List 1 are transformed into 
the equation
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u̇0 = u0 (u2 − u−2) (53)

  as shown in diagram (54).

(E2)
(T4)−→(E1)

(T2)−→(53). (54)

  The non-invertible transformations (T2) and (T4) are given in the List T below. 
Transformations (T2) and (T4) are of the linearizable class, i.e. are not of Miura type 
(see a discussion of this notion in [19, 20]). Equation (53) is called the double Volterra 
equation, as two transformations ũk = u2k and ûk = u2k+1 turn it into the standard form of 
the Volterra equation [43].

  List 2. Equations related to a generalized symmetry of the Volterra equation

u̇0 = u0 [u1(u2 + u1 + u0)− u−1(u0 + u−1 + u−2)] + cu0 (u1 − u−1) (E3)

u̇0 = (u2
0 − a2)

[
(u2

1 − a2)(u2 + u0)− (u2
−1 − a2)(u0 + u−2)

]
+ c(u2

0 − a2) (u1 − u−1)
 (E4)

u̇0 = (u1 − u0 + a)(u0 − u−1 + a)(u2 − u−2 + 4a + c) + b (E5)

u̇0 = u0[u1(u2 − u1 + u0)− u−1(u0 − u−1 + u−2)] (E6)

u̇0 = (u2
0 − a2)

[
(u2

1 − a2)(u2 − u0) + (u2
−1 − a2)(u0 − u−2)

]
 (E7)

u̇0 = (u1 + u0)(u0 + u−1)(u2 − u−2). (E8)

  The equations of the List 2 are related among themselves by the transformations shown 
in the following diagrams (55).

(E5)
(T1)

−−−−→(E3)
(T5)
←−−− (E4)

(E6)
(T7)

������(E3, c = 0)

(E7)
(T8)

������(E4, c = 0)

(E8)
(T7)

������(E5, a = b = c = 0).

 

(55)

  Equations (E3)–(E5) are the generalized symmetries of the equations [43]:

u̇0 = u0(u1 − u−1), (56)

u̇0 = (u2
0 − a2)(u1 − u−1), (57)

u̇0 = (u1 − u0 + a)(u0 − u−1 + a). (58)

  These Volterra type equations are related among themselves by the same transformations 
(T1) and (T5) as their symmetries. The transformations (T1) and (T5) are well-known, 
see e.g. [43]. Equation (56) is the Volterra equation itself, (57) is the modified Volterra 
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equation, and the transformation (T5) with a �= 0 is of Miura type [19]. The transforma-
tion (T1) is linear.

  Transformations (T7) and (T8) are non-autonomous invertible point transformations. So 
(E6)–(E8) are equivalent to (E3)–(E5), as shown in diagrams (55). The transformation 
(T8) is nontrivial, see a comment after List T. It can be shown that (E6)–(E8) are also 
generalized symmetries of some simpler non-autonomous equations of the Volterra type.

  List 3. Equations related to the INB equation (3)

u̇0 = u0(u2u1 − u−1u−2) (E9)

u̇0 = (u1 − u0 + a)(u0 − u−1 + a)(u2 − u1 + u−1 − u−2 + 2a) + b (E10)

u̇0 = u0(u1u0 − a)(u0u−1 − a)(u2u1 − u−1u−2) (E11)

u̇0 = (u1 + u0)(u0 + u−1)(u2 + u1 − u−1 − u−2). (E12)

  Equation (E9) is a well-known modification of INB (3), see [11]. Equation (E11) with 
a  =  0 has been considered in [7] and with a  =  1 in [37]. The equations of this list are 
related among themselves and to

u̇0 = (u2
0 + au0)(u2u1 − u−1u−2) (59)

  as shown in the following diagrams:

 

(60)

  Equation (59) is presented in [11] in the case a  =  0 and in [8, 33] in the case a �= 0. The 
transformation (T7) is invertible, while all the other transformations are non-invertible. 
All the transformations present in the diagram (60) are linearizable except for (T6) with 
a �= 0 which is of Miura type, see a comment in [19].

  List 4. The remaining equations

u̇0 = (u1u0 − 1)(u0u−1 − 1)(u2 − u−2) (E13)

u̇0 = u1u3
0u−1(u2u1 − u−1u−2)− u2

0(u1 − u−1). (E14)

  Equation (E13) is known (see [15, 16]), while (E14) is a simple modification of

u̇0 = u2
0(u2u1 − u−1u−2)− u0(u1 − u−1) (61)
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  as shown in diagram (62).

(E14)
(T2)→ (61). (62)

  Equation (61) has been found in [40] and can be called the discrete Sawada–Kotera equa-
tion [1, 40].

  All transformations relating the equations of Lists 1–4 are presented in the List T.
  List T. List of used transformations

û0 = u1 − u0 + a (T1)

û0 = u1u0 (T2)

û0 = u1u0 − a (T3)

û0 = u1u−1 (T4)

û0 = (u1 − a)(u0 + a) or û0 = (u1 + a)(u0 − a) (T5)

û0 = (u2 + a)u1u0 or û0 = u2u1(u0 + a) (T6)

ûn = (−1)nun, t̂ = −t (T7)

ûn = κnun, κn =
1
2
(1 − i)[in + i(−i)n], t̂ = −t. (T8)

  Here transformation (T1) is linear, while transformations (T2)–(T4) and (T5), (T6) with 
a  =  0 are linearizable. Transformations (T5) and (T6) with a �= 0 are of Miura type.

  Transformations (T7) and (T8) are invertible and non-autonomous. The function κn 
appearing in (T8) is four-periodic, i.e. κn+4 = κn for all n. It can be defined by the fol-
lowing initial conditions:

κ0 = κ1 = 1, κ2 = κ3 = −1 (63)

  and satisfy the relations:

κn+2 = −κn, κ2
n = 1. (64)

4. Generalized symmetries

There is no need to write down here the generalized symmetries (48) for equations  (E1)–
(E14)) explicitly, as symmetries of key equations are known, while the symmetries for the 
other equations can be constructed by the transformations (T1)–(T8).

In order to construct generalized symmetries of the form (48), we need symmetries of 
equations (3), (53), (59) and (61) which are given explicitly in [20, section 4]. Originally, the 
generalized symmetry of (3) has been presented in [44], of (59) with a  =  1 in [33], of (59) 
with a  =  0 in [44] and of (61) in [1]. The generalized symmetry of (E13) can be found in 
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[15, 16]. Symmetries of (E3) and (E4) belong to the hierarchies of the Volterra and modified 
Volterra equations which are well-known, see [43].

The generalized symmetries for (E6)–(E8) and (E12) can be constructed easily with the 
help of the invertible transformations (T7) and (T8). These transformations are non-auton-
omous, but in this case they allow us to construct autonomous symmetries of the form (48).

The generalized symmetries for the remaining equations of Lists 1–4, namely (E1), (E2), 
(E5), (E9)–(E11), (E14), can be constructed by using the non-invertible transformations (T1)–
(T4), where (T2) is a particular case of (T3). For the sake of clarity we present here the con-
struction scheme for the generalized symmetries obtained by the transformations (T1)–(T4), 
see more details in [19, 20].

Let us first consider the case when an equation A is transformed into an equation B by 
transformation (T1): A

(T1)−→B If B has a symmetry

û0,τ = Ĝ(û4, û3, û2, . . . , û−4), (65)

then we look for a symmetry of the form (6) for A. As û0,τ = (T − 1)u0,τ , we should represent 
the function Ĝ  in the form

Ĝ = (T − 1)H(û3, û2, . . . , û−4) (66)

and then we immediately get (6):

u0,τ = G = H|ûk=uk+1−uk+a. (67)

It is evident that G contains an arbitrary constant of integration, as it is obtained by solving a 
first order difference equation.

Let us now consider the case: A
(T4)−→B As (log û0)τ = (T + T−1)(log u0)τ , then for (65) 

we should get the representation

Ĝ/û0 = (T + T−1)H(û3, û2, . . . , û−3), (68)

and consequently (6) is given by:

u0,τ = G = u0H|ûk=uk+1uk−1 . (69)

No constant of integration arises in this case.

In the case A
(T3)−→B we have: (log(û0 + a))τ = (T + 1)(log u0)τ . Equation (65) turns out 

to be:

Ĝ/(û0 + a) = (T + 1)H(û3, û2, . . . , û−4), (70)

and (6) is given by:

u0,τ = G = u0H|ûk=uk+1uk−a. (71)

No constant of integration arises here.

Now we consider the example: (E1)
(T2)−→(53) The symmetry for (53) is:

û0,τ = û0[û2(û4 + û2 + û0)− û−2(û0 + û−2 + û−4)],

see [20]. The transformation (T2) is (T3) with a  =  0, and we need to get the representation 
(70). As

Ĝ/û0 = (T2 − T−2)û0(û2 + û0 + û−2)

and
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T2 − T−2 = (T + 1)(T − 1)(1 + T−2),

the generalized symmetry for (E1) is given by:

u0,τ = u0(T − 1)(1 + T−2)u1u0(u3u2 + u1u0 + u−1u−2).

5. Conclusion

Here we have finished a generalized symmetry classification started in our previous article 
[20]. The resulting list contains 14 equations, some of which seem to be new. We have found 
non-autonomous or non-point transformations relating most of the resulting equations among 
themselves.

Using the obtained five-point integrable equation (5), we can construct integrable examples 
of partial difference equations, defined on a square lattice. Their construction scheme is dis-
cussed in [17] and [20, appendix B].

Connections between different equations obtained in this paper are simpler than in the pre-
vious article [20]. However, a transformation can relate two five-point equation (5), but this 
connection may collapse for the corresponding PΔEs. So it may happen that for one of the 
five-point equations the corresponding PΔE exists, while for another the corresponding PΔE 
becomes nonlocal. Therefore the problem of the construction of PΔEs remains nontrivial.
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