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DISCRETE EQUATION ON A SQUARE LATTICE WITH A

NONSTANDARD STRUCTURE OF GENERALIZED SYMMETRIES

R. N. Garifullin,∗ A. V. Mikhailov,† and R. I. Yamilov∗

We clarify the integrability nature of a recently found discrete equation on the square lattice with a

nonstandard symmetry structure. We find its L–A pair and show that it is also nonstandard. For this

discrete equation, we construct the hierarchies of both generalized symmetries and conservation laws. This

equation yields two integrable systems of hyperbolic type. The hierarchies of generalized symmetries and

conservation laws are also nonstandard compared with known equations in this class.
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1. Introduction

The equation
un+1,m+1(un,m − un,m+1) − un+1,m(un,m + un,m+1) + 2 = 0, (1)

where n and m are arbitrary integers, was found in [1]. It was shown that its generalized symmetry in the
direction m has the form

d

dt2
un,m = (−1)n

un,m+1un,m−1 + u2
n,m

un,m+1 + un,m−1
. (2)

The simplest generalized symmetry in the direction n turns out to be

d

dt1
un,m = hn,mhn−1,m(anun+2,m − an−1un−2,m), (3)

where
hn,m = un+1,mun,m − 1, an+2 = an.

This symmetry depends on an arbitrary double-periodic function an, which can be represented as

an = ã + â(−1)n, (4)

where ã and â are arbitrary complex numbers. We here have both the autonomous particular case an = 1
and the nonautonomous case an = (−1)n; all other possible particular cases are linear combinations of
them. For instance, we can obtain

an =
1 + (−1)n

2
=

⎧
⎨

⎩

0, n = 2k + 1,

1, n = 2k.
(5)
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Generalized symmetries (2) and (3) are themselves integrable equations. More precisely, for any fixed
n in case (2) and for any fixed m in case (3), we have an integrable equation with one continuous and
one discrete variable. Equation (1) generates the chains of the auto-Bäcklund transformations for each of
Eqs. (2) and (3) (see [2] for more details). Symmetries (2) and (3) are compatible not only with (1) but
also with each other on solutions of discrete equation (1). On the other hand, Eq. (1) can be obtained as
the compatibility condition of generalized symmetries (2) and (3). For these and many other reasons, we
here consider the triad of Eqs. (1)–(3) as a whole instead of the single discrete equation (1). This approach
allows obtaining some important results, which are presented in Secs. 2 and 3.

Almost all known integrable discrete equations of the form

Fn,m(un,m, un+1,m, un,m+1, un+1,m+1) = 0 (6)

with symmetries in both the directions n and m have generalized symmetries of the form [2]–[5]

d

dt1
un,m = Φn,m(un+1,m, un,m, un−1,m),

d

dt2
un,m = Ψn,m(un,m+1, un,m, un,m−1).

(7)

Along with Eq. (1) we know only a few exceptions obtained in [6]–[8]. In those examples, the simplest
generalized symmetries in both directions have a more complicated structure than (7): they also depend
on un±2,m or un,m±2.

From the standpoint of the structure of generalized symmetries, Eq. (1) is the only one of its kind, and
we therefore study it in more detail. In Sec. 2, we construct the L–A pairs for each of Eqs. (1)–(3) and show
that the L–A pair for Eq. (1) is also nonstandard. In Sec. 3, using the obtained triad of L–A pairs, we find
two hierarchies of conservation laws for discrete equation (1). In Sec. 4, we construct a master symmetry
for Eq. (2) and the recursion operator for Eq. (3), thus obtaining the hierarchies of generalized symmetries
for the discrete equation in each of the directions n and m. In Sec. 5, using the triad of Eqs. (1)–(3), we
construct two examples of continuous integrable hyperbolic systems.

2. The L–A pairs

Constructing the L–A pair for Eq. (1), we use the following interesting property of symmetry (3). This
symmetry turns out to be equivalent to the known system of two equations found by Tsuchida (see (3.13)
in [9]). The L–A pair for this system is known and is given in that paper.

Applying the transformation

vk → (−1)kvk, wk → (−1)k+1wk

and appending the point symmetry, we can write the Tsuchida system in the form

d

dt1
vk = (αvk+1 − βvk−1)(vkwk − 1)(vkwk+1 − 1),

d

dt1
wk = (βwk+1 − αwk−1)(vkwk − 1)(vk−1wk − 1).

(8)

This system is an integrable discretization of one of the nonlinear Schrödinger equations with derivative,
introduced in [10] (also see [11]). For any fixed m, Eq. (3) is related to system (8) as

vk = u2k,m, wk = u2k−1,m, α = a2k, β = a2k−1. (9)
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We note that system (8) is a linear combination of two compatible systems corresponding to the
particular cases α = 1, β = 0 and α = 0, β = 1. In this sense, system (8) is an analogue of the known
Ablowitz–Ladik chain, which is also a linear combination of two commuting equations of the relativistic
Toda type (see, e.g., Sec. 5.2 in [12]).

The equations related by transformation (9) are equivalent, and we can transfer the generalized symme-
tries and conservation laws from one equation to the other (see [13]). We obtain the L–A pair for (3) using
transformation (9) and rewriting the known L–A pair for (8) obtained in [9]. This L–A pair is standard
and is represented by the pair of compatible linear equations

TkΦk = UkΦk, Dt1Φk = VkΦk, (10)

where Φk is a two-component vector function, Uk and Vk are 2×2 matrices depending on the spectral
parameter, and Tk is the shift operator in k, Tkhk = hk+1.

It is clear from transformation (9) that the shift of the functions vk and wk in k corresponds to the
double shift of un,m in n. We therefore obtain the L–A pair for (3) in a somewhat different form,

T 2
nΨn,m = Nn,mΨn,m, Dt1Ψn,m = An,mΨn,m. (11)

Here, Tn is the shift operator in n, and the matrices Nn,m and An,m have the forms

Nn,m =

(
hn,m(1 − λ) − 2λ un+1,m(λ − 1)

−2λun,mhn+1,m hn+1,m(λ − 1)

)

, (12)

An,m =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

hn−1,m

(

an−1un+1,mun−2,m + an
λ − 1
λ + 1

)

+

+ an−1
2λ

λ − 1

−anun−1,m
λ − 1
λ + 1

− an−1un+1,m

2λhn−1,m

(
un,man

1 + λ
+

un−2,man−1

λ − 1

)

−

− anun,mun−1,m
2λ

1 + λ

hn,m(anun−1,mun+2,m − an−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (13)

The operator T 2
n −Nn,m in the first equation in (11) is a discrete analogue of the Schrödinger operator

with matrix coefficients. The compatibility condition for Eqs. (11) has the form

Dt1Nn,m = (T 2
nAn,m)Nn,m − Nn,mAn,m, (14)

and this relation is equivalent to Eq. (3). The L–A pair can be rewritten in the standard form using 4×4
matrices,

Tn

(
Ψn,m

Ψn+1,m

)

=

(
0 E

Nn,m 0

)(
Ψn,m

Ψn+1,m

)

,

Dt1

(
Ψn,m

Ψn+1,m

)

=

(
An,m 0

0 An+1,m

) (
Ψn,m

Ψn+1,m

)

.

Passing to zm = imun,m for any fixed n ∈ Z and using time dilation, we obtain the well-known
equation [14], [15]

dzm

dt2
=

zm+1zm−1 + z2
m

zm+1 − zm−1
(15)
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for symmetry (2). The auxiliary linear problem for equations of this type is known [4]. It is the standard
problem

TmΨn,m = Mn,mΨn,m, Dt2Ψn,m = Bn,mΨn,m. (16)

Here, Mn,m(un,m, un,m+1) and Bn,m(un,m−1, un,m, un,m+1) are 2×2 matrices, and the compatibility condi-
tion has the form

Dt2Mn,m = (TmBn,m)Mn,m − Mn,mBn,m. (17)

The first linear discrete equations in (11) and (16) represent the Lax pair for discrete equation (1) if
the vector functions Ψn,m and the spectral parameters λ coincide in them. After the vector function is
replaced using the matrix Ωn,m, the matrix Mn,m changes according to the gauge transformation

M̃n,m = Ω−1
n,m+1Mn,mΩn,m.

The matrix Ωn,m and the change of the spectral parameter can be found by direct calculation, but we prefer
another simpler way. We use the relation

(T 2
nMn,m)Nn,m = (TmNn,m)Mn,m, (18)

(which is equivalent to (1)) and the known matrix Nn,m and seek the matrix Mn,m(un,m, un,m+1). As a
result, we obtain

Mn,m =

⎛

⎜
⎜
⎝

λ
1 − λ

un,m + un,m+1

λ(un,m+1 − un,m)
λ(un,m − un,m+1)

un,m + un,m+1

⎞

⎟
⎟
⎠ . (19)

The corresponding matrix Bn,m determining the L–A pair for (2) can be constructed using condition (17):

Bn,m =
(−1)n

un,m+1 + un,m−1

(
(1 − λ)(un,m−1 − un,m) 1 − λ

λ(u2
n,m − u2

n,m+1) λ(un,m + un,m+1) − (un,m + un,m−1)

)

. (20)

We note that discrete L–A pair (18) can also be rewritten in the standard form:

(TnM̃n,m)Ñn,m = (TmÑn,m)M̃n,m (21)

in terms of the 4×4 matrices M̃n,m and Ñn,m with a block structure. We formulate the obtained results.

Theorem 1. The L–A pairs for Eqs. (1)–(3) are given by the corresponding relations (18), (17),
and (14), where the 2×2 matrices have forms (12), (13), (19), and (20).

For almost all known integrable discrete equations of form (6), the L–A pair is represented by rela-
tion (21) with the 2×2 matrices M̃n,m and Ñn,m. Two exceptions are known [6], [7] where the L–A pair has
the same form (21) but is given by 3×3 matrices. These equations are discrete analogues of the Tzitzéica
equation [16]

uxy = eu + e−2u,

whose L–A pair is given by the equations

DxΨ = LΨ, DyΨ = AΨ
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with the 3×3 matrices L and A [17]. Our Eq. (1) is one more exception: its L–A pair (18) is defined by
2×2 matrices and can be rewritten in form (21) with 4×4 matrices.

We have verified that discrete equation (1) has no standard L–A pair (21) in terms of 2×2 matrices.
More precisely, we fixed the matrix M̃n,m = Mn,m in (19) and sought the 2×2 matrix

Ñn,m(un−1,m, un,m, un+1,m, un+2,m).

Using the equivalence of L–A pair (21) to discrete equation (1), we showed that there is no matrix Ñn,m of
this form.

Equation (2) with an ≡ 1 for any fixed m ∈ Z is an autonomous chain of the form

d

dt
un = G(un−2, un−1, un, un+1, un+2). (22)

In this class of equations, it has a special place analogous to the place of Eq. (1) in class (6). The known
integrable equations (22) are mostly generalized symmetries of Volterra-type equations [14], [15] and have
L–A pairs of the form

DtL = (TnA)L − LA (23)

with 2×2 matrices L and A. The rest of the known integrable chains are analogues of the Itoh–Narita–
Bogoyavlensky equation (see, e.g., [18]–[20])

d

dt
un = un(un+2 + un+1 − un−1 − un−2), (24)

whose L–A pair (23) is given by 3×3 matrices. Our Eq. (2) with an ≡ 1 has the L–A pair of the form

DtL = (T 2
nA)L − LA (25)

with 2×2 matrices. It can be rewritten as (23) with 4×4 matrices.

3. Conservation laws

In this section, we construct the conservation laws for discrete equation (1) using the scheme proposed
by Mikhailov [21]. This approach assumes the substantial use of the triad of compatible L–A pairs (18), (17),
and (14) for discrete equation (1) and its generalized symmetries (2) and (3). There is an alternative
approach that also allows solving this problem [22].

The method we use to construct the conservation laws assumes the formal diagonalization of all ma-
trices determining the triad of L–A pairs (18), (17) and (14). It is hence convenient to proceed to this
diagonalization with the linear differential equations in (11) and (16). For this, we use known results in the
theory of linear differential equations [23] (also see [24]).

The vector function Ψn,m can be transformed using the matrix Ωn,m:

Ψ̃n,m = Ωn,mΨn,m.

The matrices defining L–A pairs (14), (17), and (18) are then transformed according to the formulas

B̃n,m = Ω−1
n,mBn,mΩn,m − Ω−1

n,m∂t2Ωn,m,

M̃n,m = Ω−1
n,m+1Mn,mΩn,m,

Ñn,m = Ω−1
n+2,mNn,mΩn,m,

Ãn,m = Ω−1
n,mAn,mΩn,m − Ω−1

n,m∂t1Ωn,m.

(26)
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The formal diagonalization can be effectively constructed in the neighborhood of the poles of the
matrices of linear differential operators. The matrices Bn,m and An,m have poles at the respective points
λ = ∞ and λ = ±1. We formulate the lemma on the diagonalization of the matrix Bn,m in the neighborhood
of its pole (see, e.g., p. 86 in [24]).

Lemma 1. If the principal part ∂Bn,m/∂λ of the matrix Bn,m has distinct eigenvalues, then there is

a formal series

Ωn,m = Ω∗
n,m

(

E +
∞∑

j=1

λ−jΩ(−j)
n,m

)

such that E is the identity matrix and Ω(−j)
n,m , j ≥ 1, are antidiagonal matrices. The matrix B̃n,m obtained

using the first formula in (26) has the form

B̃n,m = λB(1)
n,m +

∞∑

j=0

λ−jB(−j)
n,m ,

where B
(l)
n,m are diagonal matrices.

Here, we deal with formal series and do not discuss their convergence. To construct any finite number
of conservation laws, it suffices to know that finite number of coefficients of the formal series.

The matrix ∂Bn,m/∂λ has different eigenvalues. Therefore, there is a transformation reducing it to the
diagonal form. Any matrix of this transformation can be taken as the matrix Ω∗

n,m. In particular,

Ω∗
n,m =

(
1 1

un,m − un,m−1 un,m + un,m−1

)

. (27)

We then find B
(1)
n,m:

B(1)
n,m =

(
0 0

0 (−1)n+1

)

. (28)

To obtain the matrices Ω(l)
n,m and B

(l)
n,m for l ≤ 0, we rewrite the first equation in (26) as

Ωn,mB̃n,m = Bn,mΩn,m − ∂t2Ωn,m

and equate the coefficients of like powers of λ to zero. The relation corresponding to λ1 is an identity by
virtue of the choice of Ω∗

n,m and B
(1)
n,m. The relations at other powers of λ yield recurrence relations for the

other coefficients B̃n,m and Ωn,m, whence they can be determined explicitly. In particular,

Ω(−1)
n,m =

⎛

⎜
⎜
⎝

0
(un,m+1 + un,m+2)(un,m − un,m−1)
(un,m + un,m−2)(un,m+1 + un,m−1)

(un,m − un,m−1)(un,m−1 − un,m−2)
(un,m + un,m−2)(un,m+1 + un,m−1)

0

⎞

⎟
⎟
⎠ .

We do not present the other coefficients because they are too cumbersome.
Using Eq. (17) and formula (28) for B

(1)
n,m, we can use induction to prove that the matrix M̃n,m is

diagonal. From (26), we obtain

M̃n,m = − λ
un,m+1 + un,m−1

un,m + un,m+1

(
1 0

0 0

)

−

−

⎛

⎜
⎝

(un,m+2 + un,m+1)un,m−1 − un,m(un,m+1 + un,m+2)
(un,m+2 + un,m)(un,m + un,m+1)

0

0
un,m+1 − un,m

un,m + un,m+2

⎞

⎟
⎠ + . . . .
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Using equation (18) and the coefficient of λ in the series M̃n,m, we can use induction to prove that the
matrix Ñn,m is also diagonal. From (26), we obtain

Ñn,m = − λ

(
1 + un+1,mun,m−1 0

0 1 − un+1,mun,m+1

)

−

− un,m+1 − un,m−1

un,m+1 + un,m−1

(
1 + un+1,mun,m−1 0

0 −1 + un+1,mun,m+1

)

+ . . . .

The matrices M̃n,m and Ñn,m are diagonal, and their elements are formal power series in λ−1. Equa-
tion (18) for these matrices can be rewritten as

(T 2
n − 1) log M̃n,m = (Tm − 1) log Ñn,m, (29)

where we use the notation

log

(
α 0

0 β

)

=

(
log α 0

0 log β

)

.

The diagonal elements

(log M̃n,m)1,1 = log λ +
∞∑

j=0

λ−jp(j)
n,m, (log Ñn,m)1,1 = log λ +

∞∑

j=0

λ−jq(j)
n,m

can be expanded in formal series, and we obtain the hierarchy of conservation laws

(T 2
n − 1)p(j)

n,m = (Tm − 1)q(j)
n,m, j ≥ 0. (30)

These conservation laws can be rewritten in the standard form

(Tn − 1)pn,m = (Tm − 1)qn,m (31)

because T 2
n − 1 = (Tn − 1)(Tn + 1).

The first two conservation laws are

p(0)
n,m = log

un,m+1 + un,m−1

un,m + un,m+1
, q(0)

n,m = log(1 + un+1,mun,m+1).

p(1)
n,m =

(un,m+1 + un,m+2)(un,m − un,m−1)
(un,m+2 + un,m)(un,m+1 + un,m−1)

, q(1)
n,m =

un,m+1 − un,m−1

un,m+1 + un,m−1
.

From the second diagonal elements, we obtain the same conservation laws (in accordance with the comment
below) except in the first step, where we obtain

p̂(0)
n,m = log

un,m − un,m+1

un,m + un,m+2
, q̂(0)

n,m = log(1 − un+1,mun,m+1).

All conservation law densities p
(j)
n,m of this hierarchy depend on a finite number of functions from the

set
un,m+k, k ∈ Z. (32)
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For this type of conservation law, we formulate Lemma 2 and then define the concept of the order of a
conservation law. This allows distinguishing the conservation laws and selecting the trivial laws.

We first define the formal variational derivative of the density pn,m in the direction m:

δmpn,m

δmun,m
=

∑

k∈Z

T−k
m

∂pn,m

∂un,m+k
.

This sum is always finite because pn,m depends on a finite number of functions (32). For any conserved
density pn,m, we have

δmpn,m

δmun,m
= Pn,m(un,m−M , un,m−M+1, . . . , un,m+M−1, un,m+M ).

Using the function rn,m depending on a finite number of functions (32), we can pass to the equivalent

conservation law
(T 2

n − 1)p̃n,m = (Tm − 1)q̃n,m

according to the rule

p̃n,m = pn,m + (Tm − 1)rn,m, q̃n,m = qn,m + (T 2
n − 1)rn,m. (33)

Lemma 2. Using equivalence transformation (33), we can reduce the density of any conservation

law (30) to one of the three forms

1. p̃n,m = 0 ⇔ Pn,m = 0,

2. p̃n,m = p̃n,m(un,m), p̃′n,m 	≡ 0 ⇔ M = 0, Pn,m(un,m) 	≡ 0, or

3. p̃n,m = p̃n,m(un,m, un,m+1, . . . , un,m+M ), ∂2p̃n,m/∂un,m∂un,m+M 	≡ 0 ⇔ M > 0, ∂Pn,m/∂un,m−M 	≡
0, ∂Pn,m/∂un,m+M 	≡ 0.

In case 1 of Lemma 2, the conservation law is called a trivial law. In cases 2 and 3, we call the law a
nontrivial conservation law of order M and write ord pn,m = M . It can be seen that conservation laws of
different orders are not equivalent in the sense of transformation (33). For instance, we have the property
that the number of variables in the function pn,m(un,m, un,m+1, . . . , pn,m+k), k > 0, can be reduced using
transformation (33) if and only if ∂2pn,m/∂un,m∂un,m+k ≡ 0 for all n, m ∈ Z.

This theory is completely analogous to that for the discrete–differential conservation laws of the form

Dtpm = (Tm − 1)qm.

A detailed discussion of this theory together with the proofs can be found, for instance, in [13], [15]. The
corresponding theory for discrete conservation laws of form (31) was discussed in [25].

We see that
ord p(0)

n,m = 2, ord p(1)
n,m = 3, ord p̂(0)

n,m = 2.

Hence, the density p
(1)
n,m differs from the other two. The densities p

(0)
n,m and p̂

(0)
n,m might, in principle, be

equivalent up to the total difference and multiplication by a constant. But if we construct a new conservation
law as

p̌(0)
n,m = p̂(0)

n,m + p(0)
n,m + (Tm − 1)(p(0)

n,m + log(un,m + un,m+1)) = log
un,m − un,m+1

un,m + un,m+1
,

q̌(0)
n,m = q̂(0)

n,m + q(0)
n,m + (T 2

n − 1)(p(0)
n,m + log(un,m + un,m+1)) = log(hn,mhn+1,m),

(34)
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then we see that ord p̌
(0)
n,m = 1. We therefore have three different nontrivial conservation laws of the

respective orders 1, 2, and 3.
To construct the conservation laws in the direction n, we use the linear differential equation in (11)

and proceed to diagonalizing the matrix An,m. The matrix An,m in (13) has poles at λ = ±1, and we can
formally diagonalize it in terms of formal power series in λ+1 or λ− 1 using an analogue of Lemma 1. The
results in the two cases coincide, and we restrict ourself to the case λ = −1. In this case,

Ωn,m =

(
un−1,m 1

−hn−1,m un,m

)
⎛

⎜
⎝

1
λ + 1

2
1 − hn,mhn+1,m

un+1,m
+ · · ·

λ + 1
2

un−3,mhn−1,mhn−2,m + · · · 1

⎞

⎟
⎠ ,

Ñn,m =

(
2 + (λ + 1)(hn,mun−1,mun+2,m − hn−1,m − 2) 0

0 −(λ + 1)hn,mhn+1,m

)

+ . . . ,

M̃n,m =

⎛

⎜
⎜
⎝

1 − (λ + 1)
un,m(1 + un,m+1un−1,m)

un,m + un,m+1
0

0
un,m+1 − un,m

un,m+1 + un,m

(

1 + (λ + 1)
hn−1,mun,m+1

un,m+1 + un,m

)

⎞

⎟
⎟
⎠ + . . . .

In the leading term (of the order (λ + 1)0) of the expansion, we obtain conservation law (34). In the
subsequent orders (λ + 1)1 and (λ + 1)2, we obtain the conservation laws

p̌(1)
n,m =

2hn−1,mun,m+1

un,m+1 + un,m
,

q̌(1)
n,m = un−1,m(un+2,mhn,m − un,m),

p̌(2)
n,m = 4hn−1,m

(
hn−1,m(un+2,mhn,m + un,m)

un,m + un,m+1
−

u2
n,mhn−1,m

(un,m + un,m+1)2

)

+

+ 4hn−1,m − 4un−1,mun+2,mhn−1,mhn,m,

q̌(2)
n,m = 2un−1,mun+4,mhn,mhn+1,mhn+2,m + (hn−1,mhn+1,m − un−1,mun+2,m − 1)2 −

− 2hn−1,mhn+1,m − (hn+1,m + 2)2.

We can thus obtain a hierarchy of conservation laws of form (30), where the function q
(j)
n,m depends on a

finite number of functions in the set
un+k,m, k ∈ Z. (35)

In this case, the theory is analogous to that discussed above for the conservation laws in the direction m.
It is convenient to rewrite conservation laws (30) in standard form (31), where

pn,m = (Tn + 1)p(j)
n,m, qn,m = q(j)

n,m.

In this case, the function qn,m plays the role of the conservation law density. We introduce the formal
variational derivative in the direction n,

δnqn,m

δnun,m
=

∑

k∈Z

T−k
n

∂qn,m

∂un+k,m
= Q(un−N,m, un−N+1,m, . . . , un+N,m),
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and define the order of a conservation law as in the preceding case. The equivalence transformation now
has the form

q̃n,m = qn,m + (Tn − 1)sn,m, p̃n,m = pn,m + (Tm − 1)sn,m, (36)

where sn,m depends on a finite number of functions (35).
For the conservation laws given above, we have

ord q̌(0)
n,m = 1, ord q̌(1)

n,m = 3, ord q̌(2)
n,m = 5.

The function q̌
(0)
n,m depends on three variables. We can therefore reduce their number and obtain

p̆(0)
n,m = log

(
un,m − un,m+1

un,m + un,m+1

)2

, q̆(0)
n,m = 2 loghn,m.

This can be further simplified by introducing the n-dependent square root of unity:

p̄(0)
n,m = log

(

(−1)n un,m − un,m+1

un,m + un,m+1

)

, q̄(0)
n,m = log hn,m. (37)

We note that we can pass from conservation law (34) to (37) by applying the operator (Tn + 1)−1 to both
its sides and taking into account that (−1)n belongs to the kernel of the operator Tn + 1.

We can thus construct conservation laws in the direction m of any natural order, and in the case of
direction n, we obtain conservation laws of odd orders. Conservation laws of even orders apparently do
not exist, and we can prove this statement in the case of order 2. More precisely, we consider a conserved
density of the form qn,m(un,m, un+1,m, un+2,m) and assume its explicit dependence on n and m. The
corresponding function pn,m must depend on un,m, un+1,m, un,m+1. We use the weakest assumption that
∂2qn,m/∂un,m∂un+2,m 	= 0 at least at one point n, m and prove that such a conservation law does not exist.

4. The master symmetry and recursion operator for generalized
symmetries

In this section, we discuss the problem of constructing generalized symmetries for discrete equation (1).
There are two hierarchies of symmetries in the directions n and m. We first consider the case of direction
m and construct symmetries analogous to (2).

As noted above, symmetry (2) is equivalent to the known Volterra-type equation (15). Equations
analogous to (15) have master symmetries generating both generalized symmetries and conservation laws
for them [12] (a more detailed discussion can be found in [2], [15], and concrete examples are in [2]). Here,
we merely rewrite the known master symmetry of (15) in terms of the variables of (2). For this kind of
master symmetry, we must first introduce a generalization of Eq. (2) that depends on a parameter τ , which
plays the role of time in the master symmetry:

d

dt
(1)
2

un,m =
(−1)n

cosh τ

u2
n,m + un,m−1un,m+1

un,m−1 + un,m+1
+

+ tanh τ
un,m(un,m+1 − un,m−1)

un,m−1 + un,m+1
= Ψ(1)

n,m(τ). (38)

Equation (38) at τ = 0 coincides with (2). The corresponding master symmetry has the form

d

dτ
un,m = mΨ(1)

n,m(τ) = Ψ∗
n,m. (39)
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It generates the hierarchy of symmetries

d

dt
(j)
2

un,m = Ψ(j)
n,m(τ) (40)

according to the formula

Ψ(j+1)
n,m (τ) = [Ψ∗

n,m, Ψ(j)
n,m(τ)] = DτΨ(j)

n,m(τ) − D
t
(j)
2

Ψ∗
n,m =

=
∂Ψ(j)

n,m(τ)
∂τ

+
∑

k∈Z

(

Ψ∗
n,m+k

∂Ψ(j)
n,m(τ)

∂un,m+k
− Ψ(j)

n,m+k(τ)
∂Ψ∗

n,m

∂un,m+k

)

.

The quantity τ is an external parameter for all Eqs. (40), and these equations are compatible for any value
of this parameter. We can therefore set τ = 0 in (40) and obtain a hierarchy of generalized symmetries
for (2). The obtained equations are also generalized symmetries of discrete equation (1).

For instance, for j = 2 and τ = 0,

d

dt
(2)
2

un,m = Ψ(2)
n,m(0) =

(un,m+2 − un,m−2)(u2
n,m+1 − u2

n,m)(u2
n,m − u2

n,m−1)
(un,m + un,m−2)(un,m+1 + un,m−1)2(un,m+2 + un,m)

.

By direct calculation, we can verify that this equation is compatible not only with (2) but also with discrete
equation (1).

In the case of direction n, we use the recursion operator to construct the generalized symmetries.
Equation (3) is equivalent to known system (8), whose recursion operator was constructed in [26]. Using
identities (9), we merely rewrite this operator in the scalar form suitable for (3). In this case, the recursion
operator R can be constructed in the convenient form

R = H ◦ S, (41)

where the operator H is a Hamiltonian and S is a symplectic operator. These operators have the forms

S = (−1)n

(
1

hn,m
Tn +

1
hn−1,m

T−1
n

)

, (42)

H = hn,mhn−1,m(cnun+2,m − cn−1un−2,m)(Tn − 1)−1(−1)nun,m +

+ (−1)nun,mTn(Tn − 1)−1hn,mhn−1,m(cnun+2,m − cn−1un−2,m) −

− (−1)nhn−1,mhn,m(cnhn+1,mTn + cn−1hn−2,mT−1
n ), (43)

where cn is an arbitrary double-periodic function depending on n. These operators satisfy the equations

dS

dt1
+ S ◦ f∗

n,m + f∗⊥
n,m ◦ S = 0,

dH

dt1
= f∗

n,m ◦ H + H ◦ f∗⊥
n,m.

(44)

Here, f∗
n,m and f∗⊥

n,m are the operators defined by the right-hand side fn,m of (3):

d

dt1
un,m = fn,m. (45)
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The discrete analogue of the Fréchet derivative f∗
n,m of fn,m has the form

f∗
n,m =

2∑

k=−2

∂fn,m

∂un+k,m
T k

n ,

and its adjoint operator f∗⊥
n,m is defined by

f∗⊥
n,m =

2∑

k=−2

∂fn+k,m

∂un,m
T k

n .

It follows from (44) that the operator R = H ◦ S satisfies the Lax equation

dR

dt1
= [f∗

n,m, R], (46)

where [A, B] = A ◦ B − B ◦ A. All these formulas are standard and can be found, for example, in [15] in
the case of autonomous equations (45) and in [13] in the nonautonomous case.

Equations (44) and (46) can be regarded as definitions of the symplectic, Hamiltonian, and recursion
operators (see, e.g., [25]). The Hamiltonian operator H and the symplectic operator S provide a relation
between the conservation laws and generalized symmetries of (3). The operator R satisfying (46) allows
constructing the conservation laws and generalized symmetries of (3). For instance, from (46), we find that

∂

∂t
(k)
1

un,m = Rk−1(fn,m) = f (k)
n,m, k ≥ 2, (47)

are generalized symmetries of Eqs. (3) and (45). In the case k = 2,

f (2)
n,m = f̂ (2)

n,m − (cn + cn−1)fn,m + (cnan−1 − cn−1an)(−1)nun,m,

f̂ (2)
n,m = hn,mhn−1,m(bnhn+1,mhn+2,mun+4,m − bn−1hn−2,mhn−3,mun−4,m +

+ un,m(bnun+2,mhn−2,mun−3,m − bn−1un−2,mhn+1,mun+3,m) +

+ (un−1,mhn,m − un+1,m)(bnu2
n+2,m − bn−1u

2
n−2,m) −

− un,m(bnun−1,mun+2,m − bn−1un+1,mun−2,m)),

(48)

where bn = ancn. This symmetry was found in [1]. We can verify that it is also a generalized symmetry of
discrete equation (1).

Using formula (47), we construct symmetries of the form

∂

∂t
(k)
1

un,m = f (k)
n,m(un+2k,m, un+2k−1,m, . . . , un−2k+1,m, un−2k,m),

which can be called symmetries of even orders 2k. It was shown in [1] that a first-order symmetry does not
exist. Perhaps, there are no odd-order generalized symmetries in this case.

We see that generalized symmetries for Eqs. (3) and (1) depend on arbitrary double-periodic functions
of n. The same holds for the Hamiltonian and recursion operators. This situation is unusual in the case of
scalar discrete–differential equations of type (3) and perhaps appears for the first time. Therefore, Tsuchida
system (8) can be regarded as an analogue of the relativistic Toda chain whose symmetries and operators
are also depend on two parameters. The detailed symmetry properties were discussed in [12], and the
properties of operators were studied in [27].
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5. The hyperbolic systems of equations

In this section, we derive two integrable hyperbolic systems of equations together with their L–A pairs
from the generalized symmetries of discrete equation (1).

We consider two compatible symmetries of form (3) with an = χn and an = χn−1 (where χn =
(1 + (−1)n)/2), namely, the equations

∂xun,m = hn,mhn−1,m(χnun+2,m − χn−1un−2,m),

∂yun,m = hn,mhn−1,m(χn−1un+2,m − χnun−2,m).
(49)

From (11) and (13), we can obtain the systems of linear equations

DxΨn,m = A(1)
n,mΨn,m, DyΨn,m = A(2)

n,mΨn,m, (50)

where A
(1)
n,m and A

(2)
n,m coincide with the matrix An,m with the respective substitutions an = χn and

an = χn−1. This system of linear equations is compatible on solutions of system (49). We now change the
matrices A

(1)
n,m and A

(2)
n,m, expressing the functions un±2,m in terms of un,m and un±1,m and either ∂xun,m

or ∂yun,m. We can do this using the consequences of system (49)

χnun+2,m =
χn∂xun,m

hn,mhn−1,m
, χn−1un−2,m = −χn−1∂xun,m

hn,mhn−1,m
,

χn−1un+2,m =
χn−1∂yun,m

hn,mhn−1,m
, χnun−2,m = − χn∂yun,m

hn,mhn−1,m
.

(51)

As a result, we obtain matrices depending only on un,m, un+1,m, and un−1,m. Using these matrices, we can
obtain a system of three equations for three unknown functions from (50).

To avoid the explicit dependence on n, we pass to either odd or even n. In the case of odd n = 2k− 1,
we introduce the notation

p = u2k−1,m, q = u2k,m, r = u2k−2,m. (52)

The matrices then become

A(1) =

⎛

⎜
⎜
⎝

qpx

1 − pq
+

2λ

λ − 1
−q

2λpx

(λ − 1)(1 − pq)
1 − pq

⎞

⎟
⎟
⎠ , (53)

A(2) =

⎛

⎜
⎜
⎝

(λ − 1)(pr − 1)
1 + λ

(1 − λ)r
1 + λ

2λp(pr − 1)
1 + λ

rpy

pr − 1
− 2λpr

1 + λ

⎞

⎟
⎟
⎠ . (54)

The corresponding linear equations can be written as

DxΨ = A(1)Ψ, DyΨ = A(2)Ψ,

and their compatibility condition is

DxA(2) − DyA(1) = [A(1), A(2)]. (55)
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This matrix equation is equivalent to the hyperbolic system

∂2 log p

∂x ∂y
+

pxpy

p2(pq − 1)(pr − 1)
+ (pq − 1)(pr − 1) = 0,

(pr − 1)qy + qrpy − r(pq − 1)(pr − 1) = 0,

(pq − 1)rx + qrpx + q(pq − 1)(pr − 1) = 0.

(56)

We thus obtain integrable system (56) of three hyperbolic equations together with L–A pair (53)–(55). If
un,m(x, y) is the general solution of Eqs. (49), then functions (52) satisfy system (56) for any k and m.

For even values n = 2k, we obtain the same hyperbolic system up to the involution x ↔ y. In both
cases, regardless of the parity of n, the first equation in (56) can be written as

∂2 log un,m

∂x ∂y
+

∂xun,m∂yun,m

u2
n,m(un,mun−1,m − 1)(un,mun+1,m − 1)

+

+ (un,mun−1,m − 1)(un,mun+1,m − 1) = 0, (57)

and this is just a (2+1)-dimensional chain (m is an external parameter) similar to the (2+1)-dimensional
generalization of the Toda chain [17]. Any compatible solution un,m(x, y) of Eqs. (49) is also a solution of
chain (57). The integrability problem of chain (57) is not studied in this paper and remains open.

To obtain the second hyperbolic system, we consider the pair of generalized symmetries

∂xun,m = hn,mhn−1,m(χnun+2,m − χn−1un−2,m),

∂zun,m = (−1)n
u2

n,m + un,m+1un,m−1

un,m+1 + un,m−1
,

(58)

which are compatible on solutions of discrete equation (1). The corresponding auxiliary linear problem has
the form

DxΨn,m = A(1)
n,mΨn,m, DzΨn,m = Bn,mΨn,m.

Here, the matrix A
(1)
n,m is defined as in the preceding case. The matrix Bn,m is given by formula (20).

The matrix A
(1)
n,m is transformed using formulas (51). We eliminate un,m−1 from the matrix Bn,m using

the second equation in (58). To eliminate the explicit dependence on n, we pass to odd n = 2k − 1 and
introduce the notation

p = u2k−1,m, q = u2k,m, r = u2k−1,m+1. (59)

As a result, we obtain the same matrix A(1) given by (53) and the matrix

B =
1

p − r

⎛

⎜
⎝

(λ − 1)(pz + p)
(1 − λ)(pz + r)

p + r

λ(p + r)(pz + p)
(p − r)(pz − p)

p + r
− λ(pz + r)

⎞

⎟
⎠ .

In this case, instead of (55), we obtain the matrix relation

DxB − DzA
(1) = [A(1), B]. (60)
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Relation (60) is equivalent to the hyperbolic system

∂2 log p

∂x ∂z
+

(pz − p)(p − r)px

p2(p + r)(pq − 1)
+

(pz + p)(p + r)(pq − 1)
(p − r)p

= 0,

(p2 − r2)qz − 2(qr − 1)pz − q(p2 + r2) + 2r = 0,

(pq − 1)rx − (qr − 1)px − (p + r)(pq − 1)(qr − 1) = 0.

(61)

Depending on the choice of either even or odd n and on whether the function un,m+1 or un,m−1 is
eliminated from the matrix Bn,m, there are four variants of the hyperbolic systems, but they are equivalent
up to simple point transformations.

The case of generalized symmetries (49) compatible with each other without any additional assumption
is analogous to the examples considered in [12], [28]. The second case of generalized symmetries (58)
compatible on solutions of discrete equation (1) is apparently new.

In the second case, we can also construct a (2+1)-dimensional chain similar to (57), but it is nonau-
tonomous and rather cumbersome, and we therefore do not write it here.

We can eliminate r or q from systems (56) and (61) using the respective second or third equation. In
this case, we obtain hyperbolic systems of two equations analogous to the systems presented in [12], [28],
but these systems contain square roots and are complicated.

6. Conclusion

We have constructed the L–A pair for discrete equation (1) and have shown that this equation differs
from the known examples from the standpoint of L–A pairs.

Most of the known integrable discrete equations of form (6) have L–A pairs of the form

(Tn − Nn,m)Ψn,m = 0, (Tm − Mn,m)Ψn,m = 0 (62)

with 2×2 matrices Nn,m and Mn,m. There are also discrete analogues of the Tzitzéica equation with 3×3
matrices in L–A pair (62). The L–A pair of our Eq. (1) has the form

(T 2
n − Nn,m)Ψn,m = 0, (Tm − Mn,m)Ψn,m = 0 (63)

with the 2×2 matrices.
In Sec. 4, we constructed two hierarchies of generalized symmetries in both the directions m and n for

Eq. (1). These hierarchies turn out to be of different types: there are symmetries of any natural order in
the direction m, while we have only even-order symmetries in the direction n. For other known examples,
both hierarchies are of the same type.

The hierarchies of the conservation laws constructed in Sec. 3 also turn out to be of different types.
There are conservation laws of any order in the direction m, while there are only odd-order conservation
laws in the direction n.

Equation (3) with an = 1 belongs to the class of autonomous equations of form (22) and is the
lowest representative of its hierarchy. We could expect that it is an analogue of Itoh–Narita–Bogoyavlensky
chain (24). Our study shows that Eq. (3) with an = 1 is closely related to the known integrable Tsuchida
system (8), whose symmetry properties are close to those of the relativistic Toda chain.

Other known integrable chains of form (22) have L–A pairs (23) with either 2×2 or 3×3 matrices. Our
example of Eq. (3) with an = 1 differs from them because the L–A pair has form (25) with 2×2 matrices.
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