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Abstract
We study the generalized symmetry structure of three known discrete non-
autonomous equations. One of them is the semidiscrete dressing chain of Shabat.
Two others are completely discrete equations defined on the square lattice. The
first one is a discrete analogue of the dressing chain introduced by Levi and
Yamilov. The second one is a nonautonomous generalization of the potential
discrete KdV equation or, in other words, the H1 equation of the well-known
Adler−Bobenko−Suris list. We demonstrate that these equations have generalized
symmetries in both directions if and only if their coefficients, depending on the
discrete variables, are periodic. The order of the simplest generalized symmetry in
at least one direction depends on the period and may be arbitrarily high. We
substantiate this picture by some theorems in the case of small periods. In case of
an arbitrarily large period, we show that it is possible to construct two hierarchies
of generalized symmetries and conservation laws. The same picture should take
place in case of any nonautonomous equation of the Adler−Bobenko−Suris list.

Keywords: discrete integrable system, generalized symmetry, conservation
law, L−A pair, dressing chain

1. Introduction

We demonstrate that the generalized symmetry structure of some nonautonomous equations
may be quite unusual by using the example of three known equations.
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The first equation reads:

α β− − = −+ + + +u u u u( )( ) . (1)n m n m n m n m n m1, 1 , 1, , 1

Here un m, is an unknown function depending on two discrete variables ∈ n m, , while α β,n m
are the given functions depending on one discrete variable. Equation (1) is the H1 equation of
the Adler–Bobenko–Suris list [2], which in the nonautonomous form first appeared, probably,
in [4]. In the autonomous case, it is nothing but the discrete potential KdV equation, which was
known about much earlier together with its −L A pair, see e.g. [21].

The second equation is the well-known dressing chain studied, e.g., in [24, 25, 28]:

α α+ = − + −+ + +
x

u u u u
d

d
( ) . (2)n n n n n n1

2
1

2
1

Here the unknown function =u u x( )n n depends on one continuous x and one discrete n
variable. The third equation is a completely discrete analogue of the dressing chain:

α α+ − = − ++ + + + +( )( ) ( )( )u u u u1 1 1 1 , (3)n n m n m n n m n m, 1 , 1 1, 1 1,

which was introduced in [18]. In the autonomous case see, e.g., [12, 21].
The equations (1) and (3) belong to the following class of discrete equations on the

square lattice:

=+ + + +F u u u u( , , , ) 0. (4)n m n m n m n m n m, 1, , , 1 1, 1

In the autonomous case, when the function Fn m, does not depend on n m, explicitly, all
known integrable equations of this form have two hierarchies of generalized symmetries, and
this property can be used as a criterion of integrability. Generalized symmetries in the n-
direction have the form

Φ= …+ + − −
u

t
u u u

d

d
( , , , ), (5)

n m

k
n m n k m n k m n k m

,
, , 1, ,

where ⩾k 1, and the number k can be called the order of such symmetry. Generalized
symmetries of an order ⩾l 1 in the m-direction have the form

τ
Ψ= …+ + − −

u
u u u

d

d
( , , , ). (6)

n m

l
n m n m l n m l n m l

,
, , , 1 ,

In most autonomous integrable cases, the simplest generalized symmetries in both
directions have the orders = =k l 1, see e.g. [16, 19, 29]. These symmetries correspond to
integrable Volterra type equations of a complete list obtained in [31], see also the review
article [33]. There are a few examples with the simplest symmetries of orders = =k l 2, see
[1, 20, 26]. Up to now there has only been one known example with an essentially asym-
metric structure of generalized symmetries. It was found in [8], see also [7]. In that example,
the orders of simplest symmetries are different (k = 2 and l = 1), and the examples we
discuss in this article will be asymmetric in the same sense.

As for the nonautonomous case, the situation is different. We know nonautonomous
examples of the form (4) with two hierarchies of generalized symmetries [9, 30]. However,
there are some known integrable nonautonomous equations which have only one hierarchy of
generalized symmetries or have no hierarchy at all. This is the case of nonautonomous
equations of the Adler–Bobenko–Suris list. It has been hypothesized in [22], and this will be
confirmed in the present paper, that there is no generalized symmetry in the n-direction when
αn is an arbitrary n-dependent function and no generalized symmetry in the m-direction when
βm is an arbitrary m-dependent function.
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In this paper, instead of arbitrary functions α β,n m in equation (1), we consider the
concrete ones. We look for functions α β,n m, such that the corresponding equation (1) has two
hierarchies of generalized symmetries. We prove that symmetries of the form (5) and (6) exist
if and only if αn and βm are the periodic functions. We do this for some low orders k and l
only. The orders k and l of the simplest generalized symmetries (5) and (6) depend on the
periods of αn and βm and may be arbitrarily high as well as different.

For equation (3) the picture is similar. In case of equation (2), the form of symmetries is
different, but the results are quite analogous too.

In case of the periodic coefficients αn and βm in equations (1)–(3), whose periods may be
arbitrarily large, we demonstrate that two hierarchies of generalized symmetries and con-
servation laws can be constructed by using known nonautonomous −L A pairs of these
equations. This is done using a method presented in [11].

It seems highly probable that two hierarchies of conservation laws also exist if and only if
the coefficients of equations (1)–(3) are periodic. This property has been confirmed in a sense
in [23], where it has been shown for equation (1) that so-called five-point conservation laws
disappear when the coefficients αn and βm become nonconstant.

As a result of our investigation we come to an opinion that equations (1)–(3) with the
periodic coefficients are ‘more integrable’. In this case we can derive, in both directions,
generalized symmetries and conservation laws from their −L A pairs, while in the general case
those −L A pairs seem to be much more inconvenient to use.

In section 2 we prove a few theorems showing that two hierarchies of generalized
symmetries of equation (1) exist only in the case of periodic coefficients. In particular, we
construct an interesting example with a simplest generalized symmetry of the second order in
one direction and of the third order in the second one. In sections 3, 4 we prove analogues
theorems for equations (2)–(3). In section 5 we explain how to construct two hierarchies of
generalized symmetries and conservation laws for equations (1)–(3) with the periodic coef-
ficients. Examples of generalized symmetries of low orders together with their −L A pairs are
constructed for such equations in section 6. Conservation laws of low orders are given in
section 7. The nature of some generalized symmetries of equations (1)–(3) with the periodic
coefficients is discussed in section 8.

2. H1 equation

We study in this section the H1 equation (1) for which we use a natural assumption:

α β≠ (7)n m

for any ∈ n m, . In the opposite case the equation becomes degenerate in some points, see
e.g. [19] for the autonomous case and [9] for the nonautonomous one.

In the autonomous case, generalized symmetries of the Adler–Bobenko–Suris equations
and of the H1 equation, in particular, were constructed in [14, 15, 22, 27]. Here we look for
generalized symmetries of the H1 equation in the nonautonomous case and obtain, as a result,
some statements on the symmetry structure of this equation.

Due to the invariance of equation (1) with respect to the involution α β↔ ↔n m, n m, we
can restrict ourselves to generalized symmetries of the form (5). According to its definition,
see e.g. [18], the symmetry (5) of equation (4) must satisfy the relation
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Φ Φ Φ Φ
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

=
+

+
+

+
+ +

+ +
F

u

F

u

F

u

F

u
0

(8)

n m

n m
n m

n m

n m
n m

n m

n m
n m

n m

n m
n m

,

1,
1,

,

,
,

,

, 1
, 1

,

1, 1
1, 1

on the solutions of equation (4) and for all ∈ n m, .
The symmetry (5) is of the order k if there exists a point (n, m), such that

Φ Φ∂
∂

≠
∂

∂
≠

+ −u u
0 or 0,

n m

n k m

n m

n k m

,

,

,

,

cf [17]. We will use subsequently the following property: if the symmetry (5) has an order
<k kˆ , then

Φ Φ∂
∂

=
∂

∂
=

+ −u u
n m0 and 0 for all , .

n m

n k m

n m

n k m

,

,

,

,

We prove theorems below under a nondegeneracy condition for such generalized sym-
metries:

Φ Φ∂
∂

≠
∂

∂
≠ ∈

+ −


u u
n m0 and 0 for all , . (9)

n m

n k m

n m

n k m

,

,

,

,

In all known cases, if an equation of the form (4) has a generalized symmetry (5) of an
order ⩾k 1, then it has the nondegenerate symmetry of the same order.

We find generalized symmetries by using a scheme developed in [6, 19]. Some anni-
hilation operators [10] play an important role in this scheme.

Equation (1) has the following point symmetry:

ν ν ν= + − + −+ +
t

u u
d

d
( 1) ( 1) , (10)n m

n m
n m

n m

0
, 1 2 3 ,

where ν ν ν, ,1 2 3 are arbitrary constants. We write down below generalized symmetries up to
this point one.

2.1. First and second order generalized symmetries

Here we get some theoretical results in case of the first and second order generalized
symmetries. The following result was obtained in [22], and we present it below for
completeness.

Theorem 2.1. Equations (1)–(7) has a first order nondegenerate generalized symmetry in
the n-direction if α α≡ − .n n 1

Sketch of Proof. The compatibility condition (8) for equations (1) and (5) implies:

α α
Φ

α α
Φ

−
∂

∂
≡ −

∂
∂

≡−
+

−
−u u

( ) 0, ( ) 0, (11)n n
n m

n m
n n

n m

n m
1

,

1,
1

,

1,

and we get the first part of the theorem. On the other hand, equation (1) with α α≡ −n n 1 has,
for any βm, the generalized symmetry

=
−+ −t

u
u u

d

d

1
(12)n m

n m n m1
,

1, 1,

which is nondegenerate. □
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Remark. The same result can be obtained under a weaker assumption instead of the
nondegeneracy condition (9) with k = 1. For example, we can assume that there exists m, such
that

Φ Φ∂
∂

≠
∂

∂
≠

+ −u u
0 or 0 (13)

n m

n m

n m

n m

,

1,

,

1,

for any n. In this case we also derive α α≡ −n n 1 from equation (11).
In the case α α α≡ ≡−n n 1 and β β β≡ ≡−m m 1 , there is one more symmetry:

β α
′

= −
−

+
+ −t

u
n

u u
u

d

d

2 ( )
. (14)n m

n m n m
n m

1
,

1, 1,
,

Any symmetry of the order ⩽k 1 of equations (1)–(7) with α α≡ −n n 1 is, up to a point
symmetry (10), the following linear combination with constant coefficients μ μ,1 2:

μ μ
″

= +
′

u

t

u

t

u

t

d

d

d

d

d

d
. (15)

n m n m n m,

1
1

,

1
2

,

1

Both generalized symmetries (12) and (14) are known [14, 22, 27]. Equation (12) is a
known integrable equation of the Volterra type [31, 33]. Equation (14) is its known master
symmetry [3]. It generates generalized symmetries not only for equation (12) but also for the
discrete equations(1)–(7) with α α≡n and an arbitrary βm. For example, it can be checked by
direct calculation that the following equation, constructed in the standard way,

=
′

−
′t

u
t t

u
t t

u
d

d

d

d

d

d

d

d

d

d
(16)n m n m n m

2
,

1 1
,

1 1
,

is the second order generalized symmetry for both of these equations.
Below we consider the two-periodic case: α α≡+ −n n1 1. There we have two possibilities.

The first is α α=0 1, hence α α≡n is a constant, and we are led to the previous one-periodic
case. In the second case α α=0 1, then α α=+n n1 for any n.

Theorem 2.2. The following two statements take place:

1. If equations (1)–(7) has a nondegenerate generalized symmetry of order 2 in the n-
direction, then α α≡+ −n n1 1.

2. If αn in equations (1)–(7) satisfies the conditions

α α α α≡ ≠+ − and , (17)n n1 1 0 1

then in the n-direction there exists the nondegenerate second order symmetry and there is
no symmetry of the first order.

Proof. We can derive from the compatibility condition (8) the following relations:

α α
Φ

α α
Φ

−
∂

∂
≡ −

∂
∂

≡+ −
+

−
−u u

( ) 0, ( ) 0,n n
n m

n m
n n

n m

n m
1 1

,

2,
2

,

2,

which provide the first part of the theorem. In case (17) we have the second order
symmetry
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γ

γ

=
−

+ − −

+
−

+ − −

+

− + +

− −

− + −

t
u

c u u

u u u u

c u u

u u u u

d

d

( )

( )( )

( )

( )( )
, (18)

n m
n n m n m

n n m n m n m n m

n n m n m

n n m n m n m n m

2
,

, 2,

1, 1, , 2,

1 , 2,

1, 1, , 2,

where ≡+c cn n2 is an arbitrary two-periodic function, and γ α α= − ≠+ 0n n n1 for any n. This
formula yields the nondegenerate symmetries of order 2 (e.g. if ≡c 1n or = + −c 2 ( 1)n

n ).
In the case β β≡m we have an additional symmetry:

β α
γ

β α
γ

′
=

− −
+ − −

+
− − −

+ − −
−

+ +

− + +

−

− + −

( )

( )
t

u
n u u

u u u u

n u u

u u u u
u

d

d

( )

( )( )

( 1) ( )

( )( )
. (19)

n m
n n m n m

n n m n m n m n m

n n m n m

n n m n m n m n m
n m

2
,

1 , 2,

1, 1, , 2,

, 2,

1, 1, , 2,
,

Any symmetry of the order ⩽k 2 of equations (1), (7) and (17) is a linear combination of
(10), (18) and (19).

For this reason, there is no first order symmetry. Indeed, any first order symmetry must
have, up to point symmetries, the form

ν= +
′t

u
t

u
t

u
d

d

d

d

d

d
n m n m n m

1
,

2
,

2
,

with some special cn and ν. Partial derivatives ∂ ±un m2, of the right hand side of this equation
must be equal to zero identically for all n m, . Then

ν β α+ − =+( )c n n m0 for all , ,n n 1

and it is easy to see that ν≡ =c 0, 0.n □

Let us note that if α α≡+n n1 , then equations (18)–(19) turn into (12)–(14). The formula
(18) provides two linear independent and commuting symmetries of the discrete equation.

Equation (19) should be the master symmetry for (18), providing generalized symmetries
of even orders not only for (18) but also for equations (1), (7) and (17) with an arbitrary βm.
We have checked that by direct calculation in the first step, constructing a fourth order
generalized symmetry.

2.2. An example with asymmetric symmetry structure

We consider here equations (1)–(7) satisfying the conditions

α α β β≡ ≡+ +, . (20)n n m m3 2

We also require:

α α α α α α β β≠ ≠ ≠ ≠, , , . (21)0 1 0 2 1 2 0 1

This provides that

α α α α β β− ≡ − ≠ ≠+ − −0,n n n n m m2 1 1

for all n m, . Taking into account the condition (7), we see that all the five numbers
α α α β β, , , ,0 1 2 0 1 must be different.
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There is in the n-direction the following generalized symmetry:

γ

γ γ

γ γ
γ

γ γ
γ α α

=
+

− +

+
+ +

+
−

− −
= − = − ≡

+ + + +

+ + + + +

+ −

+ − + + −

− − −

− − − −

+ − + +

( )u

t

v v a

v v v v v
v v a

v v v v v

v v a

v v v v v

v u u a a

d

d

( )
,

, , . (22)

n m n m n m n n

n m n m n m n m n n m n

n m n m n

n m n m n m n m n n m n

n m n m n n

n m n m n m n m n n m n

n m n m n m n n n n n

,

3

2, 1, 1 1

2, 1, , 2, 2 , 1

1, 1,

1, , 1, 1, 1 1,

1, 2, 1

, 1, 2, , 2, 1

, 1, 1, 1 3

It is of the order k = 3 and is nondegenerate in particular cases, e.g. ≡a 1n . There are here
three linear independent and commuting generalized symmetries. Any symmetry in the n-
direction of an order ⩽k 3 is a linear combination of equations (22) and (10). That is why
there is no symmetry of the orders k = 1 and k = 2.

There is in the m-direction the following generalized symmetry of the form (6):

τ δ δ
δ β β

=
+

+
−

= −

= − ≡

+ +

+

−

−
+ −

+ +

u w b

w w

w b

w w
w u u

b b

d

d
, ,

, . (23)

n m n m m

n m n m m

n m m

n m n m m
n m n m n m

m m m m m

,

2

, 1 1

, 1 ,

, 1

, , 1
, , 1 , 1

1 2

It is of the order l = 2 and is nondegenerate in particular cases, e.g. ≡b 1m . We have here
two linear independent and commuting symmetries. Any symmetry in the m-direction of an
order ⩽l 2 is a linear combination of equations (23) and (10). For this reason there is no
symmetry of the order l = 1.

The results can be formulated as follows:

Theorem 2.3. Equations (1), (7), (20, (21) has in the n-direction a nondegenerate
generalized symmetry of the order k = 3 and has no symmetry of the orders k = 1, 2. This
equation possesses in the m-direction a nondegenerate symmetry of the order l = 2 and has
no symmetry of the order l = 1.

3. Dressing chain

In this section we discuss the dressing chain (2). From the viewpoint of the generalized
symmetry properties, equations of the form (4) are the discrete analogues of hyperbolic type
equations:

=u f x y u u u( , , , , ).xy x y

Equation (2) belongs to the class of equations

=+ +u f x u u u( , , , ) (24)n x n n n n x1, 1 ,

which are, in the same sense, the semidiscrete analogues of hyperbolic type equations. In
the autonomous case, all integrable equations of these three classes should have two
hierarchies of generalized symmetries in two different directions. In the paper [32] a
number of autonomous examples of the form (24), including equation (2) with the constant
αn, have been presented together with two generalized symmetries in two different
directions.
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Equation (2) is a nonautonomous representative of the class (24). A hierarchy of gen-
eralized symmetries in the x-direction exists for any αn, and the simplest equation has the
form

θ
α= − +( )u u

x
u

u

x

d

d

d

d
6

d

d
. (25)n n

n n
n

3

3
2

For any fixed n this equation is nothing but the well-known modified Korteweg–de Vries
equation. As it will be shown below, symmetries of equation (2) in the n-direction disappear
in the generic case, i.e. when αn is an arbitrary function. We will search the functions αn, such
that generalized symmetries in the n-direction exist.

Generalized symmetries of equations (24) in the n-direction have the form

Φ= + + − −
u

t
x u u u

d

d
( , , ,..., ). (26)n

k
n n k n k n k1

The order of such symmetry is equal to k if

Φ Φ∂
∂

≠
∂

∂
≠

+ −u u
0 or 0n

n k

n

n k

at least at one point n.
We prove the theorems below under the following nondegeneracy condition for the

generalized symmetries:

Φ Φ∂
∂

≠
∂

∂
≠ ∈

+ −


u u
n0 and 0 for all . (27)n

n k

n

n k

In all integrable cases we know, if an equation (24) has a generalized symmetry (26) of
an order ⩾k 1, then it has the nondegenerate symmetry of the same order.

The generalized symmetry (26) of equation (24) must satisfy the compatibility condition

Φ Φ Φ Φ=
∂
∂

+
∂

∂
+

∂
∂+

+
+

x

f

u

f

u

f

u x

d

d

d

d
(28)n

n

n
n

n

n
n

n

n x
n1

1
1

,

on any solution of equation (24) and for all n.

3.1. First order generalized symmetries

Theorem 3.1. Equation (2) has a first order nondegenerate generalized symmetry in the n-
direction iff α α≡ +n n 1.

Proof. We can derive from the compatibility condition (28) the relations

α α
Φ

α α
Φ

−
∂

∂
≡ −

∂
∂

≡+
+

−
−u u

( ) 0, ( ) 0n n
n

n
n n

n

n
1

1
1

1

which provide the first part of the theorem. On the other hand, equation (2) with α α≡ +n n 1

has the following nondegenerate generalized symmetry:

=
+

−
++ −

u

t u u u u

d

d

1 1
. (29)n

n n n n1 1 1

In the autonomous case, both symmetries (25) and (29) of equation (2) have been found
in [32]. □
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There is one more generalized symmetry:

′
=

+
− −

++ −

u

t

n

u u

n

u u

d

d

1
, (30)n

n n n n1 1 1

and any symmetry of an order ⩽k 1 of equation (2) with α α≡ +n n 1 is a linear combination of
(29), (30). Equation (30) provides the master symmetry for equation (29). For example,

⎛
⎝⎜

⎞
⎠⎟=

′
−

′
=

+ +

−
−

+ +
−

+ +

+ + +

+ −

+ − − − −

u

t t t t t
u

u u u u
u u

u u u u u u u u

d

d

d

d

d

d

d

d

d

d

1

( )( )

( ) ( )

1

( ) ( )
(31)

n
n

n n n n

n n

n n n n n n n n

2 1 1 1 1 2 1 1
2

1 1

1
2

1
2

1
2

1 2

is the generalized symmetry not only for equation (29) but also for the autonomous
semidiscrete equation (2).

3.2. Second order generalized symmetries

Theorem 3.2. The following two statements take place:

1. If equation (2) has a nondegenerate generalized symmetry of the second order in the n-
direction, then α α≡+ −n n1 1.

2. If αn of equation (2) satisfies the conditions

α α α α≡ ≠+ − and , (32)n n1 1 0 1

then there exists in the n-direction a nondegenerate second order symmetry and there is
no symmetry of the first order.

Proof. The compatibility condition (28) implies

α α
Φ

α α
Φ

−
∂

∂
≡ −

∂
∂

≡+
+

−
−u u

( ) 0, ( ) 0,n n
n

n
n n

n

n
2

2
2

2

and we get the first part of the theorem.
In the case (32) all symmetries of orders ⩽k 2 are described as follows:

γ

γ γ

=
+

+ + +

+
−

− + +
−

+
+ + +

+ + +

+ + +

+ + −

+ −

− −

− − −

u

t

a u u

u u u u

a u u

u u u u

a u u

u u u u

d

d

( )

( )( )

( )

( )( )

( )

( )( )
, (33)

n n n n

n n n n n

n n n

n n n n n

n n n

n n n n n

2

2 2 1

2 1 1

1 1 1

1 1

1 2

1 1 2

where γ α α= − ≠+ 0n n n1 for all n. The function an is given by = +a b cn,n n where bn is an
arbitrary two-periodic function and c is an arbitrary constant. So, as bn can be represented in
the form = + −b b b̂ ( 1)n

n, then any symmetry (33) is a linear combination of three
inequivalent symmetries given by:

= = − =a a a n1, ( 1) , . (34)n n
n

n

There are nondegenerate examples here of the second order, e.g. an = 1 or
= + −a 2 ( 1)n

n, but there is no symmetry of the first order. □
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In the case when an is the two-periodic function, i.e. an = bn, we have in (33) two linear
independent and commuting generalized symmetries. The linear case =a cnn provides the
master symmetry for equation (33) with an = bn. This master symmetry generates symmetries
not only for equation (33) with an = bn but also for the semidiscrete equations (2), (32). We
have checked that on the first step, constructing a fourth order generalized symmetry.

4. Discrete dressing chain

In this section we discuss equation (3) with α ≠ 0n for any n. In [18] a complete analogue of
the dressing chain (2) has been introduced in the following form:

+ − = − ++ + + + + +( )( ) ( )( )v d v d v d v d . (35)n m m n m m n m m n m m1, , 1, 1 1 , 1 1

If ≠d 0m for all m, then after using the involution ↔n m and an obvious rescaling of
vn m, we obtain the discrete equation (3) with α = ≠d 0n n

2 for any n. This form is more
comfortable for further investigation.

For any αn there exists a hierarchy of generalized symmetries of equation (3) in the m-
direction, and its simplest representative reads [18]:

τ
α= − −+ −( )u

u u u
d

d
1 ( ). (36)

n m
n n m n m n m

,

1
,

2
, 1 , 1

For any fixed n it obviously is the modified Volterra equation. We will look for functions αn,
such that generalized symmetries in the n-direction exist.

It should be remarked that an integrable generalization of equation (3) has been presented
in [9] together with one hierarchy of generalized symmetries and an −L A pair.

4.1. Simplest case

The following result has been obtained in [9], and we present it here for completeness.

Theorem 4.1. Equation (3) with α ≠ 0n for any n has a first order nondegenerate
generalized symmetry of the form (5) iff α α≡ − .n n 1

In the case α α≡ −n n 1, the following nondegenerate symmetry is known [18]:

⎛
⎝⎜

⎞
⎠⎟= −

+
−

++ −
( )u

t
u

u u u u

d

d
1

1 1
. (37)

n m
n m

n m n m n m n m

,

1
,

2

1, , , 1,

We just add that there is one more generalized symmetry in the n-direction:

⎛
⎝⎜

⎞
⎠⎟′

= −
+

− −
++ −

( )u

t
u

n

u u

n

u u

d

d
1

1
, (38)

n m
n m

n m n m n m n m

,

1
,

2

1, , , 1,

and any symmetry of an order ⩽k 1 of equation (3) is a linear combination of (37) and (38).
Equation (38) is the known master symmetry of equation (37) [5]. It provides generalized

symmetries not only for (37) but also for equation (3).

4.2. Second order generalized symmetries

Theorem 4.2. The following two statements take place:

J. Phys. A: Math. Theor. 48 (2015) 235201 R N Garifullin et al

10



1. If equation (3) with α ≠ 0n for all n has a nondegenerate generalized symmetry of the
second order in the n-direction, then α α≡+ −n n1 1.

2. If α ≠ 0n for any n in equation (3) and it satisfies the conditions

α α α α≡ ≠+ − and , (39)n n1 1 0 1

then there exists in the n-direction a nondegenerate second order symmetry of
equation (3) and there is no symmetry of the first order.

Proof. The compatibility condition (8) implies:

α α
Φ

α α
Φ

−
∂

∂
≡ −

∂
∂

≡+
+

−
−u u

( ) 0, ( ) 0,n n
n m

n m
n n

n m

n m
2

,

2,
2

,

2,

and we get the first part of the theorem.
In the case (39), all symmetries of orders ⩽k 2 in the n-direction are described as

follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

β

= −
+

−
−

−
+

= + + + − −

+ + +

+

+ + − − −

−

+ − −

( )

( )( )

( )

( )

( )( )

u

t
u

a u u

U

a u u

U

a u u

U

U u u u u u

d

d
1

( )
,

1 1 , (40)

n m
n m

n n m n m

n m

n n m n m

n m

n n m n m

n m

n m n m n m n m n m n m n

,

2
,

2 2 2, 1,

1,

1 1, 1,

,

1, 2,

1,

, 1, , , 1, ,
2

1

where β α α= ≠+ 1n n n1 for all n. The function an is given by = +a b cnn n , where bn is an
arbitrary two-periodic function and c is an arbitrary constant. Here, as in the case of
equation (33), any symmetry (40) is a linear combination of three inequivalent symmetries
given by (34).

There are in (40) nondegenerate examples of the second order, e.g. ≡a 1n or
= + −a 2 ( 1)n

n, but there is no symmetry of the first order. □

In the case when an is the two-periodic function, i.e. an = bn, we have in (40) two linear
independent and commuting generalized symmetries. The linear case =a cnn provides the
master symmetry for equation (40) with an = bn, which generates generalized symmetries for
this equation. Those generalized symmetries should be the symmetries of the discrete
equations (3), (39) too, as the Lie algebra of symmetries should be closed under the operation
of commutation, but the verification of this property is difficult even on the first step.

5. Method of the construction of generalized symmetries and conservation laws

A method has been developed in [11] for the autonomous and weakly nonautonomous
discrete and semidiscrete equations, which allows one to construct generalized symmetries
and conservation laws by using the −L A pairs. That method is based on the formal diag-
onalization of an −L A pair in the neighborhood of a stationary singular point. In this section
we generalize that method to the case of the nonautonomous equations with periodic
coefficients.
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5.1. Formal diagonalization

Let us first discuss the formal diagonalization in the case of systems of the linear discrete
equations.

We consider a discrete linear vector equation of the form

Ψ λ Ψ= ⩾+ ( )f ku , , 1, (41)n k n n n

where Ψn is an unknown vector, the matrix potential λ ∈ ×f u( , )n n
s s is a meromorphic

function of λ ∈ , and the vector function un is a functional parameter. A point λ λ= 0 is
called the point of singularity of equation (41) if it is either a pole of λf u( , )n n or a solution of
the equation λ =f udet ( , ) 0n n . It is assumed that the set of roots of the equation

λ =f udet ( , ) 0n n , as well as the set of poles of fn, does not depend on n.
We suppose here that equation (41) with the singular point λ0 is reduced to the following

special form:

Ψ λ Ψ=+ ( )P Zu , , (42)n k n n n

where Z is a diagonal matrix λ λ λ λ λ λ= − − −γ γ γZ diag(( ) , ( ) ,...,( ) )0 0 0 s1 2 with integer
exponents γj, such that γ γ γ< < <... .s1 2

It should be remarked that there is no proof that equation (41) can be transformed into the
form (42). However, there is a general scheme which provides, as a rule, a transition from
equation (41) to (42). That scheme has been presented in [11]. Besides, it will be explained in
detail in section 5.3 for three examples under consideration how to get the representation (42).

Let us rewrite equation (42) as Ψ Ψ=L n n with

λ= − ( )L D P Zu , , (43)n
k

n n

where Dn is the shift operator acting by the rule → +D n n: 1n . The following statement on
the formal diagonalization of the operator L takes place, see [11, 13].

Theorem 5.1. Assume that, for any integer n and for un ranging in a domain, the function
λP u( , )n n is analytic in a neighborhood of the point λ0, and all the leading principal minors

det j of the matrix λP u( , )n n 0 do not vanish:

λ ≠ = …( )P j s nudet , 0 for 1, 2, , and for all .
j

n n 0

Then there exists a formal series ∑ λ λ= −⩾T T ( )n i n
i i

0
( )

0 , ≠Tdet 0n
(0) , with the matrix

coefficients, such that the operator = −L T LTn n0
1 is of the form = −L D h Zn

k
n0 , where

∑ λ λ= −⩾h h ( )n i n
i i

0
( )

0 is a formal series with the diagonal coefficients hn
i( ), ≠hdet 0n

(0) .
The series Tn is defined up to multiplication by a formal series with the diagonal

coefficients. The latter can be chosen so that all the coefficients Tn
i( ) and hn

i( ) depend on some

finite sets of dynamical variables in
=−∞

=∞{ }u p
p

p
, which in turn depend on i.

For k = 1 theorem 5.1 has been proved in [11]. In the general case >k 1, it can be proved
by almost verbatim repeating a proof of [11]. It should be remarked that there is in that proof
an algorithm for recurrent construction of the coefficients Tn

i( ), hn
i( ).

5.2. Diagonalization of the L−A pair and construction of conservation laws

In this section we apply theorem 5.1 to operators defining the −L A pairs of discrete or
semidiscrete scalar equations like equations (1), (2). We also explain how to derive a
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hierarchy of conservation laws from so-diagonalized operators. The same procedure can be
used for analogous systems of discrete or semidiscrete equations.

First we consider a discrete equation (4) and suppose that it is represented as the con-
sistency condition of the following system of linear discrete equations:

Ψ λ Ψ Ψ λ Ψ= =+ +( ) ( )P u Z R u[ ], , [ ], . (44)n p m n m n m n m n m q n m n m n m, , , , , , , ,

Here the symbol u[ ]n m, indicates that the matrix functions Pn m, and Rn m, depend on the
dynamical variable un m, and on a finite number of its shifts. Note that the first equation in (44)
is of the form (42). Let us suppose that it satisfies all the conditions of theorem 5.1. Then, due
to the theorem, the operator = −L D P Zn

p
n m, is diagonalized by the conjugation by an

appropriate formal series Tn m, . We assume that the potential λR u([ ], )n m n m, , rationally
depends on λ. Evidently, the consistency condition for the system (44) is equivalent to the
commutativity condition for the operators L and = −M D Rm

q
n m, .

It has been proved in [11] that the operator M commuting with L is diagonalized by the
conjugation with the same series Tn m, . Therefore we have a diagonal operator M0 with the
following representation as a formal series:

λ λ λ λ λ λ

= =

= − + − + − +

− −

( )( ) ( ) ( )

M T MT D S

S S S S

,

... .

n m n m m
q

n m

n m
q

n m n m n m

0 ,
1

, ,

, 0 ,
(0)

,
(1)

0 ,
(2)

0
20

The commutativity condition =L M[ , ] 00 0 , where = =− −L T LT D h Zn m n m n
p

n m0 ,
1

, , , gives
rise to the equation

=+ +h S S h , (45)n m q n m n p m n m, , , ,

as = =Z S Z h[ , ] [ , ] 0n m n m, , . Equation (45) implies the relation − =D h( 1)logm
q

n m,

−D S( 1)logn
p

n m, . Here and below the notations hlog n m, , Slog n m, mean that we apply the
logarithm to coefficients of the diagonal matrices. Therefore the matrix function

= + + +− −H D D h( ... 1)logm
q

m
q

n m
1 2

, is the generating function for conservation laws. In
this way we get an infinite sequence of conservation laws for the discrete equation (4)
whenever the system (44) satisfies the conditions of theorem 5.1.

In a similar way one can consider the semidiscrete model (24). Assume that the equation
admits an −L A pair of the form

Ψ λ Ψ Ψ λ Ψ= =+ ( ) ( )[ [P u Z A u], , ], . (46)n k n n n n x n n n,

Here the symbol u[ ]n indicates the dependence on the dynamical variable un and on a
finite number of its shifts and x-derivatives. Let us suppose that the first of equations (46)
satisfies the conditions of theorem 5.1. The compatibility condition for equations (46) takes
the form − =L D A[ , ] 0x n , where L is given by (43), and it is equivalent to the semidiscrete
equation (24). According to theorem 5.1 the operator L is diagonalized by the conjugation
transform = −L T LTn n0

1 . As it has been proved in [11], the second operator −D Ax n is
diagonalized by the same conjugation − = −−D B T D A T( )x n n x n n

1 , where = − +−B T Tn n n x
1

,
−T A Tn n n

1 is a formal series with the diagonal coefficients. The commutativity condition
− =L D B[ , ] 0x n0 of the diagonal operators implies an equation of the form

= −( )D h D Blog 1 , (47)x n n
k

n

which generates an infinite sequence of conservation laws. The diagonal operator hn is
defined in theorem 5.1.
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5.3. Three examples

Here we apply the above method to nonautonomous discrete and semidiscrete models with
periodic coefficients. We show how to derive from the known −L A pairs of equations (1), (2),
(3) the representation (42). We also check that the conditions of theorem 5.1 are satisfied.

5.3.1. H1 equation. We consider equations (1)–(7) satisfying the restrictions

α α β β≡ ≡+ +, , (48)n n N m m K

α α
β β

≠ ⩽ < ⩽ −
≠ ⩽ < ⩽ −

k l N

k l K

for 0 1,
for 0 1. (49)

k l

k l

An −L A pair for this equation is known [2], see also [21] for the autonomous case. It can
be written in the form

Ψ Ψ Ψ Ψ= =+ +L L, , (50)n m n m n m n m n m n m1, ,
(1)

, , 1 ,
(2)

,

where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟α λ β λ=

− −
+ −

=
− −

+ −
+

+

+

+
L

u

u u u
L

u

u u U

1
,

1
. (51)n m

n m

n m n m n n m
n m

n m

n m n m m n m
,

(1) 1,

, 1, ,
,

(2) , 1

, , 1 ,

Theorem 5.1 cannot be applied directly to any of the linear equations (50) because their
singularity points λ α= n and λ β= m vary with the discrete variables n m, . However, instead
of the −L A pair (50), one can use a compound one, for instance:

Ψ Ψ Ψ Ψ= =+ +f L, , (52)n N m n m n m n m n m n m, , , , 1 ,
(2)

,

with the new potential

= + − + −f L L L... .n m n N m n N m n m, 1,
(1)

2,
(1)

,
(1)

It has the singularity set α α α∞ −{ , , ,..., }N0 1 1 which does not depend on the variables n m, .
Let us transform the first of equation (52) into the special form (42). To this end we

factorize the matrix Ln m,
(1) as follows:

δ ρ=L Z ,n m n m n m,
(1)

, ,

where λ α= −Z diag(1, )n is the diagonal matrix and δ ρ,n m n m, , have a triangular structure:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝⎜

⎞
⎠⎟δ λ α ρ= − +

−
− = − −

+ +

+
u

u u

u
1 0

1 ,
1

0 1
.n m

n m
n

n m n m

n m
n m

,
,

1, 1,

,
1,

Then we change the unknown vector function:Ψ ρ Φ= −
n m n m n m, ,

1
, . As a result equations (52) take

the form

Φ Φ Φ Φ= =+ +P Z R, , (53)n N m n m n m n m n m n m, , , , 1 , ,

where

ρ δ ρ ρ= =+ + − + − + +
−P L L L R L... , .n m n N m n N m n N m n m n m n m n m n m n m, , 1,

(1)
2,

(1)
1,

(1)
, , , 1 ,

(2)
,
1

Important remark. In theorem 5.1 the singular point λ0 should be a constant. In
equation (53) the singular point αn is not constant, but it is invariant under the action of the
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shift −Dn
N . This property also enables us to apply the theorem and to diagonalize the −L A

pair (53).
Let us explain why the first equation of the −L A pair (53) satisfies the conditions of

theorem 5.1. Evidently λP ( )n m, is a polynomial of λ and therefore it is analytical around the
point λ α= n. Its determinant is explicitly evaluated:

λ λ α λ α λ α= − − −+ +

+
+ + + −( )( ) ( )P

u

u
det ( ) ... .n m

n N m

n m
n n n N,

1,

1,
1 2 1

At the point λ α= n it is correctly defined and different from zero if the restrictions (49) are
valid and ≠u 0n m, for all n m, .

The leading principal minor λ α=P udet ( , )n m n1 , , which is located at the left upper
corner of the matrix, is a rational function of the coordinates of the point =u

… ∈+ + +
+u u u C( , , , )n m n m n N m

N
, 1, 1,

2, i.e. it is a ratio of two polynomials Q Qu u( ) ( ).1 2 Thus
there are two possibilities: ≡Q u( ) 01 , and then λ α= ≡P udet ( , ) 0n m n1 , , or Q u( )1 is not
identically zero. The first case is not realized, as the leading principal minor under
consideration does not vanish at = …u (1, 0, 0, , 0, 1)0 . This is easily seen from the
following explicit formula:

∏λ α α α= = − −
=

+ −( )P udet , ( 1) ( ).n m n
N

j

N

n n j1 , 0

1

[ 2]

2 1

So the polynomial Q u( )1 is nontrivial, and therefore a complete set of its zeros constitutes a
manifold M1 of a dimension not greater than +N 1. Let us denote by M2 the set of zeros of
the denominator Q u( )2 . Then the function λ α=P udet ( , )n m n1 , is defined and different from
zero in the open domain ∪⧹+ M M( ).N 2

1 2

Hence the first equation of the −L A pair satisfies the conditions of theorem 5.1. We have
proved that if αn satisfies (48), (49) and βm is an arbitrary function, then the equation (1)–(7)
admits an infinite sequence of conservation laws. In a similar way one can prove that
equation (1)–(7) with an arbitrary αn and βm satisfying (48), (49) also possesses an infinite
sequence of conservation laws. Certainly, if the restrictions (48), (49) are true for both αn and
βm, then the equation admits two different hierarchies of conservation laws.

5.3.2. Dressing chain. The second example is the dressing chain (2) obeying the constraint

α α α α≡ ≠ ⩽ < ⩽ −+ k l N, such that for 0 1. (54)n n N k l

Recall that the dressing chain is the compatibility condition [25] of the following system
of equations:

Ψ Ψ Ψ Ψ= =+ L D Y, , (55)n n n x n n n1
(1)

with the potentials

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟α λ α λ=

−
+ + −

= + + +L
u

u u
Y

u u

1
,

0 1
0

. (56)n
n

n n n
n

n n x n

(1)
2 2

,

As this equation is of the hyperbolic type, it may have two hierarchies of conservation
laws. One of them has been found in [11] by diagonalizing the second of equation (55)
around the singular point λ = ∞ and without imposing on αn any restriction.

In order to find the second hierarchy, we have to use the first equation of (55). This part
of the problem is much more complicated because the singular point λ α= − n depends on n.
In our opinion, the second hierarchy does exist only under an additional constraint, for
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instance, (54). In case of (54), one can avoid difficulties by passing from (55) to a combined
Lax pair:

Ψ Ψ Ψ Ψ= =+ f Y, , (57)n N n n n x n n,

with the potential

= + − + −f L L L... .n n N n N n1
(1)

2
(1) (1)

Here the potential fn has the set of singularity points α α α∞ − − − −{ , , ,..., },N0 1 1 which does
not depend on n due to the periodicity condition (54).

Let us transform the first of equation (57) into the special form (42). We first factorize the
matrix Ln

(1) as follows:

δ ρ=L Z ,n n n
(1)

where λ α= +Z diag(1, )n and

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟δ λ α ρ= − −

+
− = −

−u
u u

u
1 0

1 ,
1

0 1
.n

n
n

n n

n
n

Then, by changing the unknown vector function: Ψ ρ Φ= −
n n n

1 , one rewrites the linear system
(57) in the following special form:

Φ Φ Φ Φ= =+ P Z R, , (58)n N n n n x n n,

where ρ δ= + + − + − +P L L L...n n N n N n N n n1
(1)

2
(1)

1
(1) and ρ ρ ρ ρ= +− −R Yn n x n n n n,

1 1.
The matrix valued function λP ( )n is analytic around the point λ α= − n, and its

determinant evaluated at λ α= − n is easily found:

α α α α α α α− = − − −
+

+ − + − +P
u

u
det ( ) ( )( ) ... ( ).n n

n

n N
n n N n n N n n1 2 1

It is correctly defined and different from zero if ≠u 0n for all n. The leading principal
minor α−P udet ( , )n n1 is a rational function of the N+1-dimensional variable

= …+ +u u uu ( , , , )n n n N1 . We evaluate α−P udet ( , )n n1 0 at = … +u uu ( , 0, , 0, )n n N0 and
get

∏ ∏α α α α α− = − − − − = ++
=

+ −
=

+P u u N kudet ( , ) ( ) ( ) if 2 1n n n N

j

k

n j n n

j

k

n j n
1

0

1

2 1

1

2

or

∏ ∏α α α α α− = − + − =
=

+ − +
=

−

+P u u N kudet ( , ) ( ) ( ) if 2 .n n

j

k

n j n n n N

j

k

n j n
1

0

1

2 1

1

1

2

The last formulas convince us that the rational function α−P udet ( , )n n1 does not equal to
zero identically. Hence there is an open domain in +N 1 in which α−P udet ( , )n n1 does not
vanish. So, all the conditions of theorem 5.1 are satisfied, and the dressing chain (2) with the
periodic coefficients (54) admits the second hierarchy of conservation laws.

5.3.3. Discrete dressing chain. The third example is the discrete dressing chain (3) admitting
the following Lax pair [18]:
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Ψ Ψ Ψ Ψ= =+ +L L, , (59)n m n m n m n m n m n m1, ,
(1)

, , 1 ,
(2)

,

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝⎜

⎞
⎠⎟

λα

λα

=
+

−
−

+
−

= − + −+

( )

( )( )

L

u

u

u

u

L
u u

1 2 1

2

1

1

1

,

1 1 1

1 0
. (60)

n m

n n m

n m

n m

n m

n m
n n m n m

,
(1)

,

,

,

,

,
(2) , , 1

Let us assume that the same periodicity constraint (54) on αn is imposed. We transform
the −L A pair as:

Ψ Ψ Ψ Ψ= =+ +f L, , (61)n N m n m n m n m n m n m, , , , 1 ,
(2)

,

where

= + − + −f L L L... .n m n N m n N m n m, 1,
(1)

2,
(1)

,
(1)

We rewrite the first equation of (61) in the special form (42). To this end the matrix Ln m,
(1)

is factorized as follows:

δ ρ=L Z ,n m n m n m,
(1)

, ,

where λ
α

= +Z diag(1,
1

4
)

n
and

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
δ ρ

λα

λα
= −

−
=

+
+
−

+

( )

( )u

u

u

u

1 0
2

1
1 ,

1 2 1

0
1

1
1 4

.n m

n m

n m

n n m

n m

n m
n

,

,

,

,

,

,

Then we pass to Ψ ρ Φ= −
n m n m n m, ,

1
, in the linear system (61) and finally get

Φ Φ Φ Φ= =+ +P Z R, , (62)n N m n m n m n m n m n m, , , , 1 , ,

where ρ δ= + + − + − +P L L L...n m n N m n N m n N m n m n m, , 1,
(1)

2,
(1)

1,
(1)

, and ρ ρ= +
−R Ln m n m n m n m, , 1 ,

(2)
,
1 .

It is easy to check that λP ( )n m, satisfies all the conditions of theorem 5.1, as it is analytical

around the point λ
α

= − 1

4 n
. The leading principal minors λP udet ( , )n m, and λP udet ( , )n m1 , at

λ
α

= − 1

4 n
are rational functions of = … ∈+ +

+u u uu ( , , , )n n n N
N

1
1 and are not identically

zero. Therefore they do not vanish in a domain in +N 1. So, as in preceding examples, there
exists a hierarchy of conservation laws. Another hierarchy for equation (3) exists with no
restriction on the coefficient αn. It has been constructed in [11] by diagonalization of the
second equation of the −L A pair (59).

5.4. Construction of generalized symmetries

Results of the method of formal diagonalization can be successfully used for the calculation
of generalized symmetries together with their −L A pairs, and we explain here how to do that.
Then in section 6 we apply this procedure to the H1 equations (1), (7), (48), (49) and to the
dressing chain (2), (54).

We present a scheme applicable to all three equations under consideration as well as to
analogous ones. We describe it by using the example of the first operator of the −L A pairs
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(50), (55), (59), and this operator is denoted here by Ln
(1), as the index m is inessential. The

corresponding composite operator we will use is

= =−
+ − + −L D f f L L L, ... . (63)n

N
n n n N n N n1

(1)
2

(1) (1)

Let us denote by Tk a formal series which diagonalizes the operator L in the neighbor-
hood of α +n k with ⩽ ⩽ −k N0 1. Then

= −L T LT (64)k k k0,
1

is a diagonal operator with coefficients which are series in powers of λ α− +n k.

Let us describe a class of formal series ∑ λ α= −+ =−

∞
+ +B B( )n k K j K n k

j
n k K j, , , satisfying

the equation

⎡⎣ ⎤⎦ =+L B, 0. (65)n k K,

It can be proved [11] that =+
−

+B T B Tn k K k n k K k,
(0) 1

, is a formal series with diagonal coef-
ficients:

∑ λ α= − =+
=−

∞

+ + + +( )B B D B B, such that .

(66)

n k K
j K

n k
j

n k K j n
N

n k K j n k K j,
(0)

, ,
(0)

, ,
(0)

, ,
(0)

The converse is also true, namely, the series =+ +
−B T B Tn k K k n k K k, ,

(0) 1 solves the
equation (65) for any +Bn k K,

(0) satisfying (66).
Notice that the operator L can be diagonalized around any of the singular points

α α α… −, , , N0 1 1, and thus a formal series +Bn k K, commuting with L can be constructed
around any of these points. Therefore there is a class of objects of the form

∑=
=

−
+B BK k

N
n k K0

1
, solving the equation =L B[ , ] 0K . Cutting off simultaneously all the

infinite sums in BK and finding an appropriate XK which does not depend on λ, we construct a
rational function:

∑ ∑ λ α= − + ⩾
=

−

=−

−

+ +( )A B X K, 1. (67)n
K

k

N

j K

n k
j

n k K j K
( )

0

1 1

, ,

It is remarkable that this function can be constructed in such a way that the operator
equation

⎡⎣ ⎤⎦=d

dt
L L A, (68)n

K( )

defines a generalized symmetry of equations under consideration.
We note that there is no general algorithm of finding the operator XK defining An

K( ) of
(67). However in the examples below, in section 6, we manage to find it.

The first equation of an −L A pair obtained is rather complicated due to the structure
of L:

Ψ Ψ Ψ Ψ= =L A, . (69)n n n t n
K

n,
( )

Let us explain now why it can be drastically simplified.
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Due to the formula (63) for L, equation (68) is represented as:

= − +
t
f f A A f

d

d
. (70)n n n

K
n N

K
n

( ) ( )

We denote = + − + −W L L L...n N n N n2
(1)

3
(1) (1), then this equation takes the form

+ = −+ −
+ − + − + + −

L

t
W L

W

t
L WA A L W

d

d

d

d
.n N

n N n N n
K

n N
K

n N
1

(1)

1
(1)

1
(1) ( ) ( )

1
(1)

Evidently it implies

⎜ ⎟⎛
⎝

⎞
⎠+ −+ −

−
+ − + + − + − + −( )L

t
L A L L A

d

dn N n N n N
K

n N n N n N
K

1
(1) 1

1
(1) ( )

1
(1)

1
(1)

1
( )

⎜ ⎟⎛
⎝

⎞
⎠= − + − =+ −

−
+ −

t
W A W WA W C

d

d
,n N

K
n

K
n N1

( ) ( ) 1
1

and we have

= − −+
t
L L A A L L C

d

d
. (71)n n n

K
n

K
n n n

(1) (1) ( )
1

( ) (1) (1)

In order to specify the structure of Cn, let us deduce for it an equation. To this end we
replace the derivatives at the left hand side of (70) by using equation (71). After some
elementary simplifications, one gets

+ +

+ =
+ − + − + − + − + − + −

+ − + −

C L L L L C L L

L L L C

... ... ...

... 0. (72)

n N n N n N n n N n N n N n

n N n N n n

1 2
(1)

3
(1) (1)

2
(1)

2 3
(1) (1)

2
(1)

3
(1) (1)

Calculating the operator Ω Ω−+ + −L Ln n n N n1
(1)

1
(1) , where Ωn is the left hand side of (72), we are

led to the relation − =+f C C f 0n n n N n which is equivalent to =L C[ , ] 0n . By applying the

conjugation (64), we find =L C[ , ] 0k n k0, 0, , , where = −C T C Tn k k n k0, ,
1 is a diagonal matrix such

that =D C Cn
N

n k n k0, , 0, , . On the other hand, by construction, Cn is a rational matrix function of
λ depending on a finite number of the dynamical variables. According to the standard linear
algebra theory, it can be diagonalized by applying a conjugation matrix R which also depends,
unlike Tk, on a finite set of the dynamical variables: =−R C R Cn n k

1
0, , .

Let us prove that C n k0, , is a scalar matrix, i.e. it is proportional to the unity matrix.
Suppose the contrary, then the commutativity relation =− −C R T R T Cn k k k n k0, ,

1 1
0, , implies that

the product = −T R Tk̂ k
1 is a diagonal matrix, therefore =T RT̂k k . The relation = −L T LTk k k0,

1

implies the equation =− −
R LR T L Tˆ ˆk k k

1
0,

1
, which shows that the operator L is diagonalized by

a matrix R depending on a finite set of dynamical variables. This contradicts theorem 5.1, and
thus λ= =C C c n E( , )n k n0, , is a scalar matrix. The equation (72) immediately gives

λ λ λ+ + + + + − =c n c n c n N( , ) ( 1, ) ... ( 1, ) 0. (73)

It follows from the equation λ =L c n[ , ( , )] 0 equivalent to λ λ= +c n c n N( , ) ( , ) that
λc n( , ) does not depend on the dynamical variables +un j.
Evidently equation (71) can be reduced to the usual Lax equation. Indeed, fixing the

value =n n0 and setting ∑ λ= +
=

−
A A c kˆ ( , )n

K
n

K
k n

n( ) ( ) 1

0
, we get the equation

= − +
t
L L A A L

d

d
ˆ ˆ . (74)n n n

K
n

K
n

(1) (1) ( )
1

( ) (1)
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This equation is nothing but the compatibility condition for the linear system

Ψ Ψ Ψ Ψ= =+ L
t

A,
d

d
ˆ .n n n n n

K
n1

(1) ( )

Let us emphasize that due to equation (73) the term ∑ λ
=

−
c k( , )

k n

n 1

0
contains not more than

−N 1 summands.
We hypothesize that the function λc n( , ) is always zero, as in all the examples below, but

we cannot prove this fact.

6. Examples of generalized symmetries and their L–A pairs

In this section we apply the diagonalization procedure of section 5.4 to the H1 equations (1)–
(7) and the dressing chain (2). In some cases the generalized symmetries are given in
sections 2, 3, and we just construct corresponding −L A pairs. In one case we find a new
generalized symmetry together with its −L A pair.

6.1. H1 equation

Let us consider the H1 equations (1)–(7) with an arbitrary coefficient βm and a periodic αn

satisfying the restriction (54). Following section 5.4, we construct −L A pairs of the form:

Ψ Ψ Ψ Ψ= =+ L
t

A,
d

d
. (75)n m n m n m

N
n m n m

N
n m1, ,

(1)
, , ,

(1, )
,

Here An m
K N
,

( , ) corresponds to Ân
K( )

of the previous section, N is the period of αn, and K = 1
indicates the lowest term of a hierarchy of generalized symmetries. It turns out that the
additional term XK of (67) is equal to zero here.

In case of the period N = 1, i.e. when αn is a constant, the matrix An m,
(1,1) reads:

⎛
⎝⎜

⎞
⎠⎟λ α

=
− − − −+ −

−

+ − +( )
A

u u

u
u u u

1

( )

1
.n m

n n m n m

n m

n m n m n m
,

(1,1)

1, 1,

1,

1, 1, 1,

The compatibility condition for the −L A pair (75) is equivalent in this case to the generalized
symmetry (12), and this is one more way to construct this symmetry.

In case of the period N = 2, we obtain for the generalized symmetry (18) an −L A pair of
the form (75) defined by the following matrix:

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

λ α γ

γ

λ α γ

γ

=
− + − −

−
+ − ×

+
− + − −

− × + − −

− − +

−

− −
+

+

+ + − +

− + + +

( )

( )( )

( )
A

c

u u u u

u u

u u u u

c

u u u u

u u u u u u

( )( )

· ( ) , 1

( )( )

· 1 ( ), ,

n m
n

n n n m n m n m n m

n m n m

n n m n m n m
n m

n

n n n m n m n m n m

n m n n m n m n m n m n m

,
(1,2)

, 2, 1, 1,

2, ,

1, , 2,
1,

1

1 , 2, 1, 1,

1, 1, , 2, 2, ,

where by × we denote the matrix product.
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6.2. Dressing chain

Here we consider the dressing chain (2) with a periodic αn satisfying the restriction (54). As in
previous examples, we construct −L A pairs of the form

Ψ Ψ Ψ Ψ= =+ L
t

A,
d

d
, (76)n n n

N
n n

N
n1

(1) (1, )

where N is the period of αn. It turns out that, in case of the dressing chain, the additional term
XK of (67) is a matrix with a nonzero element in the lower left corner only.

In the case N = 2 we have found in section 3.2 the generalized symmetry (33). Putting
c = 0 to exclude from consideration the master symmetry, we construct the −L A pair (76)
defined by the following matrix:

⎜ ⎟

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

λ α γ γ

λ α

λ α γ
γ

λ α

=
+ + − − × −

+ + −

+
+ − − × −

+ +

− −

−
− −

−

+

+ − −

+

( )

( )( )

( )( )

A
b

v v

v
v u u

v

b

v v u u v v

v

, 1

0 0
0

1 ,

0 0
0 ,

n
n

n n n n

n

n n n n

n
n

n

n n n n
n n n n n

n
n

(1,2)

1 2

2

2 1

2

1

1 1
1

1

where = ++v u un n n1 .
In the case N = 3, let us denote by an an arbitrary three-periodic function, so that
≡+a an n3 , and let us introduce the notations

γ α α γ
γ γ

= − = + = +
= + −

+ + +

+ − + + + −

v u u U v v

V v v v v v

, , ,

,
n n n n n n n n n n

n n n n n n n n

1 1 1

1 1 2 1 1 1

where γ ≠ 0n for any n due to (54). We construct a matrix An
(1,3) determining the −L A pair

(76), which can be expressed as follows:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

λ α λ α λ α

λ α

γ λ α

γ γ γ

λ α γ

=
+

+
+

+
+

= − × − + + −

= − × − − + + −

= − × + + − −

+ + − −

−

+

+ −

+

+

−

− − −

−

− −
+

−

− + + + +

+
+

( ) ( )( )

( ) ( )

( )

( )

( )

( ) ( )

A
a

V
A

a

V
B

a

V
C

A
U

U u V
u

U

B
v

v u U v u v
v v

C u U u v U

U

,

, 1
0 0

0 ,

( , )
0 0

0 ,

1 ,

0 0
0 .

n
n

n n
n

n

n n
n

n

n n
n

n
n

n n n
n n

n

n
n

n n n
n n n n n

n n

n
n

n n n n n n n

n
n n

(1,3)

2

1

1 1

2

2

3

3 2 3

2

2 2
1

2

1 2 2 1 2

2
2

The compatibility condition for this −L A pair is equivalent to the equation

γ γ
=

+
− +

−
+

− −+

+

−

−

− −

−
+

+ − +
+

u

t

U

V
a

U

V
a

U v v

V
a

v v U

V
a

d

d
.n n n

n
n

n

n
n

n n n

n
n

n n n n

n
n

3

1

1

3

2

2 2

1
1

1 1 2
2
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This is a new third order generalized symmetry of the dressing chain with the three-periodic
coefficient αn. This symmetry is the lowest term of a hierarchy in this case.

7. Examples of conservation laws

In this section we apply the diagonalization procedure of section 5.2 to three equations under
consideration with periodic coefficients and write down for them a number of conservation
laws. The structure of those conservation laws essentially differs from the standard one,
cf [7, 9, 11].

7.1. Dressing chain

We consider the dressing chain (2) with a two-periodic coefficient αn satisfying (32). In case
of an arbitrary αn, one hierarchy of conservation laws has been constructed in [11]. Conserved
densities in that hierarchy depend on the x-derivatives of un, and those conservation laws can
be called ones in the x-direction. Here we construct some conservation laws in the n-direction,
which can be represented in the form:

= − ⩾( )D p D q j1 , 0.x n
j

n n
j( ) 2 ( )

The functions pn
j( ) and qn

j( ) depend on the shifts of un, and the first two pairs of them read:

γ
γ

γ γ γ

= + =

=
+ +

+ +
=

+

+

+ − −

+ − −

−

− −

( )

( )( )

p v v q u

p
v v v

v v v v
q

v

v v

log , ,

( )
, , (77)

n n n n n n

n

n n n n

n n n n n n
n

n

n n n

(0)
1

(0)

(1) 1 1 2

1 1 2

(1) 2

1 2

where

γ α α= + = −+ +v u u , ,n n n n n n1 1

and γ ≠ 0n for all n due to (32).

The conserved density pn
(0) depends on three variables, while pn

(1) depends on five ones.
The following conditions take place:

∂
∂ ∂

≠
∂

∂ ∂
≠

+ − +

p

u u

p

u u
0, 0n

n n

n

n n

2 (0)

2

2 (1)

2 2

for all n. In accordance with a general theory of [17], the number of variables of such
functions cannot be reduced. This shows, in particular, that two conservation laws defined by
(77) are essentially different. These conservation laws can be called the three- and five-point
ones, respectively.

7.2. Discrete dressing chain

Let us consider the discrete dressing chain (3) with a two-periodic (39) coefficient α ≠ 0n for
any n. In case of an arbitrary αn, one hierarchy of conservation laws has been constructed in
[11]. Conserved densities in that hierarchy depend on the m-shifts of un m, , and those con-
servation laws can be called ones in the m-direction. Here we construct some conservation
laws in the n-direction, and those can be represented in the form:
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− = − ⩾( )( )D p D q j1 1 , 0. (78)m n m
j

n n m
j

,
( ) 2

,
( )

The functions pn m
j
,

( ) and qn m
j
,

( ) will depend on the n-shifts of un m, .
We use the notation

β= + + + − −− − − −( )( )( )( )U u u u u u1 1 ,n m n m n m n m n m n n m, , 1, 1, 2, 1,
2

where β α α= ≠+ 1n n n1 for any n due to (39). The two simplest conservation laws are given
by:

=
− −

= −+

+
+( )( ) ( )p

U

u u
q ulog

1 1
, log 1 ; (79)n m

n m

n m n m
n m n m,

(0) 2,

1, ,
,

(0)
, 1

β
=

−
+

− + +

=
+ +

+

+

+ + − −

+

− −

( ) ( )( )( )

( )( )
(80)

p
u

U

u u u u u

U U

q
u u u

U

1 1
,

1
.

n m

n n m

n m

n m n m n m n m n m

n m n m

n m

n m n m n m

n m

,
(1) 1,

2

2,

,
2

2, 1, 1, 2,

2, ,

,
(1) , 1, 2,

,

The following conditions are satisfied for all n m, :

∂

∂ ∂
≠

∂

∂ ∂
≠

+ − +

p

u u

p

u u
0, 0.n m

n m n m

n m

n m n m

2
,

(0)

, 2,

2
,

(1)

2, 2,

In accordance with some theoretical remarks of [7], the number of variables of such functions
cannot be reduced, in particular, the two conservation laws above are essentially different
three- and five-point ones.

7.3. Asymmetric H1 equation

We construct here conservation laws for the asymmetric example of section 2.2, i.e. for the
H1 equation with three-periodic coefficient αn and two-periodic coefficient βm. Recall that, in
the autonomous case, conservation laws for the H1 equation have been found in [23].

The diagonalization procedure in the neighborhood of the singular point αn gives us a
hierarchy of conservation laws of the form

− = − ⩾( )( )D p D q j1 1 , 0. (81)m n m
j

n n m
j

,
( ) 3

,
( )

The first two of them are defined by the following functions:

= = −− + −p V q u ulog , log( ); (82)n m n m n m n m n m,
(0)

1, ,
(0)

, 1 1,

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

γ
γ

α β
γ γ

= + −

=
−
−

− +

+
+ + −

−

+ + +

− −

p
V

v
U

v

U v

V

q
u u

v U v V

1
,

1 1
. (83)

n m
n m

n m
n m

n m

n m

n

n n m

n m

n m
n m n m

n m n m

n

n m n m

n

n m

,
(1)

,
1,

2,

,

, 2 2,

3,

,
(1) 1, , 1

,

2

1, , 3,

Here we use the notations

γ
γ γ

= +
= − +

+

+ + + + + +

U v v

V v v v v v

,

,
n m n m n m n

n m n m n m n m n n m n n m

, 1, ,

, 3, 2, 1, 3, 2 1,

where vn m, and γn are given in equation (22).
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Standard relations take place for all n m, :

∂

∂ ∂
≠

∂

∂ ∂
≠

− + − +

p

u u

p

u u
0, 0,

n m

n m n m

n m

n m n m

2
,

(0)

1, 3,

2
,

(1)

3, 4,

i.e. these conservation laws are essentially different. We have the five- and eight-point
conservation laws in the n-direction, the simplest of those we can get by this procedure.

The diagonalization procedure in the neighborhood of the singular point βm allows one to
construct the second hierarchy of conservation laws of the form

− = − ⩾( )( ) (84)D q D p j1 ˆ 1 ˆ , 0.n n m
j

m n m
j

,
( ) 2

,
( )

The first two conservation laws are defined by:

δ= + = −+ + −( )q w w p u uˆ log , ˆ log( ); (85)n m n m n m m n m n m n m,
(0)

, 1 , ,
(0)

1, , 1

δ

δ δ

α β δ

=
+ −

− −

=
−

− −

− +

+ + −

− + +

−( )

( )
( )( )

( )
(86)

q
w w w

w w w w

p
w u u

w w

ˆ ,

ˆ
( )

,

n m

n m n m n m m

n m n m m n m n m m

n m
n m n m n m

n m n m n m m

,
(1) , 1 , 2 ,

, 2 , 1 , , 1

,
(1) , 1 1, , 1

, , 1

where wn m, and δm are given in (23). Standard relations are satisfied for all n m, :

∂

∂ ∂
≠

∂

∂ ∂
≠

− + − +

q

u u

q

u u

ˆ
0,

ˆ
0,

n m

n m n m

n m

n m n m

2
,

(0)

, 1 , 2

2
,

(1)

, 2 , 3

i.e. we have four- and six-point conservation laws in the m-direction.
We can see that the structure of conservation laws in different directions is quite different

as well as one of generalized symmetries.

8. The nature of generalized symmetries

In this section we briefly discuss the nature of second order generalized symmetries obtained
in sections 2–4. Recently, some examples of discrete equations of the form (4) have been
obtained, whose simplest generalized symmetries in at least one of the directions are of the
second order as well. Most of those generalized symmetries [1, 20, 26] are similar to the Ito-
Narita-Bogoyavlensky lattice equation. In one of such examples, the second order generalized
symmetry is of the relativistic Toda type [7, 8]. The second order symmetries obtained in this
paper are of the relativistic Toda type too.

The discrete-differential nonautonomous scalar equations with discrete periodic coeffi-
cients can be rewritten as autonomous systems, see [17]. For example, equation (18) for any
fixed value of m can be represented as an autonomous system of two equations, as it has the
two-periodic coefficients cn and γn. Introducing the notations

γ γ= = = ≠ = =+ + (87)v u w u A c B c, , 0, , ,k k m k k m k k k2 , 2 1, 2 2 2 1

we obtain the following system:

γ γ

γ γ

=
−

+ − −
+

−
+ − −

=
−

+ − −
+

−
+ − −

+

− +

−

− −

−

− +

+

+ +
(88)

v
A v v

w w v v

B v v

w w v v

w
A w w

w w v v

B w w

v v w w

˙
( )
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( )

( )( )
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˙
( )

( )( )

( )

( )( )
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k
k k

k k k k

k k

k k k k

k
k k

k k k k

k k

k k k k

1

1 1

1

1 1

1

1 1

1

1 1
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Here we have two systems that are similar and commuting with each other: the first one is
defined by = =A B1, 0 and the second one by = =A B0, 1. According to their symmetry
structure, such systems are similar to relativistic Toda type systems, cf [3, section 5.1]. The
system (88) is an analogue of the well-known Ablowitz–Ladik example which is a linear
combination of two commuting systems of equations of the relativistic Toda type (see, e.g.,
section 5.2 in [3]). Two other generalized symmetries (33) and (40) with c = 0 are of the same
kind. The case ≠c 0 is not periodic and corresponds to the master symmetry.

In case of the system (18), we can illustrate the same property in a more explicit way. Let
us consider the system (88) with A = 1 and B = 0. It can be checked by direct calculation that
each of the functions vk and wk satisfies, up to rescaling the time, the following lattice
equation:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

−
−

−
+

−
+

−
−

−

+

+ − +( )( )
U U

U

U U

U

U U U U U U
¨ ˙

˙ ˙ 1 1
.

(89)

k k
k

k k

k

k k k k k k

2 1

1
2

1

1
2

1 1

This is the well-known equation of the relativistic Toda type, see e.g. the review articles [3,
section 4.2] and [33, section 3.3.3]. The same is true for the system (88) with A = 0 and B = 1.

Note that any solution un m, of the second order symmetry (18) is transformed into a
solution ûn of an equation of the form (33) by the following formula:

= −+u u uˆ .n n m n m1, ,

More precisely, the function ûn satisfies equation (33) with c = 0 and slightly changed γn and
bn. This shows that the symmetries (33) with c = 0 and (18) are almost the same and have the
same nature.

9. Conclusions

In sections 2–4 we have proved a number of theorems which allow us to formulate the
following hypothesis:

Hypothesis 1. The generalized symmetries of equations (1)–(3) in the n-direction exist if
and only if the coefficient αn is periodic. If αn has the period N, then the simplest generalized
symmetries of these equations have the order N.

As for conservation laws, we assume that a similar picture takes place:
Hypothesis 2. A hierarchy of conservation laws for equations (1)–(3) in the n-direction

exists if and only if the coefficient αn is periodic.
The case of the m-direction for equation (1) is analogous. The first hypothesis is sub-

stantiated in sections 2–4 in case of the first and second order generalized symmetries. For
equations under consideration, which have periodic coefficients with an arbitrarily large
period, both hypotheses are partially confirmed in section 5.

In this section we develop a theory for the case of nonautonomous discrete equations,
which allows one, in particular, to construct generalized symmetries and conservation laws
for equations (1)–(3) with periodic coefficients. In sections 6, 7 we apply this theory to
construct some examples.

The picture for all nonautonomous equations of the Adler–Bobenko–Suris list should be
the same as for equation (1).
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We also come to an opinion that equations (1)–(3) with periodic coefficients are
integrable in the same sense as the autonomous equations possessing −L A pairs. The case of
nonperiodic coefficients seems to be much more difficult from the standpoint of integrability.
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