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Local Master Symmetries
of Differential-Difference Equations

Igor Cherdantsev and Ravil Yamilov

ApsTrACT. It is demonstrated that in case of integrable differential-difference
cquations like the well-known Volterra cquation and Toda model (unlike the
Korteweg-de Vries and nonlinear Schrodinger cquations) there are many in-
stances in which local evolution master symmetries can be found. These mas-
ter symmetries generate not only higher syminetries but also conservation laws
and additionral Hamiltonian operators. Also, they provide new local evolution
chains that depend explicitly on time and the space variable and are, in a
specific sense, integrable. We construct examples of master symmetries, using
Miura-type transformmations and local conservation laws of the zeroth order.

1. Introduction

The concept of the master symmetry was introduced by Fokas, Fuchssteiner [7].
At present, there is a well developed theory for master symmetries of “continuous”
integrable equations like the Kadomtsev-Petviashvili, Korteweg-de Vries, and non-
linear Schrodinger equations (see, e.g., the review article [6]). It is not surprising
that this theory turns out to be more satisfactory in the case of equations in one
space and one time dimension. In this case, many algebraic properties of integrable
equations can bhe described in terms of differential operators and functions of a finite
number of dynamical variables; there are local symmetries, conserved quantities,
and (in many instances) Hamiltonian operators (there exists a close and simple
connection between master symmetries and recursion operators [6]). It is natural
to expect that the theory of master symmetries will be even more satisfactory and
elementary if not only the equations, higher symmetries, and conserved quanti-
ties, but also the master symmetries, are local. We have discovered that there are
many instances in which integrable 1 + 1 dimensional differential-difference equa-
tions, analogous to the Toda and Volterra chains, possess local evolution master
symunetries, and we discuss in the present paper just such equations.
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Let us consider differential-difference equations (chains) of the form
(1) (:)i(ljn) :[,’”. ﬁ‘/a :F((/anL]-,(t]n'C’Tufl%
where U, = (u), ..., u
vector functions, and 7 is an arbitrary integer. It is easy to see that the Volterra

)T are vector dynamical variables, F, = (f1, ..., f™)! are

145 T

equation

(2) O (1) = wn(Uy ) — Uy 1)
and the Toda model, written in the form

O (wy) =w, (v, — va),
O (vy) =y — Uy g

(3)

are chains of this kind.
We are interested in master symmetrics which have the form

(4) ar(ljn) — Grn (;n - G(T, 70, U/1+la ljrh Un,~l)-

The Volterra equation (2) and the Toda model (3) possess such master svimmetries,
which are given, respectively, by the following chains:

(5) 07 (Un) = upfle + n+ 2ty + 4y — (4 — Duny],

O-(w,) = u,[(e 4+ 2n+ 2)v, ) — (g + 2n — 2)u,],
6 .
(6) O (vn) = (e +2n + Duy, — (e +2n —3)u, ) + 02,
where ¢ is an arbitrary constant. I5q. (5) has been derived in [10] and eq. (6) has
been introduced in [14] as new examples of integrable chains (see also [1,11,12]).
If one compares (3), (6) with the master symmetry [6]

(7) wr = T(Upyr + 6ut,) + 4(up, + 2u”) + 2u, 0, (u)

of the KdV equation u; = uyy, +6uu,, one can see that (3) and (6) do not contains
any difference analogue of the integral operator 97 '. This is the reason why (5)
and (6) are, unlike (7). local evolution equations.

An equation of the form (4) is called a master symmetry of a chain (1) if it
enables one to construct higher symmnietries

(8) 8(,((/11) :F,(,i)a F,(}l) :F(l)(UT,+1‘,U7,+i71,.-.,U,[,,'), [:123
of the chain (1) using the following recursive relation:
(9) G F)=F{), i=0.1,2,...,

where F,(,”) = F,. In eq. (9) the commutator of two vector functions is defined,
as usual, by the formula: [G,,F,] = 0,(F,) — d,(G,). As, by definition, higher
symmetries satisfy the condition [F,(,”, F,] =0, it follows that a master symmetry
cannot be a higher symmetry. It is casy to check that, in the case of the Volterra
equation (2),
[Go Fr] = wnltnsn (tngo + ot + wn) — Uy 1 (U + upe 1 + uy2)],

and this is the right hand side of the simplest higher symmetry of (2).

In Section 2, it is explained why the chains (5), {(6) arc master symmetries,
and how to construct conservation laws and additional Hamiltonian operators with
the help of these master symmetrics. In Section 3. we obtain other examples by an
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approach using Miura-type transformations [16, 17]. In Section 4, we discuss briefly
the problem of the construction of exact solutions for the new master symmetries.

2. Master symmetries of the Volterra and Toda chains

Local master syimmetries cnable one to construct not only higher symmetries
but also local conservation laws, i.e., relations of the form 9, (p,) = (D — 1)(q,),
where D is the shift operator, p,, and ¢, are scalar local functions of a finite number
of dynamical variables. Two conservation laws (let the second one be &, (p,) =
(D — 1)(q.)) arc considered to be the same if their conserved densities p,, and p,,
are equivalent (p, ~ p, if p, — p, € lm(D — 1)).

Let us consider the general case when p, is a common conserved density for
a given chain (1) and its higher symmetries (8): &, (p,,) = (D — 1)(q£,l)), where
to = t. Formula (9) hplies the following formula for the time derivatives:

(10) (07, 0r,] = Oy

Pel
Differentiating the conservation laws w.r.t. 7 and using (10), we are led to local
conservation laws & 0, (p,} = (D—1) [OT(qu'))—q,(—,[‘+ l)} with a new common density
O+(p.). 1t is easy to see that, in the case of the Volterra equation (2), we have
Or(ty,) ~ ufl + 2u, 4 11, , where u,, and uﬁ + 2w, 411, are conserved densities. Note
that such a beautiful formula for the construction of conservation laws does not
hold in the case of the master symmetry (7), and we cannot use above explanations
if we deal with master symmetries similar to (7).

In the case of the Volterra and Toda chains, we first shall prove that (5), (6)
generate conservation laws and then that they are master symmetries. As is known,
(2) admits Lax representation:

‘C)/,(L”) - [anLn]a
L, = u,l,/zD + u:l/i'lef I 9B, = U,]l/‘zl“»,l,/zDz RYE ul/zzDsz‘

+ n—1"n—

(1)

This representation allows one to obtain conserved densities as follows: pgf) =

res([,%l) (i.e. a coeflicient of L?f at DY). For example, p(nl) = U, + Uy ~ 2u,,
'1)5,2) ~ 2(u? + 2u, 4 1u,). On the other hand, the corresponding master symmetry

(5) has the representation

GT(LN) = [Am Ln] + (1/2)[’3

(12) /2172

24, = (¢ +n+ Du,/ [ u, D? — (s +n— l)ul/z 'u,l/‘2.2D72

n—1"n—

with the same L, [1]. Since 0, (L) = [A,,, L*|+1L% %%, we are led to the following
relation:

(13) - (P} ~ ip .

For the Toda chain (3) and its master symmetry (6), operator representations
are of the form

O (L) =B, L]
L,=u"D+uv, + 'u,ll/leﬂl‘ 2B, = “',11/2D - ’11'711/;21D71
Or (L) = [A,. L] + L2,
24, = (= + 2n)ul/?D — (¢ + 20 — 2)u}/* D,

-1

(14)

)
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respectively ((15) can be found. c¢.g., in [1]). In this case, conserved densities are
defined by p(nl) =res(L! ), and using (15), we obtain the formula (13) again.

The master syminetries of the Volterra and Toda chains generate additional lo-
cal Hamiltonian structures. The Volterra and Toda chains (2), (3) are Hamiltonian,
since they can be expressed in the form

bh
) ¢ U, :Fn:Hn — .
(16) o (U,) <(SU,,)

Here H,, is 2 Hamiltonian operator in powers of D with matrix coefficients, and A,
is a Hamiltonian density. The formal variational derivative is defined by

dh,, _Zam Ohy  (Ohy  Ohp )\
U, 4= 9U, U, \oul  oul) -

I

For the Volterra equation (2), for instance, the simplest Hamiltonian operator is
H, =u,(D—D Yu,, and h, = u,.

Let us introduce an operator G (G, is the right hand side of a master sym-
metry (4)):

Gi(Hu) - H,,(()T + G;’I‘) - (ar - G:)Hﬂ,

) 9Gn ok , Gk \' s

G, =Y Db G =35 DR
L aUn+k L C)Un

Here 0G,,/0U;. are matrices of partial derivatives (()gf”/i)u{,), and (0G,,/0U)T

are transposed matrices. There is a remarkable formula for the construction of

additional local Haniiltonian operators:

(1) HY = (G (H,), =12,

n

For the Volterra equation (2),
H,(,I) = Un [“‘11+1D2 + (uu+l + Un)D - (U'n + Un—1 )Dil - unleizluns

and the function Ay = (1/2) logu, plays the role of the corresponding Hamiltonian
density. Since the Volterra equation is bi-Hamiltonian (there are only two local
Hamiltonian operators), and only local operators can be obtained by the formula
(17), it is natural that HS = 0. As is known, the Toda chain (3) is tri-Hamiltonian
[9]. The two simplest Hamiltonian operators are of the form

B 0 un (D —1)
= <(1 D, 0 ) *

(1) _ « un(DfDil)u" U”(Dil)v”
[{” B 2 (’Uﬂ(l - Dil)uu U‘ND o Di]u” ’

and h, = u, + UE/Z, hS,” = v, /2 are the corresponding Hamiltonian densities.
Formula (17) yields additional Hamiltonian operators again (H,({;) =0).

In order to prove that (5) is the master symmetry of the Volterra equation
(in the case of the Toda chain the proof will be the same), let us introduce func-
. ~(3) i j i i "
tions F”l =H, (g,([)). where gf,'j = 15p5,)/(5u”, and psl) are conserved densities for

~(1) . ~ (1]
(2) constructed above. Note that F'| "' = 2F,, all the other functions F,,Z are
higher symmetrics of (2). The second Hamiltonian structure allows us to obtain
( . ~(it+1 . . .
another formula f],(ll)(gffj) = (i/(1 + 1))F”l >. We also shall use the identity
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(8/6uw,)0-(p)) = (8, + G=T)(g!). Now we can check (using also (13) and (17)
that
— (i+1)
BV _im, (@” )
o,

6
= I, <*> &)T(pSAI))
oL,
= H,(0, + G, )(g}")

=0, =G, + HV](g)")

. ~(¢) T =+

=(0- -G))(F, )+ —F,

@ - GHED) + P,

~(i {4
Since (9, - G:,)(FEI )) =[G, F, )], we are led to the formula
~(3) i ~(+D
¥ G F, =
( ) [ n ] 1+ l 123

which shows that the chain (5) is the master symmetry of the Volterra equation

(2).

3. Other examples of local master symmetries

An exhaustive list of scalar integrable chains of the form (1) has been obtained
by one of the authors in [15]. All the chains of this list are reduced to the Volterra
equation (2) or the Toda model (3) except for a complicated chain

R(tp 1, Un,uy, -
) = Bl ).

Uyl — Un -

where R is the following polynomial with arbitrary constant coeflicients:
Rlx.y,z) = (o + 28y + v)az + (By° + Ay + 0)(z + 2) + vy + 20y + &

This chain is the difference analogue of the Krichever-Novikov equation [8]

Up = Upypy — g“’;l [“f-:r + P(U‘)]
(here P(w) is an arbitrary polynomial of degree N < 4 with constant coefficients).
There arc several chains in the list which are reduced to the Volterra and Toda
chains by discrete Miura-type transformations (we shall call them key equations).
In the casc of the Volterra equation (2), for example, those Miura transformations
have the form 7, = (U, Uy 41, Unym) (see (23) and (28) below). All the other
chains are reduced to the key ones by simpler transformations like %, = w,+; —u,.
We can construct local evolution master symmetries for all the key chains and for
some of the other ones. We apply a scheme which allows us to obtain new integrable
equations, using Miura transformations. This scheme was presented in [16] (the
case of partial differential equations) and [17] (the case of differential-difference
ones). Also, we use local conservation laws of the zeroth order. In this section. it
is explained how to construct integrable chains together with corresponding local
master symmetries, and new examples are cited.
In order to obtain a master symmetry of the modified Volterra equation

(19) 0[(1"17) — (/\ - 7"71)”“!1(’“1( vl — Uy, 1)-
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let us consider the systemn

(20) Lo(w,) = A, O-(,) = (A, + «) ().
where L, and A, are the operators appearing in eq. (11) and (12), o = af(7).
A= A(7). and
/\.’S

(21) /\, = T
This system is consistent (see (12)). It is easy to check that the function
(22) Uy, = '111,"2"5'31 +1

" Uy

satisfies the following relationships:

(23) Uy = (/\ - '“rlafl)'Uu-
/\
(24) O (v)=(N—uv)ule+n+ Vv, — (e +n=Duv, 1]+ Av, <u” — 2).

Eq. (24) is a master symmetry of (19). This equation was first derived in [2] as
an integrable chain. Transformation (23) is a difference analogue of the well-known
Miura transformation v = v, — v? [13] which reduces the modified KdV equation
v, = U, — 6070, to the KAV equation. It is important for us that (19) and (24)
arc reduced to (2) and (5) by the same transformation (23). For any solution v,, of
(19) or (24), the formula (23) yields a solution u, of (2) or (5), respectively.

Following [17] and using (23), we can obtain one more key scalar integrable
cquation together with its corresponding master svmmetry. Let us consider a syvs-
tem consisting of the equation (19) and the following ones:
(25) (V) = (= VOV, (Vi = Vioy),
(26) (A= /Uu+l)'Un - (,“' - V/PH)VW
where p(7) satisfies (21). We rewrite (26) in the form v, /V,, = (V11 — )/ (v, —
A), and introduce a new variable w, = (V,, — u)/(v, — A) (then @, 1 = v, /V,).
A new chain will be obtained in terms of «@,. Using the additional point trans-
formation w, = (w, — 1)/(w, + 1) to simplify the new chain, we are led to the
formulas
V,—uv, +b v, — Vi,
Ty Wil =
Vi +uv, —a v, + Vi,
If we exclude the case A = i = 0, the change of variables (27) will be invertible:
(1 4+ w,p )b+ aw,) oy — (1 —w, )b+ aw,)

Wy + W, o Wnt1 + Wy '

(27) w, = (a=X+p, b=X—p).

(28) 20, =

Let us differentiate some of the formulas (27) w.r.t. ¢ and use (19). (25), (28). As
a result, the following beautiful chain is constructed:

. Y - 1 |
(29) 40 (w,) = (1 — w?)(b? — u“w,‘)( — )

Wy W, W, + W,

The master svmmetry of this chain

ORI o £+n e+n—1
30) 49 (w,) = (I —w?)(b* — a*uw? —
(30) rlwn) = wi)( ) w1 W, Wy Wy

+ (1 — 'u",z,)az’w,[
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is derived in the same way (one should use the same constraint (26) and eq. (24)
instead of eq. (19). The discrete Miura transformations (28) reduce (29) and (30)
to (19) and (21). respectively. The chain (29) obtained in [15] by classification is a
difference anatogue of the Calogero-Degasperis equation u, = w, ., ~u? /84 (e 6% +
e uy (4]0 Eq. (30) is a new example of the master svmmetry and the integrable
chain.

Using the transformations (28}, we can obtain a difference analogue of another
Calogero-Degasperis equation [4]. In the complete list of scalar integrable chains
of the form (1) [15], there are generalizations of both the difference Calogero-
Degasperis equations. They can be constructed in the same way by applving the
approacht presented in [16,17] to the Toda chain (3). Let us discuss briefly this
Case.

As i the case of (19) and (29). chains and their master syinmietries explicitly
depend on 7 (master symmetries also depend on n). We shall express chains below
in terms of functions A(7). u(7). and v(7), satisfving the equation y’ = y? (compare
with (21)). On the first step. we obtain the Volterra equation together with its
master symmetry written in a different form:

H ) = 1w, (0] — v)-

N{v,) = v, (t, — U, 1).
do(w) = w6+ 2n+ vy — (&4 200 = 2)u, + u, + 27
dr(vy) = v,l(e + 2w, — (6 + 20— 3w,y + 0, + 2A]

(31)

(32)
These chaius are reduced to (3). (6) by the loliowing transformation: w, = w,v, 1.
0, = U, + v, + A On the second step, we are led to

Oelu,,) = (u',“]l — @) (. — ).

() = (02 = by, — 1 1)
() = (12 —a®)[(e 4+ 2n)vn.y — (4 20 — 2)v,],
O (vy) = (02 = b)) +2n — D, — (2420 = 3w, ] + cv,,,

(33)

(34)

where @ is a constant, b = (. — A)/da, ¢ = g+ A. Eq. (33) is a gencralization of
the modified Velterra equation (19). The transformation i,, = (u, + a){v,+ + b).
0, = (uy, —a)(v, —b) reduces (33), (34) to (31). (32). At last, the following chains

arise:

I i 1
~h(w,) = w, {bu, + ) (Bu,, + a)< + >
! ' U1l — Uy Uy,

— U,

1 . 1 1
"‘())(’17,,) = 1, (b/l’u + G’)(S‘U,l + (l) <___‘_ + —) s
4 W, — Uy Upn — Up—|
(:‘+‘2n~l e+2n—2
S + F=——— S

Upnt1l — Uy ), — Uy

1 .
-0 (u,) = u, (bu, + a)(Bu,, + a)

g ) +w, (bBu, — ).

e+ 2n—2 e+2n—3
+

Uy — Uy Uy — Upy-

L . . .
107(1',,') = v, (bv, + ) Bu, + a)( > + v, (bB3v,, — ).
where o is a constant, 3 = (g1 — v) /4, v = (A +v)/4. A transformation into (33).
(34) has the form

20U, v, 41 + alu, + v, 41) - blun o) + 20

60, = Lo, =

Uy = Unsy U, — 1,
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By introducing w,, (u, = ws,—) and v, = uw, ), we can write these systems in a
scalar form:

1 | 1
(30) -0 (w,) = w,(buw, + ) (Bw, + a)( +
4 Wy, oy =W, W, — W, |

l'()Y('m,,) = w,, (bw, + ) (e, + ) S L ol
4 Wy — W, Wy — Wy |
+wy, (b3, — ).
The chain (35) generalizes (29).
There exist examples of a different kind. The following chain and its master
syrmnetry

O (w,) = (w4 —w, 1)71‘ () = (c+n)(w,. | —w, 1)~

are related to (19) and (24) with A = 0 by the transformation v,, = (w,, o} —w, _;) !
which is simpler than the Miura transtormation. Such an example can be obtained

1

if a chain and its corresponding master svimmetry possess a commmon conserved
density p,, of the form p, = p(7.n,u,) (we consider here just scalar chains: sec.
c.g.. (2)). In this case, there are conservation laws d(p,) = (D — 1)(g,) and
O-(p,) = (D=1)(r,,). We can introduce a new variable i,,, so that (D—1)(w,,) = p,,.
and new chains & (i,,) = g, and O, (4,,) = r,. We obtain a chain together with
a master symmetry which are reduced to the given ones by the transformation
p(ronouw,) = (D — 1){u,). These new equations can be simplified, using point
transformations of the form @, = a(7,n.v,).

The Volterra cquation (2) and the master symmetry (5) possess the following
common conserved density: p, = (—=1)"logu,. The functions ¢, and r, are of the

form:
go = (=1)" " tup o+ (1)
re=(e+n+ D1 tu, +(etn—D(—D"u, ;.
Using the point transforination @, = (—1)""}log(iv, ). we are led to (19), (23),

(24) with A = 0. There are many instances in which common conserved densities
can be found. In the case of the modified Volterra equation (19) with A = 0, such
densities are v, ! and (=1)"v,; 1 1f A # 0 (recall that A = A(7)), we find the
density log[(A — v,,) /v, ). For the difference Calogero-Degasperis equation (29) and
the master symmetry (30), the comumon density has the forue [(1 — w?) ! duw,,.
There are examples of this kind in the case of chains siinilar to the Toda model (3),
too. For instance, if we start from (33) with b = 0 (¢ is a constant ), we arc led to
a chain and its master symmetry which can be expressed in the form:
o = (@ = o) (Gn — g0 1)y go = (tne - wn) b
Unrr = [(¢ +2n)a” — (2 + 2n) 'l ][(e + 20+ 1)g, — (6 +2n — L)g, ).

It is very umportant that the integrable chains, master symmetries. higher
sviumetries, conservation laws, and transformations under consideration are lo-
cal. This allows one to prove. in particular, that the new master symimetries
act on higher symmetries and conservation laws in the proper way. If p(,,l')[(/,,]
are conserved densities of a given chain (1) (we denote by p(,,”[(,f,,} functions of
the form pt“'(7.n, U, U, 1 1,U,+2,...))., and a new chain ('},((7,,) = F, is re-

duced to the given one by a transformation U, = S,[(7,]. then the functions
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135,1)[(7”] = p [S,[U,]] will be conserved densities of the new chain. Conserved
densitics obtained in this way also satisfv the relation (13), i.e. a new master sym-
metry generates conservation laws as well. Here, the main point is that the new
master symmetry [)T(U,,) = (7, is reduced to the master symmetry of the given
chain by the same transformation U, = S, [{/,,]. Moreover, the approach proposed
in {16, 17] allows us to construct higher symmetries d, (U,,) = FE;) of the new
chain. so that those are reduced to corresponding higher symimnetries of the given
chain by the same transformation. That is the reason why the formula (9) remains
valid for the new higher symmetries.

4. Exact solutions of master symmetries

As is known, master symmetries, which are examples of equations explicitly
depending on the spatial variable (2 in the continuous case and n in the differential-
difference one) and on time, are integrable by the inverse scattering method (the
integrability of (7) was discussed, e.g., in [3,5]; about (5), (6), (24), (34) see
[1,2,10-12]). The master symmetries (5), (6) admit the representations (12),
(15) and that is why they are integrable. All the other differential-difference master
symmetries above are reduced to (5), (6). In this section, we discuss the problem
of the construction of exact soliton-like solutions for the new examples of master
synumetries.

Using the approach of [16,17], one can not only construct new equations but
also obtain solutions for them [17]. Let us consider the case of the Volterra equation
(the case of the Toda model is analogous to this one). Let us assume that we have
a solution u, of (5) and a corresponding solution ¥, of (20) (for any X satisfying
(21)). Using (22), we can obtain a solution v, of (24) and a solution V,, of the
same chain (24) with u in place of A, such that those solutions satisfy the Backlund
transformation (26) (this is true, since relation (23) holds). Then we can construct
a solution w, of the master symmetry (30) by the explicit formulas (27).

For example, if u,, = x2/4 (r(7) satisfies (21)), then the general solution of (20)
with o = 0is w,, = Ak ~/?{c| exp{(e+n)v]+cy exp[—(e+n)v]}, where coshv = A\ /k,
and ¢, ¢y are arbitrary constants. In the particular case ¥, = Ak 12 cosh(¢,),
@, = (e + n)v+ 6, where 6 is an arbitrary constant, we are led to the solution
v, = (£/2)[sinh(v) tanh(y, ) + A/k] of (24). In a similar way, one easily can obtain
the following trivial solution of (24) with u instead of A (u(7) satisfies (21)): V,, =
e"k/2, where coshn = pu/k. The second of the formulas (27) yields for the chain
(30) the solution

cosh p, 1 — e coshy,

Wot] = .
cosh @, 11 + e cosh g,

The dressing method enables one to construct more complicated solutions of
the master symmetry (5) of the Volterra equation (2) and, therefore, solutions of
the master symmetry (30). Note that the transformation ¢, = A — v, does not
change (24). That is why (24) is reduced to (5) not only by (23) but also by the
transformation u, = v, (A — v, ). Using this transformation together with (22),
we obtain the following formula:

- 172 172 Wni42Wn—)

Uy = U, )
+1%n -1 Js )

Yn+1 L/)lt
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- . . -~ - b —1/2
where @, is a new solution of (5). If w,, = &*/4 and v, = Ax "'?cosh(yp,) (see
formulas above), then

) 2l ')
K~ A — K°

— 4+ A - .
4 A+ rcosh(2p, + v)

/HN —

Assume that L, and A, are the operators L, and A, of (11}, (12), (20} with
i, in place of v, (¢ remains unchanged). There is an operator

V4 12 =12 1/2 =172 5
R, :u},/l'u,”/ 1(?,"1,/ b VED — w”ilw ) ])

1Y n+] n—1

satisfying the following relationships:
- - i . ‘
(36) LyRy = RoLn, Or(Rn)=A,Ry — RyA, + SR, (L7 + A7),

Let 6, be a solution of the system (20) with X and 3 instead of A and «. It follows
from (36) that ¢, = R,,(6,,) is a new solution of (20) corresponding to #,,. Namely,
Eo(w,) = Mp, and O, (3,) = (A, + &)(w,). where & = 3+ (A2 + A?)/2.
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