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Abstract

It is demonstrated that in the case ot integrable differential-difference equations similar to the well-known Volterra
equation (unlike the Korteweg-de Vries and nonlinear Schrodinger equations) there are many instances in which local
master symmetries can be found. Those master symmetries are new interesting examples of local evolution chains explicitly
depending on the time and discrete variable and integrable in a special sense. The examples are constructed by a direct and

elementary approach which enables one to get new integrable equations, using Miura type transformations.

1. We consider integrable discrete-differential
equations (chains) of the form

at(un)zfnv fn:f(urnhunwunwl)v ()

where n is an arbitrary integer. The simplest example
of this kind is the well-known Volterra equation
A (up) = up(ttns1 — Up_1). (2)

There is an exhaustive list of integrable chains of the
form (1) in [1].

All chains of that list possess higher symmetries of
the form

a9y, (un) = £,
fr(zl) = f“)(un—riaun+1/l CI

for any i > 1. Recall that, by definition, Egs. (3)
satisfy the following condition:

o Up_g), (3)

[fns £ = 0 (F) = 30 (f)
=S (fdf Jou — £} 0 fn)dur) = 0. (4)
k

In general, for two higher symmetries, [ f{7, f{7] =
0. However, if a chain d,(u,) = g, is a master symme-
try, the commutator [g,, fi] is a higher symmetry.

We shall be interested in master symmetries of the
form

0 (up) = gn> gnzg(n77"un+]vunaun—l) (5)

which enable us to construct all the higher symmetries
(3) in the following way: [g,, f{?] = a; f(*1), where
i>1, f\1 = f, (see (1)), and g; are constants. Mas-
ter symmetry of such a kind for the Volterra equation
(2) is the chain

O-(Up) =up[ (e +n+2)tpy) + un
—(e+n—Dup_1], (6)

where € is an arbitrary constant. It is easy to check
that in this case

[&n. fn] =fr(!2) =ty [Unt1 (Upso + Uny1 + Un)
—tn_1(tty + g1 +un—2)1, (7N
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and this is the right hand side of the simplest higher
symmetry of Eq. (2).

Sometimes, Eq. (2) is called the difference
Korteweg-de Vries equation, for in the continuous
limit it becomes the Korteweg-de Vries equation u, =
Uyrxx + uu,. Master symmetry of the KdV equation is

Ur = x(thry + Uty + 4t + u?/3)
+(1/3)ud; " () (8)

[2]. In many cases, as in this example, known mas-
ter symmetries are not local evolution equations. The
differential-difference master symmetries we shall dis-
cuss here will be evolution chains without any differ-
ence analogues of ;! (compare (6) and (8)).

2. Let us recall some properties of the known chains
(2) and (6) (Eq. (6) and the corresponding L — A pair
which we write down below, are described in [3])
and explain why one can construct higher symmetries
of (2) by (6).

Master symmetry (6) has the representation

3-(L,) = [An Lyl + (]/2)[4;,

L, =u,1,/2D +14,11"121D—1.
2A,=(e+n+1 )u,llizlu,',"zD2
—(e+n- Hu/ u/2D2, (9)

where D is the shift operator, and A, L, are multiplied
as follows: (p,D")(g,D’) = pnqn..D"/. And that is
why Eq. (6) is integrable (see, e.g., [2] and [3]). All
other master symmetries in this paper are examples of
integrable chains too, for they are reduced to integrable
ones by Miura type transformations.

The Volterra equation (2) admits Lax representa-
tion

(Ln) = [Ba, Lal.
2B,,=ul/2ul/202‘u'/’3uU2 D2 (10)

n+1%n n—1%n-2

(L, is the operator of (9)). Therefore the functions
pi? = res(L¥) (i.e. coefficients of L¥ at D°) are
conserved densities of Eq. (2) for any { > 1. For
example pi!) = u, + up_y ~ 2up, pi¥ ~ 4(Upy 1ty +
u2/2). Note that the local conservation laws ,(p,) =
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(D ~1)(gy) and 3,(p,) = (D —1)(gy) are the same
if pp = pn+ (D — 1)(ry). We call such conserved
densities p, and p, equivalent (p, ~ pn).

It should be remarked that the representation
(9) implies the following relationships: 3,(p{?) ~
ip$*1 . So we can see that, differentiating a conserved
density with respect to 7, one easily obtains the next
one. This is another important property of master
symmetries which we consider in this paper, that they
allow one to construct not only higher symmetries but
also local conservation laws.

In order to show that master symmetry (6) en-
ables us to get higher symmetries, we shall use the
bi-Hamiltonian structure of the Volterra equation (2).
The operators H{") = u,(D — D~ ')u, and

H,(,z) =un[“n+lD2 + (tpy1 + u,) D
_(un + un—l)D“’ - un—]D_2]un

are Hamiltonian. Let f (now f, is the right hand
side of (2)) act on them as follows:

FHHDY =HD 3+ £ - (00— fOHP,
fa= afn/aun+lD + afn/‘?un + 6f,,/(9u,,_1D_l,

£37 = 0fni1/0unD + 8 fn /Ot + 3 f 1 /Oua D7

It is easy to see that £} (H{") =0, hence H{" takes
formal variational derivatives 8p\" /8u, of conserved
densities p{” into right hand sides of higher symme-
tries:

9, (un) = F” = H{V(G),
G =8p\” /Sun = dp," /dun. (11)
k

For example F{" = 2f,, F{? = 4f (see (7)).
Indeed, the following identity

(8/8u)d, (i) = (8, + £i1)(GL) (12)

holds, and (8/8u,)d,(pl”) = 0 because d,(p{’) ~
0. Therefore the functions F{? satisfy the conditions
[ frr B ) = (0, = f2) (FE) =0.

For the second Hamiltonian operator we also have
fH(H») =0, but in this case
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HPGHY = G/G+ 1) FY (13)
It is interesting that

g (H"Y=HP . gh(H?*) =0, (14)

where g, is the right hand side of (6). The second of

the equalities ( 14) means that we can try to represent
master symmetry (6) in Hamiltonian form. Indeed.
Eq. (6) has conserved density p, = (1/2)(e + n +
1/2) log(u,), and we get g, = H'? (8p,/Su,).
Finally, let us write down the following formulae:

I-F':HI)___iH,gl)((Spr('i—H)/ﬁun) — H;l)(é/ﬁu")ﬂr(p'(ll))
=H,"(6: + 27 )(G")
=[(d — g H," + HP1(G))
=(d, — g (FUYy + (/i 4 1) F D,

Here we use (11), the relationship d,(p!") ~ ip{"~ ",
the identity (12) with 7 and g, instead of 7 and f,, the
first of the equalities (14), and then (11) and (13).
Since (g, F{71 = (8, — g8 ) (F"), we are led to
the beautiful formula [g,. F{"' ] = (*/(i+1))F{"*D,
which shows that the chain (6) is master symmetry
of the Volterra equation (2).

3. All integrable chains of the form (1) are reduced
to the Volterra equation or Toda model but a difference
analog of the Krichever-Novikov equation u, = u,, —
(3/2)u;'[u2, + P(u)] (here P(u) is an arbitrary
polynomial of an arbitrary degree N < 4) [4]. There
are several chains among them being reduced to the
Volterra and Toda equations by discrete Miura type
transformations (we shall call them key equations).
All the other chains are reduced to the key ones by
more simple transformations like &, = u,.| — u,. We
can construct local evolution master symmetries for all
the key chains and for some of the other ones. We use
a scheme which allows one to obtain new integrable
equations, using Miura transformations. This scheme
was presented in [5] (the case of partial differential
equations) and | 6] (the case of discrete-differential
ones). In this Section we explain how to get local
master symmetries for the modified Volterra equation
and a difference analog of the Calogero-Degasperis
equation u;, = Uy, — u2/8 + (ae* + be *yu, [7].
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Besides, we discuss the problem of the construction
of exact solutions.

In order to obtain master symmetry of the modified
Volterra equation

3 (n) = (A = vp)0p(Upsy — Up_1), (15)
let us consider the system

Ln(¢n) =/\-¢n,

where L, and A, are the operators of (9), a = a(7),
A= A(7), and

0r(Ym) = (An+a)(¢n),  (16)

A= A2 (17)
It is easy to check that the function

Un = “,]y’/z‘,bn+l /‘//n (18)
satisfies the following relationships:

Up = (A — Upy1) U, (19)

d-(tn) = (A—vp)pl(e+n+ 1)vpy
—(e+n— Duvy_1]+ Avp(vn — Af2). (20)

Eq. (20) is master symmetry of (15). Note that (19)
is a discrete Miura type transformation reducing (15)
to the Volterra equation (2) and (20) to its master
symmetry (6). For any solution v, of (15) or (20),
the formula (19) yields a solution u, of (2) or (6),
respectively.

Now, following [6], we shall obtain one more key
integrable equation of the form (1) and corresponding
master symmetry. Let us consider a system consisting
of Eq. (15) and the following ones:

3 (Va) = (u = V) Va(Var — V1), (21)

(/\—l’"-])vnz(ﬂ_‘/nﬁ-l)‘/ns (22)

where w(7) satisfies (17). We rewrite (22), so that
Un/Vo = (Vayr — )/ (vps1 — A), and introduce a
new variable w, = (V, — u)/(vy — A) (then Wy =
vn/Va). A new chain will be expressed in terms of
w,. Using the additional point transformation w, =
(Wp—1)/(W,+1) to make that new chain more sim-
ple, we are led to the formulae
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Vi—utp+ b ty =V,
Wy, = ———, Whpil =
Vit+uin—a vy + VY,
(a=A+u, b=A-u). (23)

If we eliminate the case A = u = 0, the change of

variables (23) will be invertible:

( l + Wn+l)(b+ (IW,,)

20, =
Wyl + W
1 — wy. b+ aw
2V,,=( nf])( n)‘ (24)
Wpi) + Wy

Let us differentiate some of the formulae (23) with
respect to ¢ and use Egs. (15), (21) together with the
substitutions (24). As a result, the following differ-
ence analog of the Calogero-Degasperis equation is
constructed:

49,(wy) = (1 — wi)(b* — &*w;)

I 1
x ( , ) . (25)
Wpel + Wy W, + Wy
Master symmetry of this chain
. 2 5 SR
49, (wy) = (1 —wy ) (b™ — a~wy)
( e+ nhn e+n—1
(it
Wyl + Wy Wy + Wy
+(1 - w,z,)u"'w,, (26)

is derived in the samc way (one should use the same
constraint (22) and Eq. (20) instead of (15)). The
discrete Miura transformations ( 24) reduce the chains
(25) and (26) to the corresponding chains (15) and
(20).

By this direct and elementary approach, one can not
only construct master symmetries similar to (26) but
also get exact soliton-like solutions. Let us assume we
have a solution u, of (6) and the corresponding solu-
tion ¢, of (16) for any A satisfying (17). Using (18).
we can obtain a solution ¢, of (20) and a solution V,,
of the same chain (20) with w instead of A, such that
they satisty the Bécklund transformation (22) (this is
true, since the relationship (19) holds). Then we can
construct a solution w, of master symmetry (26) by
the formulae (23).

For example, if u, = &~ /4 (x(7) satisties (17))
then the general solution of (16) with @ =0 is ¢, =
AK‘”Z{C, exp{(e + n)r] + caexpl~(e + miv]}.
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where cosh v = A/k, and ¢y, ¢, are arbitrary constants.
In the particular case ¢, = Ax~'/Zcosh(@,), @n =
(e +n)v + 6, where é is an arbitrary constant, we are
led to the solution v, = («/2)[sinh(v) tanh(¢,) +
A/k] of Eq. (20). By the similar way, one can easily
get the following trivial solution of (20) with u in
place of A (u(7) satisfies (17)): V, = ¢"«/2, where
coshn = u/x. The second of the formulae (23)
yields for the chain (26) the solution

cosh g, ;| — €7 cosh ¢,
cosh@,,1 + e7coshe,’

Wnil =

The dressing method enables one to construct more
complicated solutions of master symmetry (6) of the
Volterra equation (2) and, therefore, solutions of mas-
ter symmetry (26). Note that the transformation &, =
A — v, does not change (20). That is why Eq. (20)
is reduced to (6) not only by (19) but also by the
transformation u, = v,41 (A~ v,). Using this transfor-
mation together with (18), we obtain the following
formula:

~ 121,.

Up = U, U, _ |(¢n+2¢’n l)/(‘j’n+l¢n

where i, is a new solution of Eq. (6). If u, = % /4 and
¥ = Ak~ 2 cosh(g,) (see formulae above), then

fin = K2/4+ AA* — k%) /[ A+ xcosh(2@, + ) ].

Assume that L, and A, are the operators L, and
A, of (9), (16) with @, in place of u, (& remains
unchanged). There is an operator

1/4 ., 1/2 , ~1]2 12, =1/2
Ry '“”4 / (‘/’/1‘/’”1/ D - ‘/’nil‘ﬁn—l/ DY
satisfying the following relationships:
[:an = R,L,,

a;(Ry) = ARy — RyAn + (1/2) R, (L2 4+ A%). (27)

Let 8, be a solution of the system (16) with A and
B instead of A and a. It follows from (27) that 1/7,1 =
R,(6,) is a new solution of (16) corresponding to i,.
Namely, Ly () = Ay and 8- () = (A, +&) (4),
where @ = B+ (A2 + A%) /2.

4. So, we have cited three beautiful examples of
local evolution chains (6), (20), (26) explicitly de-
pending on the discrete parameter n and on the time 7
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(as far as we know, the last of them is new). Chains
constructed in this way are integrable, for they are re-
duced to integrable ones by Miura type transforma-
tions. At least, one easily can construct exact soliton-
like solutions for such chains.

It is important that integrable chains, master and
higher symmetries, conservation laws, and transfor-
mations under consideration are local. This allows one
to prove, in particular, that new master symmetries
act on higher symmetries and conserved densities in
the proper way. If p{”[u,] are conserved densities
of a given chain (1) (we denote by p{[u,] func-
tions of the form p (n, 7, up, tpt1, Uns2,...)), and
a new chain d,(U,) = F, is reduced to the given one
by a transformation u, = S,[U,], then the functions
POTU,] = pi?[S.[U,]] will be conserved densities
of this new chain. Conserved densities obtained in this
way also satisfy the relationships 9, ( P{?) ~ iP(+D
(see Section 2), i.e. one can construct local conserva-
tion laws by master symmetry of the new chain as well.
The main point is that master symmetry 4,(U,) = G,
of the new chain is reduced to master symmetry of the
given one by the same transformation u, = S,[U,].
Moreover, the approach presented in {5,6] allows us
to construct higher symmetries 4, (U,) = F{? of the
new chain, so that they are reduced to correspond-
ing higher symmetries of the given chain by the same
transformation. That is the reason why the formula
[Gn, F{?1 = (#/(i + 1))F*D (see Section 2) re-
mains valid for new higher symmetries.

As has been said above, we can construct other ex-
amples of integrable local master symmetries in a sim-
ilar way. However, we shall not discuss them in this
paper. Let us show only one more example of a dif-
ferent kind. We can get master symmetries not only
if the construction scheme we used in the previous
Section can be applied, but also if both a chain and
its master symmetry possess the same local conser-
vation law of zeroth order (i.e. with a density of the
form p, = p(uy)). In this case, as is known, we can
construct a new chain and its master symmetry being
reduced to the given ones by a transformation that is
simpler than the Miura type one. For instance, Eqgs.
(15), (20) with A = 0 possess the conserved density
pn =v, . Therefore there are the chains

3 (wp) = (Wpy — Wn—l)_l,

Fr(Wy) = (£ 4+ 1) (Wny) — Wp_1) ! (28)

related to Eqgs. (15) and (20) with A = 0, respec-
tively, by the transformation v, = (wpy; — wp_1) L.
The second of Eqgs. (28) is master symmetry of the
first one. This chain is integrable and acts on higher
symmetries and conserved densities in the proper way.
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