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Abstract. A construction scheme for explicit auto-transformations of integrable discrete-
differential equations {(chains) is presented. These transformations are ratber convenient to
obtain the exact solutions for chains as well as associated partial differential systems. On
the other hand they exemplify new integrable discrete mappings. Their group properties
are also of great interest. The scheme is illustrated by several examples of integrable systems
which contains the nonlinear Schrédinger system and the Landan-Lifshits model.

1. Introduction

Bicklund auto-transformations for integrable poEs are known to be very often evolu-
tion discrete-differential equations ([1, 2]; [3] was one of the first where the Toda and
Volterra models were interpreted as Bicklund transformations for integrable systems
of the Schrodinger type). For example, the nonlinear Schrddinger system

= Uy + 2050 —0,= U+ 207U (1)
is related to two chains:

s = XP(gj0 1 — G5} — eXP(G—G5-1) (2)

W™~ 1 =W V41 0T 0 U (3)

where jeZ. In [1] there is a rather large list of integrable chains which consists of two
essentially different classes. Chains from the first class containing the Toda lattice (2)
are remarkable owing to the explicit auto-transformations for corresponding
Schrodinger-type systems which they specify (see also [31). These transformations are
handy for the construction of exact solutions [4]. For example, the Toda lattice gives
rise to the invertible differential substitution

- -1 2 e —
=, —u e+ u'y =gt

This formula allows one to construct easily a new solution #, 7 of the nonlinear Schréd-
inger system (1), starting from its arbitrary solution u, v.
We shall be interested in the second class. Its simplest representative is the chain

(3); the others can be written in the form .
tpe =[OtV 1+ By + 050 F 710541~ 107)
G
vp=lavp-1+ Blotu ) Fyig—v-1)
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where a, B, v are arbitrary constants, or in the form
{u_;x =rjf(uj+[ + Uj-i—-l) —-1/2 afjfaﬂﬁ 1>
U=t/ (-1 05-1) +1/2 0ry-1/0u;—y

where r; is a polynomial with constant coefficients:

()

7= r(uj, U521 ) =@ 0o r + Bupys 1 (= 0501)
] +'rujvj+|+6(uj—vj+l)2+8(uj— Uj+;)+;1. (6)

Tt seemed for some time that the chains (3), (4} and (5) were not so convenient for the
construction of exact solutions as chains similar to {2). We intend to demonstrate that
this is not so. It turns out that explicit auto-transformations arise in this case as well,
but at the next discretization level.

We make our words more exact by example of the chain (3). One can obtain a non-

trivial generalization of (3) introducing additional parameters f;:
{iijx=“"‘ i+ ﬁﬂj'—u.zf”ﬁ'l
Uy =0y +ﬁj_1vj+v§u;_; .

M

The chain (7), in contrast to (3), admits an explicit auto-transformation B, which is
given by

ﬁk=uk+(ﬁk'1~ﬁk)l_—-fm
Bk:< ﬁk=uk+(ﬁk—-ﬂ;;—l)ﬁla ;
l.ﬁk—-l':ﬁk Be=Pr-1

in the kth node and is identical in others (#=u;, §;=1, for j#k, f;= B, for j#£k—1,k).
Note that (8) is not an auto-transformation in the strict sense of the word, since it
permutes parameters of the chain. For this reason it is sometimes useful to consider
instead of a single chain, the whole set obtained from it by permutations of parameters.

The transformations (8) allow one to construct exact solutions of the chain (7) and,
at the same time, of the nonlinear Schrodinger system (1), starting from some appropri-
ate initial solution. No problems arise when we construct solutions for higher symmet-
ries of (1) as well as solutions admitting the scalar or complex reduction. The scheme
of the construction of multi-soliton solutions is given in section 3.

As in the discussed example, we shall present integrable generalizations for the chains
(4} and (5} containing additional parameters §;, and auto-transformations suitable for
the integration of associated Schrodinger type systems. The associated systems are of
the form

“r=uxx+f(“: U, lix ) Ur= —Uxx +g(u: U, Uy}

and represent key equations from the complete list of Schrodinger-type integrable sys-
tems obtained in [5] with the help of the symmetry approach. To achieve our objective
we use the linked zero curvature representations for the chains and systems associated
with them. It should be pointed out that we shall not consider the important problem
of construction of such representations; all representations in this paper were found



Explicit auto-tranformations of integrable chains 479

directly from the determining equation {9). The general scheme is stated and substanti-
ated in section 2. Results regarding the chains (4) and (5) are enumerated in section 5.

Note that every chain (3), (4), (5) is connected with two associated systems at least
[1, 7]. This means that the transformations presented permit one to solve many more
systems than those described in this paper. The chains (4), (5) do not exchaust examples
of chains analogous to (3). Multi-field generalizations of the chain (3) have been
obtained in [8]. The scheme presented is applicable to other types of integrable systems
(cf [9] where the xdv equation is considered).

The transformations discussed are of intergst also due to their group properties
defined by the following identities

B}=(BB)’=1  BB=BB  i#jxl.

Additionally, they provide new examples of integrable discrete mappings which are
actively being investigated at present {[9-13]). The problem connected with the trans-
formations (8) is to investigate the dynamics of u;, v; under the action of the group
generated by B,. In other words, the integration problem for multi-valued mapping
(or correspondence) is raised. When the additional periodicity condition is imposed,
this problem becomes closely connected with the theory of the finite-band integration
of the associated system (1). This connection is illustrated in section 4.

2. General scheme

Let us consider a c¢hain admitting zero curvature representation
(W)=Upsa Wy~ W,; U; jeZ 9

where U;, W; are 2 X 2 matrices, U;=U(4, u;, v;), W= W(A, u;, v+ , B,), A 1is a spectral
parameter, and J; are parameters of the chain. In the examples below tr U;=0 and the
formula (det W), =det Wtr(W,. W ™) implies that det W;=8(4, B;) does not depend
on x.

We define a transformation B by the relations

B Wka_lzkak-l PTG::W’ ];ﬁk,k—'l (10)

where W;=WI(A, &;, 8;+1, B;). These relations give a system of algebraic equations for
Tr—1s Oy i, Brv1, Pe—1, B, As 2 rule this system is overdetermined. However, it is
consistent, for it always has an identical solution. It should be remarked that sometimes
no other solutions exist. For example, our scheme does not give results in the case of
the Toda and Volterra models, although these equations are well known to admit
Bicklund auto-transformations [17-21]. Nevertheless, the class of the chains admitting
a non-trivial transformation seems to be large enough. For the chains (4), (5) the
transformations (10) are of the specific form

= Ptte—1, e, Ve ts Br—1, P}~ = J#k
Biid Ue=00(ue_1, Vks Vw1, Br—r, B) =0 J#k (11)
Bre-1=Br, Be= B Bi=8; JEk—Lk
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where P,  are rational functions (see section 5). The rule about the change of 3, can
be derived from the equality det W, W,_,=det W, W,_,. The fact that P and Q are
rational follows from the overdeterminedness of the system (10), which allows us to
reduce it to a linear one. In formulae like (11) below we shall write down only actually
transformed variables for short.

Theorem 1 explains why transformations of the form (10), (11) do not change the
chains under consideration.

Theorem 1. Let all the derivatives ., v;, be uniquely determined not only by the system
(9) but also by

(W)= U W;— B3U; j#Ek k-1

(WiWe—1)x= Ui s (Wi Wem 1) — (Wi - (YU -1 -

Let a transformation (10) be of the form (11). Then the chain (9) is invariant under
this transformation up to a change 8 « Be-1-

(12)

Proof. The system (12) follows from (9). In accordance with theorem I hypotheses,
{9) and (12) are equivalent. After the transformation (10), (11), the system (12) remains
a system of the same form, but with &, %, f; in place of , ;, 8;. Thus the chain (9)
remains unchanged up to a change B, < fr—|. . O

The hypotheses of theorem 1 express some rigidity of the chain (9). The following
condition on the matrices W} is stronger.

Condition (A) If .
W.k-i-p [N Wk= Wk.;.p F W;c (13)

then Briwp=Bogrprs . - - » Be=Bow, where & is some permutation. If ¢ is identical, then
Wk+p= Wk+p: sy Wk= Wk-

Additionally, we assume (and it is natural) that the equalities W,= W for all j imply
that 8= f;, i;=uw), B;=1, for all j. In particular the first of the theorem 1 hypotheses
follows from condition (A}, since the equation (10) possesses only one solution if the
permutation o is fixed.

Theorem 2. Let the chain (9) satisfy condition (A) and admit non-trivial trans-
formations (10). Then the identities '

B}=(B:B;+)’=1 B.B;=B;B; ij1 (14)

are valid, defining the code of the group G generated by 5B;. Any transformation satisfy-
ing (13) (and of course W;=W,, j#k, ..., k+p) belongs to this group.

Proof. Each of the transformations B}, (B,-B,-H)B, (BjB,-)z, i#£j%1, satisifies a relation
of the form (13) and acts on §;identically. By virtue of condition (A) they act identically
on the variables u;, v; as well.

Any transformation (13) specifies some permutation on the set of §;. There exists
a composition of this transformation with some element of the group < which gives
identical permnutation. This composition satisfies one of the relations (13) and therefore
is identical transformation. O
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If a chain admils non-trivial transformations (10), then according to theorem 2 any
attempt 1o generalize them with the help of (13) fails: every transformation obtained
will be their composition. Nevertheless the situation is possible when the trans-
formations (10) are trivial, and then one may try to obtain a non-trivial transformation
by (13) with p> 1. We present such an example in section 4.

The partial differential system associated with the chain (9} is given by zero curvature
representation

U=V, +[V, U] (15)

where the matrix U= U(A, «, v) coincides with the matrix U from the representation
(9). In order to construct the system (15) solutions by the transformations (10), it is
convenient to pass to the representation )

(W)= Visa W;— W,V (16)

where V;=V(A, B;, w;, vy, 4., Vs, . . ). Since this chain is of the same type as (9), it is
invariant under the transformations B; too (see theorem 1). The representation (15) is
the compatibility condition for the chains (9} and (16). So one can construct solutions
of (15) with the help of B;, generating common solutions of the chains (9) and (16).
This takes place for higher symmetries of (15) as well.

Generally speaking, the transformation (10) may not be related with any chain (9),
and also the chain (9) may not be related with any system (15). In this paper we
consider the case when there are both discretization levels. o this case the chain (9)
defines an infinite sequence of Bicklund transformations for the system (15). The for-
mula (10) expresses the commutability of two Bécklund transformations, as one can
see from the diagram

Wiy

Here the lower branch corresponds to the original chain, and the upper one corresponds
to the transformed chain. )

The so-called nonlinear superposition principle for Bicklund transformations is well
known [6]. If there is a matrix potential U,_, and two potentials U and T related to
Ur~1 by Bécklund transformation, then this principle allows one to obtain (in an
algebraic way} a new potential Uy.; which is a result of double Bicklund transforma-
tion. The relationships (10) often can be rewritien as nonlinear superposition formulae.
However, there exist examples when this is impossible. We also remark that Backiund
transformations for the Painléve equations can be derived from the transformations
(10) of suitable chains [9].

3. Nonlinear Schridinger system

The system (1)} and chain (7) can be written in the form (15), (9) with

A v uv v, 1 —U41
U= =—-2AU0- W= .
-u —A U U 4, 2A—uvp.—f

It is an easy exercise to prove that (10) yields the transformations (8).
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Theorem 3. The transformations (8) act on the set of chains {7) and satisfy the identities
(14).

Proof. 1t is sufficient to check that the condition (A) holds. This is evident for the first
part of (A), since det W;=2A— ;. If 24 = B, we obtain that ker Wy, ... W is spanned
on the vector (vr.+1, 1}, whereby fi+1= e+ (see (13)). Furtber, one can easily verify
that

* *
s+ W"“=(a Qi+ )
where deg o <p, and the sign * designates the inessentials. So
* *
Weep - Wk+1Wk=((21)-"uk+ - *)
and therefore i, =u,. We obtain W, = W,, and the proof is reduced to the case of the
lesser number of matrices in (13). O

Let us demonstrate how the transformations (8) help to construct system (1) solu-
tions. According to the previous section these transformations allow one to generate
commeon solutions of the equations (9) and (16). The matrix equation (16) represents
the chain

uﬂ= —uj+;'x"(ujvj+l-!'ﬂ_,-)ujx+ uj+1ujvj+1 +R§Uj
= 0= )1t (U1 B - Y0+ 05- 1000+ .

One can easily check that, by virtue of (7), this chain is equivalent to the sequence of
the nonlinear Schrodinger systems

Wy =t e+ 2050, =05 = 0+ 2005 an

Thus the transformations (8) are fit for the construction of common solutions of the
chains (7) and (17). This means one can construct solutions of (7) with u;, v, satisfying,
for all j, the Schrédinger system (1), starting from some trivial solution of this kind.
This statement remains valid for higher symmetries of (1) as well, but we shall not
prove it.

First of all we have to construct some initial solution of (7). There exist several
possibilities to do this, and the simplest way is to impose the conditions

=i =tr~=...=0 W=v_1=v_=...=0
which split (7) in two linear chains

U= Pty t sy V=B 10t vpm) j>0.
The system (1) gives the set of heat equations

Ymjt = U e 0=V j=0

which permit one to find easily the dependence on £. In a similar way, the next symmetry
of (1)

Upy ™= Uy T+ OUDL, Uy, = U+ GvLD,
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is turned into linear eguations again, and in general

U =0uy /0" = (-1 Eye >0,
where #,=1t. Assuming that all f; are different, we find

U_y =exp{y-1} u_y=exp(y-1)/(B-1— B-2) +exp(y-2)

v =exp(—Yo) va=exp(—yo)/(Bo— B1) +exp(—y1)

where y;=¢;— Bx+ B~ Bits+. . ..

Applying transformations (8) to the solutions obtained one can construct new solu-
tions of (17). Consider, for example, transformation T=. .. B:... BBy, which is, obvi-
ously, a correcily defined transformation of the chain. The jth component of the new
solution can be expressed through the components of the old solution in explicit form
as a finite continued fraction:

Bi—B-s 1 Bi-1— B Bo—B-1 1
Uspp — Uy T vy ...t L) —- U
ﬂj— 13—1
/o0y — T(uy—1)
Note that the chain (7) admits two reductions:

T(w)=w +

T(y)=v+ iz0 T(B)=B;n j=—1.

Uj=(_1)ju-j Bi=—B-— (13)
and, after the change x=i¢
o=ty Bi=B—-1. (19)

It is easy to see that By, B_,B,, B_2B,, ... preserve these reductions. Moreover, the
component (uy, vp) satisfies the condition #, =, in the first case and the condition yy=
flp in the second one. Choosing the constants ¢; in the proper way, one can easily obtain
an initial solution satisfying the conditions (18) or (19). Starting from this one can
construct solutions of the Mkdv equation

Uy = U+ 6181,
or nonlinear Schrédinger equation
iuz:ugg "2]]'1]21[ (t=.lf)

respectively. Consider, for example, the case of Mxav. Note that the reduction (18},
unlike (19), is compatible only with odd flows, which implies y;=¢,— fx— B3t —. . ..
Transformation T=...RB.B_,...BiB_,B, acts as follows (we are interested only in
variables with non-negative indices): -

' . 2B
T(B:; )=+ ?0 T =1+
(81} ﬁj 1 J (ti0) = 1o o+ 1/,
() =u, + BitBo 1 Bi1tPo 2By 1
Vi) — U3 + ¥ ..+ o +
+
T(v;)=v,+ Bt Bo izl

1/0j41— T(ttj=1)



484 V E Adler and R I Yamilov

The mrav solution u= T"(uy) obtained by iteration of this transform: depends on 2a

constants Bo, Co, .. -, Bn—1, Cr—1. Let Us rewrite it in the form
_ e . 2 2B
o+le T)+1/T) T ' u)+1/7" (o)

then assuming that all §; and exp(c;) are real, we see that u is regular for all real values
of x and ¢ and therefore it performs the general n-soliton solution of Mxdv.

4. Examples of integrable discrete mappings

A quite natural generalization of the Liouville integrability notion for the discrete
mappings is given in [12]. Following this paper we call a correspondence (i.e. in general
multi-valued mapping) ®: M — M symplectic if it preserves symplectic structure on Af.
A function on M being preserved under the action of @ is called the first integral or
invariant. A symplectic correspondence @ is called integrable if it admits n=3 dim M
functionally independent involutory first integrals. The discrete version of the Liouville
theorem states that if the common level surface of the invariants of an integrable
cotrespondence @ is compact, then it is diffeomorphic to a disconnected union of -
dimensional tori, and @ defines a multi-valued shift on it.

The transformations (10) give a new wide class of integrable correspondences. We
shall show this by example of the transformations (8) first. Consider the system obtained
from (7) by imposing the periodicity condition

Uy y =1 Vian=1; ﬁj+h’=ﬁj _fEZ. (20)

It is assumed in this section that indices in all formulae belong to Zy. The dynamical
system obtained defines the finite-band solutions of (1) depending on ¢ as on an integra-
tion constant 1, 14]. Let us consider the integration problem for the N-valued corre-
spondence B defined by the transformations B;,...,By. The matrix W;=
Wit -1 ... W, satisfies the equation

(W)=10;, W]

which implies that tr ﬁ/j is a generating function for the first integrals of (7) and (20).
The algebraic curve

I det {£1— W} =0

is obvigusly preserved too. On the other hand, it is also clear that I is preserved under
the action of the correspondence B.

After imposing the periodicity condition (20) the chain (7) becomes an integrable
in the Liouville-sense Hamiltonian system with Poisson bracket

{or, w3 =08, {vn o} ={u, 3 =0
and the Hamiltonian

N
H=}k
{

where

=5+ B 1 +1507401/2. (21)
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One can check that tr P?{, provides exactly N functionally independent first integrals in
involution.

It is easy to verify that the transformations (8) are Poisson mappings, i.e. they
preserve the bracket: {&, 4} = {v;, w;}, etc. Since the dynamics of f; is trivial, it is
convenient to pass from the transformations B; to their combinations leaving f;
unchanged. Note that it follows from (14) that the group G generated by B;is isomorphic
to the affine Weyl group Ay—.. The subgroup acting on f3; identically is generated by

T} (-B _,H-N 1)

Each of the transformations T} is a Poisson mapping not changing the system (7), 20)
and therefore is integrable in the above sense. Thus the original correspondence Bis a
combination of an N-valued integrable correspondence and the group of permutations
of N elements.

It is well known that the explicit linearization of the system (1) and its higher
symmetries, that is the transition to the action-angle variables, is realized on the curve
I" Jacoby manifold. The commutability of the transformations (8) and the dynamics
with respect to x and all times immediately implies that transformation T; corresponds
to the shift by some constant vector on the Jacoby manifold. So the dynamics is quite
trivial, and it is remarkable only that this shift can be described in terms of the given
system by the explicit formulae (8).

It is clear from what has been said above how fo use the transformations (8) for
numerical investigation of the system (7), (20). Indeed, it seems that the iterations of
one of the transformations T; must give the phase portrait of the system. However,
numerical simulations show that the transformations (8) are bad illustrations of the
discrete Liouville theorem. The level surfaces are not compact, there are no Liouville
tori, and we fail to obtain the whole phase portrait. The reason is quite obvious, The
system admits a reduction by means of the introduction of new variables

Pj=u_,v_,-+1 qizuj.{.]/uj. (22)
If the functions p;, g; are known, the solution 1, v; is found by the integration:
—t/t; =g+t By Vil 4= Ps—1 +q=2Pjm2/Ps-1 T Bi-1.

For N=2it is easy to prove that p;, g; are elliptic functions, and therefore u;, v; generally
grow or vanish exponentially, in accordance with numerical experiments.

So we see it is convenient to pass to the variables (22). Our second example of
integrable mapping deals with just this case. It turns out that the chain (7) as well as
the system (1) and the transformations (8) can be rewritten in terms of (22). In fact
the change (22) is equivalent to the Bicklund transformation

uv=p+pq ~u/u=p+q+p
from (1) into '
4=qxx— (4" + 204+ 2 4): Pr="Pxx— (0" +2pq + 2Pp)s. (23)

In terms of p;, g; the chain (7) looks as follows:

{ij =p;- l'?.i—l —Pidy - (24)
@x =G (G + P+ Bi— i1 —Pis1— Bie1).
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The transformation By, takes the form

74 o
ﬁk—l=Pk—l_—‘ﬁ‘— Pk=Pk(1+"——)
Pr=Gr— Pr—qe—1
- . o
gk-1=qfc—l(1+_""") qk:qk(l__""—“_) (25)
P~ Ge-1 Pe—Gr-1 T
Br-1=Px Be=Br-1

where 2= fi;,—~ B:... Although this system and chain do not belong to the main class

Figure 1. Licuville torus.

which is discussed in this paper, we wish to consider this didactic example in detail.
The chain (24) is Hamiltonian with Poisson bracket:

{pra=—gq {piss @} =¢

(the others vanish) and Hamiltonian density:

h=p3/2+ Bp;+pg.

Note that the new Poisson structure is degenerate with Casimir function J=g¢. . . gy.
The transformations B; are Poisson ones and preserve J. As before the periodicity
condition reduces the chain (24) to a Liouville integrable system and transformations
T;=(By. .. Bjn-1)""' where B, is given by (25) become integrable mappings. The
pictures below correspond to N=3 and represent the projections on the plane (p1, ¢:)
of the images of a random initial vector under action of transform 7 iterations, The
level surface can be non-compact again, but now without asymptotic tendency io infin-
ity. In the compact case the level surface is diffeomorphic to an N-1-dimensional torus
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. e
Ly

e b Figure 2, Non-compagt level surface.

dotted in a quite regular way. As a whole the picture looks like a uniform winding on
torus and provides the visual demonstration of discrete Liouville theorem.

The system (23) was considered in [3, 5]. The chain (24) (without ;) is closely
_copnected with the relativistic Toda lattice [22]. It should be remarked that in this case,
in contrast to the nonlinear Schridinger system, the associated system contains the
parameter B;. The chain (24) defines not an aute-transformation, but the transforma-
tion of the system (23} with §=_3; into (23) with §=§;;,. Zero curvature represen-
tations are given by

fA—s
o=, )
—qg —i+ts

V=—2(l+s)U+((p —az P )
-q (g—p)/2/,
el )

4 @ 24— B =P

where s=(p+q+ §)/2. It is easy to prove that the equation (10) with the given matrix
W, possesses only the identical solution, and therefore no non-trivial transformations
arise. It turns out we have to refactorize the product of three matrices in order to obtain
the formulae (25): the transformation B, is defined by

By : WilWeo 1 Wima= WiWem ) Wi W=w, jEk k=1, k-2,

So we see that sometimes the general scheme from section 2 needs modifications.
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5. Landau-Lifshits model and other examples

The results obtained for the nonlinear Schrodinger system can be generalized for inte-
grable systems considered in this section. All the chains below possess a Hamiltonian

structure
0 1\/ shy/sy )
U; i/ OU;
=A. 26
(vj'i'l)x J(_I 0)(5hj/50j+, ‘ ( )

where

Shy/ 8= oh) Oy
k

(cf[1]). Note that the factor A;=A(z;, v;4 ) can be eliminated by a point transformation,
but this makes the form of the chains more complicated. For the chain (7) A;=—1 and
h; is of the form (21). The structure functions A; and the Hamiltonian densities #; for
the other chains are given below.

For each chain under consideration we present the associated partial differentjal
system and the transformation (10). Matrices specifying the representations (9) and
(15) are given as well.

Example I. The system

=t + Quev + Bty — 0, =t — 20+ B, @n

at f=0 was discussed in [15]. The zero curvature representation (15) is given by the
matrices C

U=( r Jl.u) V=(2r+ﬁ)U+((Wx_qu)/2 Asty )

Av —r —~Avy (uv,—ovu,)/2
where r=(uv—1%)/2, and

Uj4q +ﬁ_,-—3,2 )Lu_,-)

W= (uw, + B "/2(
7 ( LEi+1 BJ') Rvj,,, ﬂj
The chain (9) takes the form

{ufx =(0ps 1+ B} ttpe 1 — 1)

O = (0, + B;— (o= 0p-1)
and can be written in the Hamiltonian form (26) with

A=up+ B By= (41— %) 041
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The transformation (10) is given by
7
n L
=1+ (Pr— Pr-1) ——————
Brt e 1O
Vr+1— U
Br—iF_ g4

\gk—l=ﬁk .grc=ﬂk—1‘

As in the case of (23) there is a changing parameter in the system {27).

Be: < B=vc+ (Bre-1—Be)

Example 2. The system
U=t +2{u+ v)u, —v,=z:x,¢—2(u-l;u)vx
is equivalent to the Kaup system [16]. The matrices U, ¥ and W¥; are
U=((u—v)/2 (u+}£)(v+l))
1 (v—u)/2
(u,+0,)/2  Alu,—0v,) +ou,—uw,
—(uet0.)/2 )
=2 et (A= B+ v540) +Az)

1 Uj+|—ﬂ.

V=(u+ v—ZZ,)U-I-(

W= (w04 )—1/2(

and the chain (9) is of the form
{”jx=(“f+ Bpes Wotyes — 25+ )
U=+ u— My—v-1— By-1).
Its Hamiltonian structure (26) is defined by the functions
A=t v A=ty — 1050+ B (1 0pay)
and its transformation (10) is given by the formula

{
e+ O

-1+ Vet — Br-

=1+ (Br-1— Br)

Bk:i O F U1
Ue—1 T s 11— P
ﬁk—!=ﬁk Ek=ﬁk—t-

\

The rest of the examples deals with systems (15) of the form

2
utuv

Be=vF (B~ Bi-1)

=ty — = (12 P(1)) +i—, P

2 1 28)
— - [ 2 —_— —— '——
U=y u+v(ux+1’( v)) 21’( v)
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where the degree of the polynomial P is less than or equal to 4. It is well known [1]
that the stereographic projection

S1=1+uv S2=_i1—uv 3=u—v
u+v utv uto
and substitution =iz bring the Landau-Lifshits model
S, = 85X S+ SXIS SeR’ (8, =1 J=diag(/;, /2, J3)

to (28) with P(¥)=s&t* + 8P + &, 26 =J, +J,—2J5, dg=J,~ J,. One obtains the iso-
tropic Heisenberg model case at =0 and anisotropic one at £=0 or 6 ==x2s.
The linear fractional transformations
. _au+b —av+b

cutd co—d

do not change the form of system (28). The polynomial P is changed as in the equation
1= P(z). This observation allows us to reduce the system invsetigation to the following
three cases: P(u) =g, P(x) =81, and P(u)=u +au+b (P may have multiple zeros in
the Iast casej.

A chain (9) corresponding to the system (28) has the form (5). It can be wriiten in
the Hamiltonian form (26) with

A=, hy=In(u+0)— £ In v,

We shall specify r; in each of the cases.

Example 3. Let us consider the case P(u) = ¢ first. The representations (9) and (13) are
given by

U=_L((u—v)/2 uv—s/ﬁ.z)

utv 1 (v—u)/2
AU+ —" ( (w0)e  Vu—1o.+ s(ue—0.)/A* —2e(u+1) /1)
(+ ) \v,—u, ~(ut)s
W}zr;.,z(ﬁ-”ﬁl’ﬁj(ﬂ}"‘ a1} —Auppe+&/A— e/ﬁ_,-)
—A4 Ary— By (et v41)

where
?"j= ",Bj(”j'i' Uj+] )2_' S/Hj
and the transformation (10) is

( (st + Vg Wtte—1 — ) — &/ BicBr-1

Bt + 0y )+ Brew 1 (-1~ 1)
(Ve 2t 1 ) (Va1 — Ur) — &/ Brefr—1
Be— (et} + Bilvrs 1~ 02)

Lﬁk—l=ﬁk Ek=ﬁk—l-

When £=0 all the formulae remain valid and correspond to the isotropic Heisenberg
model.

&=ttt (Bre— Pr-y)

Bk:

———

Ge=0+ (Be-1—Be)
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Example 4. The anisotropic fetromagnet corresponds to the case P(u) = 51, There are
Zero curvature representations (9) and (15} with

1 (l(u—v)/.’z us )

uto\ A*+8  A(v—uw)/2
Auv)+ 8@ —17) /2 vu,—ilo,
Ve ) 2( ( 2) ( )/ . )
@+oy\ AP+ v—u)  —A(u)— (P~ i)/2
W=7\ (7“’1-% e —UPj1 )
Y =AP=8 dw— Bty
where o
1= Y i = 2B 1+ Y Yi—Bi=é

and the following-transformation of the chain:

’
. =(3k—1 = Byt 1V il Yadte—1 F Yre—10r41)

(Be—1— Be)ur+ Y- it —1 + Yalr+1

B: 5k=(ﬁk—l3k—1)uk-LUk+1+Uk(?’kuk-:+?’k—1ﬂk+|)
(Br= Br—1)0e+ Vi—1the— 1+ ¥apa
Lﬁk—l =8 Bre=Br-1 Fr-1= ¥ Fe=Ye-1.

If §=0 and y,=—p; we obtain the isotropic Heisenberg model case again.

Example 5. In the case of the general position a linear fractional transformation turns
the polynomial 2 into P(x) =1 + au+b. For this P, matrices defining the representation
{15) of the system (28) are

1( u uv—it(u—u)/z—,lz"a) 1 (h e
(w-v)/2—4 —p (el \f —h)

—u+u

where
e= (¥ =+ A%+ D — @+ du+ 22+ d)v + plut 0)(u—v+ 1)
JF=(v+ D+ {u—o +ulutov)
h=p(o.,—u)+ @+o)uw+A(u—-0)+22%+a)/2.
The matrix W; has the form
—
where
A=+ Bsi+ (A=) A+y=v541)
B=(p+ B A+ 1= v501) — (A~ y,)(A+27;)5—-2B;(A—7;)
C=p+f—(A—1)y
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D==(p+B)s— A~ y) A+ 7+ w)
1=2BAsG+ =01+ 7))
5= e+ 7= 0j01) Fa+277) /25,
The parameters ¢ and A, ; and 7, are constrained by
p+P(A)=0  Bi+P(y;)=0.
The transformation (10) is of the form

. Ku—L .  Ku+L
= O =———-
Muk“!‘N "‘ka"['N

where ]
K—=N=2c%_10p+1~(ac' + ) ttp -~ g1 ) — 2ac* — 4bc'
K+ N= (-1 + 001 7V 1(ac® +3¢%) +4be' +3a + )/ (Vi1 — 72)
L=ctup—10p 41+ (ac® +26c )ty — Ury 1 ) +4bc* — &’
M=t Opar + (U | = Vs ) — €

and by ¢® we denote ¢’= 75\ + Br—17i .
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