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Abstract

Multi-component integrable analogs related to the Jordan triple systems (JTS) are constructed for the Volterra equation.
Differential difference substitutions lead to multi-component Toda type lattices. Associated equations generalize the derivative
nonlinear Schrodinger equation. Multi-component master symmetries (both partial differential and differential difference
ones) and zero curvature representations for lattice equations written in terms of the superstructure Lie algebra of the JTS
arise for the first time. © 1999 Published by Elsevier Science B.V.

1. Introduction

In this paper, we construct multi-component analogs for the Volterra equation and some integrable equations
closely connected to it and study their integrability properties. Many results demonstrate that very often multi-
component partial differential and differential difference equations are integrable if connected to various Jordan
structures [2,3,7,8]. The first papers on multi-component generalisations of integrable equations related to the
Jordan and left-symmetric algebraic structures are due to S.I. Svinolupov, and main results in the field also
have been obtained by him (see e.g. Refs. [1,2] and the review article {3] dedicated to his memory).

It is more convenient for our purpose to consider the following slightly changed form of the Volterra equation,

u,,y,{:uf,(u,,H—u,,ﬂl), nez. (1)

This is a very well studied integrable model. It is bi-Hamiltonian, possesses an L-A pair, recursion operator,
local master-symmetry, infinite hierarchy of higher symmetries and conservation laws, etc. Much of this stuff
will be displayed in the next section. Now we only notice that higher symmetries of (1) can be rewritten
as evolutionary partial differential systems for the variables u = u,,v = u,_; and constitute a hierarchy of
integrable systems, the first representative of which is of the form

W=ty +200%0) 5y U= U+ 2(0%0) (2)

(see e.g. Refs. [4,5]). This is the well-known Kaup-Newell equation [6] which often is called the derivative
nonlinear Schrddinger equation (DNLS).
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The main object of the present paper will be a class of multi-component generalizations of (1) related to
the Jordan triple systems (JTS). We recall that a ternary algebra J with a multiplication {}: P — Jis called
JTS if the following identities hold for arbitrary elements,

{abc} = {cba}, (3)
{ab{cde}} — {cd{abe}} = {{cba}de} — {c{bad}e} . (4)

All necessary information concerning JTS will be given later step-by-step. Details and bibliography can be
found for example in Refs.[9-11].
It turns out that for arbitrary JTS the lattice

un,x:{un(un+1 _un-l)un}, (5

which will be called the Jordan Volterra equation, is integrable. This lattice can be written more explicitly,
using the expansion u, = u)'e, over a basis in J. The multiplication { } is uniquely defined by the formula
{ejejer} = ajjxem, and (5) takes the form

ke J J
un(unH - un—l) :

Up x = Ajjly,
However, we always will use coordinate-free notations.

Our aim is to transfer, if possible, properties of (1) to the multi-component case. Sometimes it can be

attained just by the proper ordering of cofactors. For example, a correct Jordan analog of the symmetry (2)

(i.e., of the DNLS equation) is of the form
iy = Uy + 2{uvul},, Ur = —Ugy + 2{vuv},. (6)

In other cases, one should use rather complicated constructions. For instance, in order to obtain the zero
curvature representations for (5) and (6), we use the superstructure Lie algebras.

In some points we are unable to achieve the full analogy. The Hamiltonian properties in the general Jordan
case seem to be more poor. Moreover, there are some important transformations of scalar equations which are
lacking in the multi-component case. An example of such a transformation is given by the formula w, =, 1u,.
This transformation' brings (1) into the standard form of the Volterra equation

Wn.x=wn(wn+l — Wy1) (7)

which, unfortunately, does not have natural multi-component analogs corresponding to the Jordan algebraic
structures. Nevertheless, some transformations of this kind are well defined in the Jordan case as well, give
rise to integrable modifications of (5), (6), and lead, in particular, to multi-component lattice equations of the
Toda type (see below).

As is known, there is an alternative and older approach for the construction of integrable multi-component
equations connected to algebraic structures [12,13]. Some of examples obtained by these two approaches
coincide, but the correspondence in the other cases remains an open problem. Multi-component integrable
analogs of the DLNS equation (2) have been obtained for the first time in Ref. [14], using that alternative

approach.

! After the point transformations w, = exp Wis Un = exp;;,,, we have the transformation w, = E,,H + 1y, and see that this is a discrete
analog of the potentiation w = u,. That is why (1) and (7) are almost the same from our point of view.
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2. Scalar case

Here we introduce some integrable equations related to (1) and list those of their attributes which will
be discussed in the multi-component case: master symmetries, zero curvature representations and Hamiltonian
structures. We start from master symmetries because, as one can see later, those give us the shortest way to
multi-component generalizations.

The master symmetry of (1) which has the form

Oy (Uy) = u?’,((c-% n+ Dupey — (c+n~ Duyq) (8)

(c is an arbitrary constant) not only exemplifies an interesting integrable lattice with an essential dependence
on the spatial variable n but also gives an easy way for the construction of higher symmetries and conservation
laws. An infinite hierarchy of higher symmetries,

ark(un)=fk(un+k,---aun—k)’ k=1,293»---7

of (1) can be obtained recursively in the following way: 8,,,, = [dy,d, ], where t; = x. As the first step, we
are led to the symmetry (denoting ¢, by ¢)

(up) = u%(u%+l (Uni2 +uy) — ”%—] (uy +up-2)) . ©))

Any higher symmetry of a lattice of the form u, y = f(uyq1,un, un—1) is equivalent to a system of evolution
partial differential equations [4,5]. In order to obtain such a system, one should eliminate the variables
Up+1, Unt2, Unt3, . .. In virtue of the lattice itself (more precisely, express these variables in terms of u = u,, v =
u,— and their x-derivatives). In the case of (1) and (9), this procedure brings to the DNLS equation (2).
Eq. (9) is not the only symmetry of the second order. Obviously, the differentiation 4, = xd; + d, commutes
with 8, and defines an x-dependent higher symmetry. That symmetry can be expressed in the form

Uy = (xux+2xuzu+(c+n)u)x, U,=(—xux+2xuzu+(c+n— De)y. (10)

For any constant ¢ and integer n (one can put, for example, ¢ = —n), this is nothing but the master symmetry
of the DNLS equation because [d;,3, ] =4,,,, forall k > 2.

The concept of the master symmetry has been introduced in Ref. [ 15] (details can be found in the review
articles [16,17]). Before that, master symmetries arose and were investigated as integrable equations with the
spectral problem in which the spectral parameter depended on the time (see, e.g., Ref. [18]). For example, as
an integrable equation, (8) has been found in Ref. [19]. It has arisen as the master symmetry of (1) in Ref.
[20]. Eq. (10) has been found in Ref. [21].

As has been said in the introduction, equations under consideration can be rewritten in many forms by
differential and discrete substitutions. We consider only one example of such a transformation. Introducing
Uzn = pu and Uz, = 1/(gu—1 — gy ), one can express (1), (8) as two Toda type equations,

1 I
2
= R . — s (11)
n.x = Pr Pr.x = P <[In — qn+1 qn—1 — Qn)

2(c-}~2n—{~1 c+2n—l>

wy = (€ +2n)p,, N =D (12)
Gn ( )p pn" P qn — qn+1 qn—1 — qn

found in Refs. [22,23], respectively. Eq. (12) remains the master symmetry of (11).
For all Egs. (1), (2), (11) and their master symmetries (8), (10), (12), multi-component generalizations
will be presented in the next section. Let us write down L-A pairs for the scalar equations (1), (2), (8), (10)
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(some of them are known, see e.g. Refs. [6,19]). For the lattice equation (1), its higher symmetry (9), and
the associated system (2), we have, respectively, representations of the form

W, =T(U)W - WU, W, =T(V)W -Wv, U=V + VU], (13)

where T is the shift operator n — n + 1, and we omit the index n for short, so that U denotes U, and
T(U) denotes Uy,i;. The representations mean that (1) defines the auto-Bicklund transformation for the
DNLS equation (2). For the master symmetry (8), the x-dependent higher symmetry corresponding to the
differentiation d;, and the master symmetry (10) of (2), we have representations of the form

W, + uPW, =T(N)W = WY, W, +ul’W, =T(xV+Y)W WGV +7Y),
Ur +pl’Uy= (xV+Y), + [xV+LU], (14)

where u =2 and the matrices U, VW, Y are

U=2/\<A u>, Y=cU+/\((2n_l)A 2nu >’

—-v —A —2n—-2)v —(2n-1)A
200w+ 2o 2A0/u 1
- 2 X W = .
V=44 U+2/\(L¢—2uu2 —2Auv ) ( -1 0)

The representations (14) show that (1) also defines the auto-Bédcklund transformation for (10) and enable one
to trace the connection between the discrete and continuous master symmetries at the level of the zero curvature
representations.

All the equations under consideration are Hamiltonian. Let us briefly discuss the Hamiltonian structures of
the lattice equations. In the scalar case of (1) and (8), the Poisson bracket is defined for formal functionals

of the form F =3 fu(tp,tnys1,...,Uns,) and is given by the following formula (we use square brackets to
avoid a confusion with the multiplication in J),
1 d
[F.G] = Jn K En

Su, " Su,
n
Here 8 f,/8u, denotes the formal variational derivative,

Sfn d - -
On O N hT ATV,
Su, Juy

and K, is the Hamiltonian operator,

m=M
m
K, = KomT™,
M

m=—

which, of course, must be skew symmetrical and satisfy the Jacobi identity. The Hamiltonian lattice generated
by the functional F is of the form

1)
Uy, = K,,i.

du,

The Hamiltonian operator corresponding to (1) is

Ky=12(T -T2, (15)
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It is easy to prove that in the variables z, = u, ' this operator becomes constant, and therefore the Jacobi
identity is fulfilled automatically. The lattice (1) possesses an infinite set of local conservation laws,

ah(pf) =(T-D(ah), k=-1,0,1,...,

with densities

—1_Cn 0 _ l _ 2 2 22
Py = l—l_ ’ Pn = lOg Un, Py = Unlnt1 Pp = 2u"u"+1u"+2 + Unlpir e
n

where ¢, is defined by the relation c¢,.» = ¢,. The local master symmetry (8) enables one to obtain the
conserved densities pﬁ (k = 1) recursively, using the formula

a(pf) = pit (T - (A, (16)

which means that pf . and pf*' are the same up to a total difference. The densities o5 (k > 0) define

Hamiltonians H; = Z" pfj of (1) and its higher symmetries. The Hamiltonian H_.; is the annihilator of the
Poisson structure (15). The master symmetry (8) also is Hamiltonian,

P,
Su,

Upy = K, Z)‘,:: = (C +n) logu,, \

and p, ' is its conserved density.
Obviously, the lattice systems (11), (12) are Hamiltonian as well, and the Poisson bracket is defined in a
similar way. The system (11), the master symmetry (12), and higher symmetries are expressed in the form

2 5,011 2 _‘Sfﬂ
Pz _pn 5qn ’ An.z pn 5Pn .

The Hamiltonians of (11) and (12) are H =3 p% and H = 3 50, where

P =log@’——’p~"—”*—', B = (c+2n+ 1) log(qn — gus1) — (c+2n) logp, .
n
The function p;' = 1/p, is the common conserved density of (11) and (12). Starting from p% and using the
same formula (16). one can construct the other densities for (11), the first of which is
1 P+t + Po
i qn+1 — 4y

3. Main equations

Statements below can be proved by straightforward calculations, using the identities (3), (4), and their
consequences,

{ab{aca}} = {a{bac}a} = {{aba}ca}, {a{bab}c} = {{aba}bc},
2{{abc}bd} = {a{bch}d} + {c{bab}d} . (7

Also, it is convenient to use linear operators L., Py, Py © J — J which are defined for all elements a, b € J
by

Lyy(c) = {abc}, Pp(c) = {ach}, Py(c) = Pyy(c) = {aca} . (18)
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Eq. (5) is expressed in terms of P, as follows,

un,xzpu,,(unH —Up-1) . (19)

The following multi-component lattice equation,

un,_\':Pu,,((C+n+l)un+l —(c+n—Duy_y), (20)

generalises the master symmetry (8).

Theorem 1. For any JTS, the lattice

Up: = Pu,,(Pu,,,,x (Ups2 +1y) — Pu,,wl (g +up_3)) (21)

obtained by the formula d, = [dy,d,] is the higher symmetry of the multi-component Volterra equation (19)
(i.e. [d,dx] = 0). It can be rewritten as the system (6) for u = u,, v = u,_,, and the symmetry of (19)
corresponding to d; = xd; + 4, is equivalent to the system

uy = (xuy + 2x{uvu} + (c +n)u)x, Uy = (—xvx + 2x{ouv} + (c +n—1)v),. (22)

Theorem 1 proves, in a sense, that (20) is the master symmetry of the multi-component Volterra equation, i.e.
generates higher symmetries and conservation laws in the standard way. Using the Jacobi identity for evolution
differentiations and the fact that [d,,d,] = 0, one can easily prove that (455 dx] = 0, where d-= [d,,d,], i.e.
(20) generates a higher symmetry on the second step as well. A statement that (20) enables one to construct
an infinite hierarchy of higher symmetries is more difficult to prove, and additional properties must be used
(the homogeneity of equations, for instance). It should be remarked that in the other cases we also restrict
ourselves to checking the determining equation for the master symmetries (for instance, in the case of (22), it
has the form [[&;,3d;],d,] = 0), that turns out to be sufficient in all known examples.

Note that the identities (3), (4) are not only sufficient for the compatibility of (19) and (21) but also
necessary, i.e. turn out to be the compatibility conditions for the lattices (19), (21) considered in an arbitrary
ternary algebra.

Now we are going to present Jordan analogs of (11), (12) and transformations reducing them to (19), (20).
In order to give the proper analog of the term 1/(g,—; — g,), we define the inverse element as a'= Pﬂ'l (a).
The following Lemma shows that this expression has many habitual features compared to the scalar case.

Lemma 1. Let the operator P, be invertible, and b = a!= Pu'I (a). Then Py, is invertible as well, and

P'=P,, a=P7'(b)., La=I, a;=-Pyb)).

Proof. First we prove that P,P, = I. Let ¢ be an element of J, and d = P,(c), e = Py(d). Using (17), we
obtain

P,(e) = {a{bdb}a} = 2{ab{abd}} — {a{bab}d}
=2{ab{ab{aca}}} — {{aba}bd} = {ab{aca}} = {aca} = P.(c) ,
and therefore ¢ = ¢. The formula @ = P, ' (b) is obvious. For arbitrary ¢ € J,
Lap(c) = {ab{aP[ ' (c)a}} = {{aba} P ' (c)a} = {aP; ' (c)a} =c.

i.e. Ly, = . Taking this into account and differentiating the relation a = {aba}, we are led to the last formula.l]
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Unfortunately, the operator P, may be degenerate for some JTS. In such cases, the notion of the inverse
element can be partly substituted by the notion of the deformation vector which is a solution of the system
db/da = — Py [24]. We will restrict our consideration only to the case when det P, # 0 for almost all a € J.
The JTS with this property is called the JTS with invertible elements and admits the following generalization
of the lattices (11), (12),

qnx = Pn s pn.szp,,((Qn'—‘In-(»l)_l — (gn—1 ‘Qn)_i)a (23)
Gny = (CH+20)pn, Py =Pp((c+2n+1)(gn—Gup) " = (c+ 20— D (guoi —q)™").  (24)
Using Lemma 1, one easily proves that the transformation uy, = pp, u2,—1 = (gu—1 — g,) "' turns (23) and

(24) into (19) and (20), respectively, in full analogy to the scalar case.

In conclusion, we present the most important examples of JTS and some of corresponding multi-component in-
tegrable equations. It should be remarked that those examples together with the symmetric (or skew-symmetric)
reductions u = +u* of Examples 1 and 2 (with M = N) cover all the simple JTS aside from two exceptional
ones [9].

Example 1. A linear space J of N x N matrices becomes the JTS if one defines the triple product with the
help of the standard matrix multiplication as follows,

{abc} = §(abc + cha) .
The corresponding matrix Volterra equation reads

Upx = Uy (Unsy — Up—1 ) Up . (25)

The operator P, in this JTS is invertible iff deta # 0, that is almost everywhere. The element a~! coincides
with the inverse matrix. The subspaces of symmetric and skewsymmetric matrices with the same triple product
are the JTS as well. However, in the case of skewsymmetric matrices of the odd order, the operator P, is
degenerate for all a.

Example 2. The previous example can be generalised if one defines the triple product of N x M matrices by

{abc} = J(ab*c +chbTa),

where + denotes the transposition. The matrix Volterra equation in this case will have the form

+
Upx = un(u;,:.l — U, Yy (26)

If N =M, we easily can obtain (25): uz, — Uz, Upps1 — u;n +1- The operator P, may be invertible only in
the case M = N.
In the particular case M =1, J turns into an N-dimensional vector space with the multiplication

{abc} = $({a, b)c + (¢, b)a) , (27)
where ( ) denotes the standard scalar product, and (26) takes the form
Upx = <un’un+1 - un—l)”n . (28)

However, this lattice is not interesting, since it easily can be reduced to a scalar one. Indeed, all the coordinates
of the vector u, are proportional to each other, i.e. u, = w,c,, where ¢, is a constant vector, and w,(x) is a
scalar function. So, the lattice is equivalent to

2
Wpy x = wn('y"wn-H — Vn—1Wp—-1) »
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and the constant factors ¥, = {(cn+1,Cp) can easily be removed by scaling. In spite of this degeneracy, higher
symmetries of (28), the corresponding vector DNLS equation, its higher symmetries and master symmetry are
nontrivial vector equations. The vector DNLS equation can be found in Ref. [14], and the multi-component
master symmetry (22) turns into the following interesting example of an integrable vector equation

Uy = (xuy + 2x{u,0)u + (¢ +n)u)x, vr=(—x0y+2x{v,u)v + (c+n— 1)v),.

Example 3. A nontrivial vector example generalizing the Volterra equation is related to the rule
{abc} = (a,b)c + {c,b)a — {a,c)b, (29)

which defines the structure of the JTS in an N-dimensional vector space as well as (27). The operator P,, its
inverse, and the vector a~! are given by

P,(b) =2{a,bya — {(a,a)b, Pl ={a,a)7P,, a'={a,a)7'a. (30)

The vector Volterra equation in this case reads

Upx = 2<una Upy1 — un—l>un - <una un)(un+l — Up—1) . (31)

Vector analogs of the DNLS equation (2), the Toda type lattice equation (11), and all the three master
symmetries also can be written down without any difficulties.

4. Zero curvature representations

In this section we discuss the zero curvature representations (13), (14) in the Jordan case for the main of the
equations presented here. Naturally, models corresponding to different JTS admit zero curvature representations
in matrices of a different size. Nevertheless, it is possible to give uniform representations

U=V, +[VU], U~ BUy= (xV+Y), + [xV+YXU], (32)

for all the systems (6), (22) in terms of the superstructure Lie algebra K(J) of the JTS. Notice that the
multiplier & in (14) can be set to an arbitrary constant by rescaling A, and sometimes it is convenient to use
different values. Zero curvature representations

W,=T(DHW-WU, W, -2PW,=T(Y)W-WY, (33)

for the lattice equations (19), (20) cannot be defined in Lie-algebraic terms. However, the transition U +
adU=U, Y — adY = Y allows one to obtain the matrix realization of the representations (32) as well and
then to find a matrix W which, of course, is not of ad K(J). The problem of the realization in matrices of a
minimal size is reduced to the studying matrix representations of the Lie algebra K(J).

Let us remind the definition of the superstructure Lie algebra K(J) or the Tits—-Cantor-Koecher construction
(see e.g. Ref. [11] for details). At first, one should define the structure Lie algebra strl J of operators J — J
spanned over the multiplication operators L, (18) and the identity operator /. The commutator in this algebra
is the usual operator commutator [A, B] = AB — BA. Note that the identity (4) is equivalent to the relation

[Laps Lea] = L{cba}d - Lc{bad} ’ (34)

which shows that the commutator does not lead out of strl J. The superstructure Lie algebra is defined as the
direct sum K(J) = J @ strl J @ J with the commutator

[(a,M,b),(c,N.d)] = (M(c) —N(a), [M,N] + Laa — Lep, oM(d) —oN(D)),
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where the operator o : strl J — strl J acts as follows,
ol =-1, oLagp=—Lp,.

The following statement is proved immediately.

Theorem 2. The Jordan DNLS equation (6) and its master-symmetry (22) admit the zero curvature represen-
tations (32) with U, VY € K(J) which are of the form

U=2Au,-ALv), Y=cU+ AQ2nu, —(2n— 1AL (2n—2)v) ,
V= —2A%U + 2A(u, + 2{uvu}, —2ALy,, vy + 2{vuv}) .
Remark. In Ref. [2], multi-component analogs of the NLS equation of the form
U = Uy, — {uvu}, Uy = —vyy + {our}, wwvel, (35)

have been proved to be integrable if J is some JTS. These integrable systems also admit the representation of
(32) which, as in the case of (6), can be realized in terms of K(J),

U= (u,ALv), V=AU~ (uy, —Ly, —Uyx).

Before Ref. [2], integrable systems of the form (35) were considered in Ref. [12] as systems possessing an
L-A pair associated with Hermitian symmetric spaces.

In order to obtain the adjoint representation in K(J), we have to write down the operator ad(a, M, b) for an
arbitrary element of K(J). Introduce the following operators,

iposttl] — J,  ip(M) =M(a); ly:J—suld, ,(b)=Lg.
It is easy to verify that
iglp = Pyp iqgolpy=—Lap. (36)

In terms of these operators, ad(a, M, b) is written as the block matrix

M —i, 0
ad(a,M,b)=1{ ol, adM [, R
0 —ibO' oM

where ad M denotes the adjoint representation in strl J. R
Now we can find the matrix W of (33), assuming that U =ad U, Y = ad¥, ie.

M -y, O o —(2n—=1)Al —2ni, 0
O=2a ol. 0 L |, Y=cU+arl 2n-2)al, 0 2nl, . (37)
0 —i.o Al 0 —-(2n—2)i,oc (2n—1)Al

The answer is simple enough, however it only exists for the JTS with the invertible P,.

Theorem 3. Let J be the JTS with the invertible operator P,, then the multi-component Volterra equation (19)
and its master symmetry (20) admit the representations (33) with matrices U,Y given by the formulae (37)
and matrix W of the form
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—2XP70 2PN, o
W= | 2i0lP]! g 0
I 0 0

(it is assumed that u = u,, v = u,_,).

The upper bound for the size of matrices in the zero curvature representations (33) is (d + 1)? where
d = dim J. For a concrete JTS, it is possible to find more compact representations. For instance, the vector
Volterra lattice (31) of Example 3 and its master symmetry admit representations (14) with u = —1 in
(d +2) x (d +2) matrices,

A ut 0 =203 (uyu)  —2aut J{u,u) 1
U=2A —v 0 -u}, W= 2xu/{u,u I 01,
o
0 v =A 1 0 0
(2n—1)A 2nut 0
Y=cU+A| —(2n—-2)v 0 —2nu ,
0 (2n-2)v" —(2n—1)A

where u is the column vector, and 7 is the d x d unit matrix. For the corresponding vector DNLS equation and
its master symmetry, the matrix V is of the form

2A(u, v) ul +2{ucu}* 0
V=22U+2A{ v, = 2{our} 2A(uv™ —out) —u, — 2{uvu}
0 —vy + 2{vuo}t  —2Mu,v)

The zero curvature representations (14) with u = 2 for the continuous vector equations of Example 2 are given
by the matrices (cf. with the scalar case)

_ Aot a2 200wl 4 2w, )t
U—ZA(_U 41)’ V—4AU+2'\(UX_2u,U)U —2A0u* ’
_ (2n—1)A nut

5. Hamiltonian structures

In this section we assume that J is the JTS with invertible elements, and the bilinear form (a,b) = tr Ly,
is symmetric and nondegenerate. Note that for the vector examples (27), (29), the bilinear form coincides
with the standard scalar product, and no confusion happens. For Examples 1 and 2, one correspondingly has
{a,b) =trab and (a, b) = trab*. The bilinear form is symmetric and nondegenerate in all these examples. The
invariance property

(a,{bcd}) = ({abc}, d)

is a consequence of formula (34).
The Poisson bracket is defined in the case of the lattices (19) and (20) in the following way,

8fn Ogn
[FG] = Zn: <£;sKn%> )
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the definition of the formal variational derivative and Hamiltonian lattice remains formally the same as in the
scalar case, but the partial derivative df/du now must be understood as the gradient. The Jordan analog of the
operator (15) is quite natural,

K,=P, (T—-T HP, .

As in the scalar case, K, becomes constant in the variables z, = u, 1 and that is why it is easy to see that
K, is Hamiltonian. This Poisson structure is highly degenerate: using Lemma 1, one easily can prove that the

density c,u; ' (with ¢,42 = ¢y) is its annihilator.

Theorem 4. The Jordan Volterra equation (19) and its master symmetry (20) are Hamiltonian, and correspond-
ing Hamiltonian densities are p, = %log det(P,,), pn = [(c+n)/2] logdet(P,,).

Proof. Tt is sufficient to prove that dp/du = u ! for p= %log det(P,), where 3/, denotes gradient

d
<%’5,U> = ng(u + &) le=0 .

We have for any g,

d
2 (—9£,a = — logdet( Pyroa) =0 = 2tr( P, Puy) .
ou de

For arbitrary b,
P Pau(b) = P ({{uP (a)u}bu}) = P, ({u{P; " (a)ub}u}) = {P; (a)ub} = Lp-1(,, (D),

and we obtain

<g§,a> = (P~ (a)ou) = ().
The lattices (23) and (24) also can be written in the Hamiltonian form,

8pn

8p
Pnz = PP"E— ’ gn,: = — P, -
n

Pa 'SE *
The corresponding Hamiltonian densities are
2p, = logdet Py, _g,,, —logdet Py, , 20, = (c+2n+ 1) logdet Py, g, — (c+2n) logdet P, .

Using the master symmetries and the formula (16), we can construct higher conserved densities for the Jordan
lattices (19) and (23) if we start from the above Hamiltonian densities p,. The simplest higher conservation

laws read

(s s )z = (T = 1) {ttnthn—1ttn}s tnir} »

(s {ttmsrtims bt }) -+ 2 (s {ttsrtnttnin 1)) x = (T = 1) ({tntn-ran b {tenr (g + Un) Uit })
in the case of (19), and

(P + Ports (@n— @ns)) ™o = (T = D{{Pa(@n-1 = 4n) ™' Pa}s (4 = gne) ")
in the case of (23).
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6. Conclusion

There are only a few papers devoted to the construction and investigation of multi-component integrable
lattices, using the Jordan algebraic structures [7,8,25]. Multi-component lattices generalised in those papers
the Toda model and an integrable approximation of the NLS equation. Here we have succeeded in finding the
Jordan analogs of the Volterra equation (5). Their modifications (23) are lattice equations of the Toda type.
Also, we have considered here the known multi-component DNLS equations (6) (see Ref. [14]).

The master symmetries (20), (22), (24) are, as far as we know, the first examples of multi-component
master symmetries. They are local and, for this reason, give an easy way to construct higher symmetries
and conservation laws. On the other hand, they exemplify local integrable multi-component equations with an
essential dependence on the spatial variable.

An L-A pair has been written down for the main of equations we consider, their master symmetries, and
even for the Jordan NLS equation. If L-A pairs for continuous equations in terms of the superstructure Lie
algebra of the JTS arose before [24], L-A pairs for discrete ones in terms of the adjoint representation of the
superstructure Lie algebra have appeared for the first time.

Hamiltonian structures, higher symmetries, and conservation laws have been given in the general algebraic
form as well. Nevertheless, one always can write down vector and matrix examples of equations, higher and
master symmetries, etc., and obtain matrix realization of L-A pairs, and we have done this in most interesting
cases.

Lattices of the Toda type similar to (11) can be useful for studying integrable many-body models [26]. We
hope the multi-component lattice equations (23), (24) will be of interest from this point of view as well.
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