
Theoretical and Mathematical Physics, Vol. 125, No. 3, 2000

SYMMETRY APPROACH TO THE INTEGRABILITY PROBLEM1

V. É. Adler,2 A. B. Shabat,3 and R. I. Yamilov2

We review the results of the twenty-year development of the symmetry approach to classifying integrable
models in mathematical physics. The generalized Toda chains and the related equations of the nonlinear
Schrödinger type, discrete transformations, and hyperbolic systems are central in this approach. Moreover,
we consider equations of the Painlevé type, master symmetries, and the problem of integrability criteria
for (2+1)-dimensional models. We present the list of canonical forms for (1+1)-dimensional integrable
systems. We elaborate the effective tests for integrability and the algorithms for reduction to the canonical
form.
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1. Introduction

Classifying integrable equations, we obtain key equations of a given type, whose list is itself interesting.
When considering a list, one often wants to change the integrability definition to a “more reliable” or “more
elementary” one, but this results in an additional verification, not a change, of the list. We discuss this
using the example of the key solitonic equations.

We begin with the known list of six second-order ordinary differential equations (ODEs) that satisfy
the Painlevé test,

y′′ = a(x, y)y′2 + b(x, y)y′ + c(x, y).

First, we refer to this list in connection with the discrete symmetry theory developed in [1–3] for the spectral
problem

Ψxx = U(x, λ)Ψ (1.1)

with the potential U of the second order in λ. This theory, whose simplest variant results in the Toda chain,
allows reformulating Eqs. (P3)–(P6) (see below) as the conditions for the invariance of the spectral problem
w.r.t. the chain of Darboux transformations (Sec. 3). Second, we demonstrate that Eqs. (P1)–(P5) can
be considered as the stationary equations for the master symmetries of the Korteweg–de Vries (KdV) and
nonlinear Schrödinger (NS) equations (Sec. 2). We recall that the equations determining the symmetries
and master symmetries of the evolution equation ut = G can be formally written in the form

[Dt′ , Dt] = 0,
[
[Dτ , Dt], Dt

]
= 0, (1.2)

where the evolutionary differentiation Dt pertains to the equation itself and Dt′ and Dτ to its symmetry
and master symmetry. The corresponding infinitesimal symmetries of spectral problem (1.1) are determined
by the common formula

Dτ (Ψ) = A(x, λ)Ψx +B(x, λ)Ψ,

where Dτ = ∂τ +ω(λ)∂λ and A(x, λ) = a1(x)λ+a0(x). In other words, we obtain the KdV or NS equations
for ω = 0 (the isospectral case) and their master symmetries for ω �= 0 (cf. [4–7]).

Master symmetries for many equations (e.g., for the KdV, NS, and Toda chain equations) are nonlocal.
However, the Landau–Lifshitz model, which is a universal equation in the NS class, has a local master
symmetry [8]. In Sec. 6, we present the general locality criterion and find local master symmetries for the
universal equations of other classes.

In this paper, we introduce the new notion of B-integrable equations for which there exists a change
of variables relating the equation to its master symmetry. In the (1+1)-dimensional case, this is not very
useful, because it leads to Burgers-type equations. In contrast, master symmetries of (1+2)-dimensional
equations are often just trivial deformations. We observe this in Sec. 7 in the examples of Kadomtsev–
Petviashvili and Davey–Stewartson equations. This property may be useful for classifying two-dimensional
integrable equations. We note that definition (1.2) of symmetries and master symmetries does not assume
the existence of the L–A pair.

Except for infinitesimal symmetries, a useful classification criterion is discrete symmetries (or the
Bäcklund–Darboux transformations). In Secs. 4 and 5, we use this theory to classify integrable generaliza-
tions of the Toda chain. Their connection with the equations of the NS type, with hyperbolic systems of
the Pohlmeyer–Lund–Regge type, and with analogues of the Ablowitz–Ladik chain then becomes obvious.
The Sklyanin chain also appears naturally within this approach.

Twenty years of classifying integrable evolution equations with one spatial variable has resulted in
the list of integrable equations, in the formulation of effective integrability tests, and in the development
of algorithms for reducing equations to the canonical form (see [9–14]). In Secs. 4 and 5 and in the
appendices, we present the lists of integrable equations from the most interesting classes (the classes of KdV,
NS, Boussinesq, Toda, and Volterra equations) and the corresponding integrability conditions (necessary
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conditions for the existence of higher symmetries and conservation laws). We also briefly discuss the general
problem of classifying scalar evolution equations of an arbitrary order in Appendix 2.

Notation. Because equations on a lattice are important for us, we use a special notation for them,
writing u, u1, and u−1 instead of un, un+1, and un−1; for double discrete equations, we write u, u1,1, and
u0,−1 instead of um,n, um+1,n+1, and um,n−1, etc., unless it can lead to a discrepancy as it does for formulas
with an explicit dependence on a discrete variable and for summation formulas. An analogue of the total
derivative operator Dx is the shift operator Tn : un �→ un+1.

We label equations by Latin letters with indices, e.g., we use (Pi), i = 1, 2, . . . , for the Painlevé
equations and refer to the complete list as (P).

2. Stationary solutions of deformations of integrable equations

In this section, we discuss the relation between deformations4 of integrable equations and the Painlevé
equations

y′′ = 6y2 + x, (P1)

y′′ = 2y3 + xy + α, (P2)

y′′ =
(y′)2

y
− y′

x
+
1
x
(αy2 + β) + γy3 +

δ

y
, (P3)

y′′ =
(y′)2

2y
+
3
2
y3 + 4xy2 + 2(x2 − α)y +

β

y
, (P4)

y′′ =
(
1
2y
+

1
y − 1

)
(y′)2 − y′

x
+
(y − 1)2

x2

(
αy +

β

y

)
+ γ

y

x
+ δ

y(y + 1)
y − 1 , (P5)

y′′ =
1
2

(
1
y
+

1
y − 1 +

1
y − x

)
(y′)2 −

(
1
x
+

1
x− 1 +

1
y − x

)
y′ +

+
y(y − 1)(y − x)

x2(x − 1)2

(
α+ β

x

y2
+ γ

x− 1
(y − 1)2 + δ

x(x − 1)
(y − x)2

)
. (P6)

We now demonstrate that stationary solutions of the deformations of the NS equation,

ut = c1
(
x(uxx + 2u2v) + 2ux + 2uD−1

x (uv)
)
+ c2(uxx + 2u2v) + c3(xux + u) + c4xu+ c5ux,

vt = −c1
(
x(vxx + 2uv2) + 2vx + 2vD−1

x (uv)
)
− c2(vxx + 2uv2) + c3(xvx + v)− c4xv + c5vx,

(2.1)

and of the KdV equation,

qt = c1
(
x(qxxx − 6qqx) + 4qxx − 8q2 − 2qxD−1

x (q)
)
+ c2(qxxx − 6qqx) + c3(xqx + 2q) + c4, (2.2)

result in Eqs. (P1)–(P5) depending on the choice of the coefficients ci. For c1 = 0 and c2 �= 0, these defor-
mations are trivial because they can be reduced by pointwise transformations (scaling, shift, and Galileo
transformations) to the initial NS or KdV equation. Their stationary solutions then become automodel solu-
tions either of the NS equation (described by Eqs. (P2) and (P4) [15]) or of the KdV equation ((P1) and (P2)
[6, 16]). In the general case where c1 �= 0, the problem can be therefore considered the generalization of the

4We use the notation in [5, 7].
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well-known problem of enumerating automodel reductions. We then obtain additional equations (P3) and
(P5) with arbitrary parameters for the NS equation and the same equations with degenerate parameters
for the KdV equation.

These results can be uniformly formulated as follows. The compatibility condition for the linear
problems

Ψxx = U(x, λ)Ψ, Dt(Ψ) = A(x, λ)Ψx +B(x, λ)Ψ (2.3)

results in the relation 2Bx +Axx = 0 and the equation

2Dt(U) = 4UAx + 2UxA−Axxx. (2.4)

We consider a potential U of at most the second order in λ; the case U = q − λ corresponds to the
Schrödinger spectral problem,

ψxx = (q − λ)ψ, (2.5)

and the KdV hierarchy, while the case U = q − 2λz + λ2 corresponds to the spectral problem

ψxx + (z − λ)ψx + pψ = 0, (2.6)

which is gauge equivalent to the spectral Zakharov–Shabat problem, and the hierarchy related to the NS
hierarchy by a differential substitution. If the spectral parameter depends on t, i.e.,

Dt = ∂t + ω(λ)∂λ,

then Eq. (2.4) determines the deformations of these hierarchies. These deformations are classical symmetries
of the Galileo transformation and dilation and master symmetries. Deformed equations are nonlocal in
general, i.e., they can contain the integration over x.

Stationary solutions of deformations (2.4) are ODEs that admit a representation of the form

2ωUλ = 4UAx + 2UxA−Axxx. (2.7)

It is well known that stationary equations for the KdV and NS hierarchies are Liouville integrable and
determine finite-gap and solitonic solutions [17–20] because a set of first integrals

4UA2 +A2
x − 2AAxx = Λ(λ) (2.8)

appears at ω = 0, which allows reducing the order of the equation and eventually expressing the solutions
in theta functions. Some of these integrals are also preserved in the case ω �= 0 because the relation

4ωUλA = Dx(4UA2 +A2
x − 2AAxx)

implies that if λ0 is a zero of order r of the function ω(λ), then the quantities

dk

dλk
(4UA2 +A2

x − 2AAxx)|λ=λ0 , k = 0, . . . , r − 1, (2.9)

are constants. However, the number of these first integrals is insufficient to ensure Liouville integrability.
In the simplest case A = a1λ + a, we reproduce the Garnier result, presented in Table 1. There and

in what follows, the star means that a parameter can be arbitrary, and the unity means that a parameter
can be arbitrary but must be nonzero (we recall that the parameter values in Eqs. (P3) and (P5) can be
changed by scaling). Comparing the first and second rows in Table 1, we note that a potential of the second
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order in λ results in the Painlevé equations with the arbitrary parameters and a linear potential results in
degenerate cases.

Table 1
U

ω(λ) 1 λ λ2 λ(λ− λ0)

q − 2λz + λ2 (P2) (P4) (P3(∗, ∗,1,∗)) (P3(∗, ∗,∗,1))

q − λ (P1) (P34) (P3(1, ∗,0,∗)) (P5(∗, ∗,1,0))

Auxiliary linear problems for the Painlevé equations

Spectral problem (2.3) with a potential of the second order in λ therefore suffices for constructing
almost the entire list of Painlevé equations. In Fuchs representation (2.7) for Eq. (P6), the potential U and
the function A are rational in λ.

Theorem 1. If A = a1λ + a and ω = w2λ
2 + w1λ + w0, then Eq. (2.7) with a potential U of the

second order in λ results in Painlevé equations (P1)–(P5) according to Table 1.

Proof. The proof is a direct consideration of eight possible cases. We first consider a potential of the
type U = q − 2λz + λ2; Eq. (2.7) is then equivalent to the system

a′1 = w2, a′ = (za1)′ + w1,

4za′ + 2z′a− 2qa′1 − q′a1 − 2w1z + 2w0 = 0,

a′′′ = 4qa′ + 2q′a+ 4w0z

(2.10)

(here and hereafter, the prime denotes the derivative w.r.t. x). Analyzing its solutions, we obtain the
following results. The choice

ω = 1, U =
3
4
y2 +

x

4
− λy + λ2, A = 8λ+ 4y

results in Eq. (P2). In other cases, we set w0 = 0 without lack of generality; the potential U is expressed
through A by the formulas

q =
2aa′′ − (a′)2 − c1

4a2
, z =

1
a1
(a− w1x+ c2).

To decrease the order of the equation w.r.t. the function a, we use the additional first integral of form (2.9).
Choosing

ω = −λ, a1 = 1, a =
y

2
, c2 = 0,

we obtain Eq. (P4) with the arbitrary parameters α and β = 2c1. Choosing

ω = w2λ
2, a1 = w2x

and substituting a(x) = x̃y(x̃) and x = x̃2, we obtain Eq. (P3) with the arbitrary parameters α = 16c2/w2
2,

β, and δ = 4c1 and the nonzero parameter γ = 16/w2
2. Eventually, choosing

ω = λ(λ− λ0), a1 = x, a = −λ0xy

y − 1 ,

we obtain Eq. (P5) with the nonzero parameter δ = −2λ2
0 and the arbitrary parameters α, β = −c1/δ, and

γ = 4λ0c2.
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We thus obtain the first row in Table 1. Further, in the case of the Schrödinger operator, we have
U = q − λ, and Eq. (2.7) becomes equivalent to the system

2a′1 = w2, 2a′ = 2qa′1 + q′a1 + w1, a′′′ = 4qa′ + 2q′a+ 2w0. (2.11)

Equation (P1) is obtained for w2 = w1 = 0,

ω = 1, U = 2y − λ, A = 2(λ+ y).

In the other cases, taking the shift of λ into account, we can set w0 = 0, which allows integrating the last
equation of system (2.11) once more and reducing it to the form

4a′ = 2w2q + (w2x+ c)q′ + 2w1, 2aa′′ − (a′)2 = 4qa2 + c1. (2.12)

We can integrate the first equation for w2 = 0 to obtain 4a = cq + 2w1x + c2; making the linear transfor-
mations

ω = λ, U = u− x

2
− λ, A = 2λ+ u,

we obtain

u′′ =
(u′)2 − k2

2u
+ 2u2 − xu. (P34)

If w2 �= 0, then we can set w2 = 1 without lack of generality. To express q through a, we use the second
equation in system (2.12), which gives

U =
2aa′′ − (a′)2 − c1

4a2
− λ, A =

xλ

2
+ a.

We can decrease the order of the equation w.r.t. the function a by using the additional first integral of
form (2.9). For the root ω = λ2 of higher order, this function satisfies the degenerate equation (P3(1,∗,0,∗))
with the parameters α = 4 and γ = 0 and arbitrary β and δ = c1.

To reduce the equation to the canonical form in the most complex case ω = λ(λ − 1), we substitute

2a(x) = x
(
y(x2)− 1

)−1
.

The function y(x) thus determined satisfies the degenerate equation (P5(∗,∗,1,0)) with the parameters
α = −c1/2, γ = −1/2, and δ = 0.

We recall that Eq. (P34) is related to (P2) through the differential substitutions

y =
u′ ± k

2u
, α = ∓k − 1

2
,

u = y2 ± y′ +
x

2
, k = α± 1

2
,

and, analogously, Eq. (P5(∗,∗,1,0)) is related to Eq. (P3(∗,∗,1,1)) by a differential substitution [21].
To relate the obtained results to the NS and KdV equations, we consider nonstationary equation (2.4).

In a simpler case U = q − λ, it is equivalent to the system

2a1,x = w2, 2ax = 2qa1,x + qxa1 + w1,

2qt = −axxx + 4qax + 2qxa+ 2w0.
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Using the first two equations to express a and a1 through q, we obtain Eq. (2.2) up to a redefinition of the
coefficients.

In the case U = q − 2λz + λ2, Eq. (2.4) is equivalent to the system

a1,x = w2, ax = (za1)x + w1,

2zt = 4zax + 2zxa− 2qa1,x − qxa1 − 2w1z + 2w0,

2qt = −axxx + 4qax + 2qxa+ 4w0z,

where the first two equations can be integrated to obtain a1 = w2x+2k2 and a = za1+w1x+k1−w2/2 and
the last two equations become an evolution system. This system becomes a deformation of NS equation (2.1)
upon the substitution

z = −vx
2v

, q = −uv − 1
2

(
vxx
v

− 3v2
x

2v2

)
,

which relates the equation Ψxx = UΨ to the Zakharov–Shabat spectral problem(
ψ1

ψ2

)
x

=
(
−λ −v
u λ

)(
ψ1

ψ2

)
,

ψ1 = v1/2Ψ, ψ2 = −v−1/2
(
Ψx + (λ− z)Ψ

)
.

3. Periodic closings of integrable chains

3.1. The general scheme. The Darboux transformation of spectral problem (2.3) is

Ψ = AΨx +BΨ, (3.1)

where A and B are polynomials in λ. We now show that the condition for invariance w.r.t. the combination
of the Darboux transformation and the shift of the spectral parameter

U(λ) = U(λ+ ε) (3.2)

again results in the Painlevé equations and their higher analogues. To make the presentation less cum-
bersome, we only formally derive the Painlevé equations using the chain technique, which determines the
representation of a general Darboux transformation as a product of elementary transformations (with linear
A and B), in Secs. 3.2 and 3.3. In Sec. 3.4, we use several examples to investigate the spectral properties
of the obtained potentials.

The compatibility condition for (3.1) and (2.3) results in the equations

(U − U)A = 2Bx + Axx, ABx −AxB + UA2 −B2 = µ(λ), (3.3)

where µ(λ) is the integration constant. In the case U = U , we again obtain Eq. (2.8), i.e., the class of
solutions invariant w.r.t. the Darboux transformation coincides with the class of stationary solutions [1, 20].
Condition (3.2) determines the difference analogue of stationary solutions of deformations (2.7). Depending
on the power of the polynomials A and B, we obtain several known exactly solvable quantum mechanical
models and potentials expressed through the Painlevé transcendents, which can be therefore treated as the
generalizations of these models.

Example 1: Harmonic oscillator. In the case

U = q − λ, A = a1λ+ a, B = b1λ+ b, µ = m3λ
3 +m2λ

2 +m1λ+m0,
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Eqs. (3.3) and (3.2) result in the system

a2
1 = −m3, 2b′1 = −εa1, a′′ + 2b′ = −εa,

a1b
′
1 = b21 + 2a1a− a2

1q +m2,

a1b
′ + ab′1 − a′b1 = 2b1b+ a2 − 2a1aq +m1,

ab′ − a′b = b2 − a2q +m0.

(3.4)

For a1 = m3 = 0 and a �= 0, we can easily solve this system and obtain (up to linear changes of x and λ)

µ = −λ2 + λ+m0, ε = −2, A = −x, B = λ− x2

2
, q =

x2

4
− 1
2
+

m0

x2
.

Example 2: The fourth Painlevé equation. In the case a1 �= 0, we set

ε = −2, µ = −λ(λ− µ1)(λ − µ2), a1 = 1, b1 = x,

without lack of generality. System (3.4) is then reduced to Eq. (P4) in the variable y = b/a− x with the
parameters α = (µ1 + µ2)/2− 1 and β = −(µ1 − µ2)2/2. We then obtain

q = (y + x)2 − y′ − 1, 2a = q + 1− x2 − µ1 − µ2.

Example 3: The Morse potential. Given a potential U = q − 2λz + λ2 of the second order in λ,
in the simplest case

A = a, B = b1λ+ b, µ = m2λ
2 +m1λ+m0,

we obtain the system

a2 − b21 = m2, b′1 = εa, a′′ + 2b′ = −2εaz + ε2a,

ab′1 − a′b1 = 2a2z + 2bb1 +m1, ab′ − a′b = b2 − a2q +m0.
(3.5)

Hence,

q =
b2

a2
−
(
b

a

)′
+

m0

a2
, z = − b′

εa
,

where we have
a′ = σεa, b1 = σa, b = ka− σm1

4a
, σ = ±1

in the case m2 = 0 and

a′ = εb1, b′1 = εa, b21 = a2 − 1, b = ka+
1
2
(m1 − ε)b1

in the case m2 = 1.

3.2. The Schrödinger operator. In our scheme, it is convenient to represent the general Darboux
transformation as a product of elementary transformations, which results in representing the Painlevé
equations as periodic closings of integrable chains. We can show that an arbitrary Darboux transformation
for the potential U = q − λ can be factored into elementary transformations determined by formulas (3.1)
and (3.3) with A = 1 and B = f(x), which gives

q̄ = q + 2f ′, f ′ − f2 + q = µ. (3.6)
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Applying this transformation to the potential q1 = q N times, we obtain the potential

qN+1 = q1 + 2(f1 + · · ·+ fN )′,

where f ′
1 − f2

1 + q1 = µ1 and the functions fn are related by the chain of equations

f ′
n+1 + f ′

n = f2
n+1 − f2

n + νn, (3.7)

where νn = µn+1 − µn. The closing condition qN+1 = q1 + ε is equivalent to the periodicity condition

fN+1 = f1, νN+1 = ν1, ν1 + · · ·+ νN = ε, (3.8)

which transforms this chain into a finite-dimensional dynamic system.
For N = 2 and N = 3, we obtain the respective potentials in Examples 1 and 2 (Sec. 3.1). It is

instructive to repeat the calculations for N = 3 because we can then consider system (3.7), (3.8) as a
convenient form of Eq. (P4).

To reduce the system to the normal form, it is convenient to pass to the variables gn = fn+1+ fn. We
then obviously have

g′1 = g1(g2 − g3) + ν1, g′2 = g2(g3 − g1) + ν2, g′3 = g3(g1 − g2) + ν3, (3.9)

where we can set ε = −2 and g1 + g2 + g3 = −2x without lack of generality. Excluding g2 and g3, we find
that the function y = g1 satisfies Eq. (P4), where 2α = ν2 − ν3 and 2β = −ν2

1 .
Deriving the fifth Painlevé equation, which corresponds to the case N = 4, is more involved. Properties

of system (3.7), (3.8) strongly depend on the evenness of N . For even N , this system cannot be resolved
w.r.t. derivatives, and its solutions may even contain a functional arbitrariness, as in the example of the
reduction fj = −fN+1−j, which results in a nonclosed chain of length N/2. However, this is due to
occasional coincidence of the parameters νj ; in the general case, taking the constraint

2(f2
1 − f2

2 + · · · − f2
N) = ν1 − ν2 + · · · − νN = K (3.10)

into account allows obtaining a closed dynamic system (in particular, the system is always well defined for
ε �= 0). It is convenient to introduce the auxiliary variable p = fN − f1 in what follows. All the variables
fj are obviously linearly expressed through gj and p; in particular, for N = 4, we obtain the equations

g′1 = g1p+ ν1, g′2 = −g2(g2 − g1 + p) + ν2

in g1 and g2; constraint (3.10) (with the relation
∑

g = −εx taken into account) becomes

2εxp+ (2g1 + εx)(4g2 + εx) = 2K.

Excluding p and g2 from these three equations, we obtain a second-order equation in the variable g1. The
substitution

2g1(x) =
εx

y(x2)− 1
reduces it to Eq. (P5), whose parameters are expressed through the parameters νj ,

α =
ν2
1

2ε2
, β = − ν2

3

2ε2
, γ =

ν4 − ν2

4
, δ = − ε2

32
,

and are subject to the single restriction δ �= 0.

1611



✲
m

✻n

�

�
(P3)

(dP1)
�
(P3)

(dP2)
�
(P5)

(dP4)
�
(P6)

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

RTL

RTL TL

Fig. 1. Painlevé equations and periodic closings of Eqs. (3.14) and (4.11).

3.3. The operator with a second-order potential. In contrast to the Schrödinger operator, the
Dirac operator admits a pair of essentially different Darboux transformations whose iterations generate the
two-dimensional lattice in Fig. 1. We enumerate its sites such that the shifts along the axes m and n are
on an equal footing and are equivalent to the shift in the relativistic Toda lattice (RTL), while the shift in
the direction m+ n = 0 is described by the standard Toda lattice (TL). A two-dimensional lattice admits
much more variants of closing than the dressing chain does. We show that the periodic closing when one
of the sites lying in a side of the 4×4 square in Fig. 1 is identified with the central site results in Eqs. (P3)
(with both degenerate and arbitrary parameters), (P5), and (P6).

Lattice variables are related not only through differential but also purely algebraic equations, which
can be interpreted as a nonlinear superposition principle for two Darboux transformations. The condition
of periodic closing transforms these equations into difference analogues of the Painlevé equations, which are
labeled as (dP) in Fig. 1. This scheme was partially realized in [22, 23].

For convenience, we consider the spectral problem

ψ′′ + (z − λ)ψ′ + pψ = 0

or

Ψ′ = UΨ, Ψ =
(

ψ
ψ′

)
, U =

(
0 1

−p λ− z

)
in the matrix form. An arbitrary Darboux transformation can be factored into the product of elementary
transformations

Ψ−1,1 =WΨ, Ψ1,0 =MΨ,

where the matrices W and M are

W =
(
λ− z −1
p−1,1 0

)
, M =

 1
1
f

−g
λ− µ− g

f

 .

We label the transformed wave functions with indices; this is convenient for further constructing a two-
dimensional lattice in which all variables are enumerated by the pair of integers m, n. We usually use the
concise notation for shifts: u = um,n, ui,j = um+i,n+j.
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The compatibility conditions

W ′ = U−1,1W −WU, M ′ = U1,0M −MU

are equivalent to the relations

z′ = p− p−1,1, p′−1,1 = p−1,1(z − z−1,1), (3.11)

f ′ = f2 + (µ− z)f + p, g =
p

f
, z1,0 = f + g + µ, p1,0 = g′ + p. (3.12)

The first Darboux transformation is therefore explicitly given; its iterations generate the Toda chain

q′′ = eq1,−1−q − eq−q−1,1 , z = q′, p = eq1,−1−q. (3.13)

The second transformation is reduced to solving the Riccati equation for the function f = −(ψ′/ψ)
∣∣
λ=µ

.
Iterating this equation with the variables z and p excluded from formulas (3.12), we obtain the chain

f ′ = f(f + g − f−1,0 − g−1,0 + ν), g′ = f1,0g1,0 − fg, (3.14)

where ν = µ− µ−1,0, which is one representation of the relativistic Toda chain.
The commutativity of the Darboux transformations,

W1,0M =M−1,1W,

results in the constraints

fg = f0,−1g−1,0, f1,0 + g0,1 + ν1 = f + g, µ−1,1 = µ, (3.15)

which we must take into account when rewriting chain (3.14) either in the symmetric form,

f ′ = fg − f0,1g0,1, g′ = g(f0,−1 + g0,−1 − f − g − ν), (3.16)

or in the form of the doubled Volterra chain,

f ′ = f(g − g−1,1), g′ = g(f1,−1 − f). (3.17)

Chain (3.16) is generated by the Darboux transformation

Ψ0,1 = NΨ, N =W1,0M =
(
λ− µ− f −1
fg−1,1 g−1,1

)
,

whereas the equation N ′ = U0,1N −NU is equivalent to the relations

f ′ = f2 + (µ− z)f + p, g−1,1 = z − f − µ,

p0,1 = fg−1,1, z0,1 = f + g−1,1 + µ− g′−1,1.

The parameter set µ is actually one-dimensional, and we can therefore label them with a single index,
µi,j = µi+j and νi,j = νi+j .

The periodic closings fm−i,n+i = f and gm−i,n+i = g in Volterra chain (3.17) as a rule result in
solutions expressed through theta functions. However, we can organize a quasi–classical closure directly in
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Toda chain (3.13) as soon as we set qm+i,n−i = q+2εx, then obtaining the Painlevé-type equations. In the
simplest nontrivial case i = 2, we obtain the equation

u′′ = 2e2εx−u − 2eu

in the function u = q1,−1− q, which can be reduced by the substitution eu(x) = eεxy(eεx) to the degenerate
equation (P3) with the parameter values

α = −2ε−2, β = 2ε−2, γ = δ = 0.

We now consider the periodic closings

fm+i,n+2 = fm,n, gm+i,n+2 = gm,n, νm+i+2 = νm, i = −1, 0, 1, 2 (3.18)

(obviously, we can restrict the consideration to the upper side of the square in Fig. 1 because the axes m
and n are symmetric). These four cases were previously considered in different notations: i = −1, 0 in [22],
i = 0, 1 in [23], and i = 0, 2 in [2]; however, only a discrete variable dynamics was considered in [23], while
a continuous variable dynamics was considered in [2, 22].

First-order closings. It is instructive to consider the simplest closings pertaining to the 2×2 square:

fm+i,n+1 = fm,n, gm+i,n+1 = gm,n, νm+i+1 = νm, i = 0, 1.

For i = 0, Eqs. (3.16) imply f ′ = 0 and g′ = −νg, and we obtain g1,0 = g and f1,0 = f − ν from (3.15).
Analogously, using Eqs. (3.14) and (3.16) for i = 1, we have

f − g0,1 = c = const,
f

g0,1
= E, E′ = εE, ε = ν + ν1,

while Eq. (3.15) implies the equalities Tn(E) = E and Tn(c) = c + ν, whence c2k = c0 + kε and c2k+1 =
c0 + kε+ ν.

As is shown below, in all cases (3.18), the order of the ODE systems can be decreased to the second
order. As above, this can be done using a pair of first integrals, one of which does not depend on x but
depends linearly on the discrete variable while the second depends exponentially on x and is invariant w.r.t.
shifts.

Equation (P3(∗,1,1,0)). Using Eqs. (3.14), (3.16), and (3.17) in the simplest case i = −1, we obtain
the system

f ′ = fg − f0,1g0,1, g′ = g(f0,1 − f),

f ′
0,1 = f0,1(g0,1 − g), g′0,1 = g0,1(f + g − f0,1 − g0,1 − ν),

with the two first integrals

f + f0,1 + g = c = const, gg0,1f0,1 = E2, 2E′ = −νE.

Using these integrals, we can reduce the system to the equivalent system

f ′ = fg − E2

g
, g′ = g(c− g − 2f).

1614



Excluding f and substituting g(x) = Ey(E), we obtain Eq. (P3) with the parameters

α = −4cν−2, β = 8ν−2, γ = 4ν−2, δ = 0.

We now consider the evolution in the discrete time n. It is given by the system

f0,2g0,2 = f0,1g, f0,2 + g0,1 + ν = f + g,

while the quantities c and E determine the first integrals of this system as well:

Tn(c) = c− ν, Tn(E2) = E2.

Using these first integrals, we can exclude the variables f0,2 and f from the second equation in the system
and then set cn = c0 − νn and substitute g = E/u, which results in the difference equation

un+1 + un−1 =
c0 − νn

un
− x

u2
n

, (3.19)

known as the discrete equation (P1) [22, 24].

Equations (P3(∗,∗,1,1)) and (P5(∗,∗,1,0)). The closing f = f0,2 and g = g0,2 results in the system

f ′ = fg − f0,1g0,1, g′ = g(f0,1 + g0,1 − f − g − ν),

f ′
0,1 = f0,1g0,1 − fg, g′0,1 = g0,1(f + g − f0,1 − g0,1 − ν1),

with the first integrals

f + f0,1 = c, gg0,1 = E2, 2E′ = −εE, ε = ν + ν1.

Using these integrals to excluding the variables f0,1 and g0,1, we obtain the system

f ′ = fg +
E2(f − c)

g
, g′ = E2 − (2f + ν − c)g − g2, (3.20)

which can be reduced to Eq. (P3) by the substitution g(x) = Ey(E), while

α = 4(ν − c)ε−2, β = 4(c− ν1)ε−2, γ = 4ε−2, δ = −4ε−2.

Another substitution, f(x)g(x) = E2/
(
1 − y(E2)

)
, reduces system (3.20) to the degenerate equation (P5)

with the parameters

α =
c2

2ε2
, β = − ν2

1

2ε2
, γ = − 2

ε2
, δ = 0.

Because Eqs. (P3(∗,∗,1,1)) and (P5(∗,∗,1,0)) are related to the same system, we can obtain the transforma-
tion that connects these equations [21].

The evolution in the discrete time m is determined by the system

f1,0g1,0 = f1,1g, f1,0 + g0,1 + ν1 = f + g,

f1,1g1,1 = f1,0g0,1, f1,1 + g + ν = f0,1 + g0,1,

by virtue of which,
Tm(c) = c− ε, Tm(E2) = E2.

Using the first equation of the system and the relation f1,0 + f1,1 = c − ε to exclude the variables f and
substituting as in the continuous case, we obtain the discrete equation (P2) [22, 24] in the form

cm+1ym+1

ym+1 + ym
+

cmym
ym + ym−1

= x

(
1
ym

− ym

)
+ cm − ν, cm = c0 − εm. (3.21)
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Equation (P5(∗,∗,∗,1)). The closing f = f1,2 and g = g1,2 results in the equations

f ′ = fg − f0,1g0,1, g′ = g(f1,1 + g1,1 − f − g − ν),

f ′
1,1 = f1,1g1,1 − fg, g′0,1 = g0,1(f + g − f0,1 − g0,1 − ν1),

where the “unnecessary” variables f0,1, g1,1, f1,0, and g0,2 are excluded using constraints (3.15),

f1,1g1,1 = f1,0g0,1, f1,0 + g0,1 + ν1 = f + g,

fg = f1,1g0,2, f1,1 + g0,2 + ν2 = f0,1 + g0,1.

The variables f1,1 and g0,1 can be excluded using the first integrals

f + f1,1 − g0,1 = c, gg0,1 = Ef1,1, E′ = −εE, ε = ν + ν1 + ν2,

which results in the system

f ′ = (g − E)f − E

g − E
(c− f)(c− f + ν2),

g′ = −2fg − g2 + g(E + c− ν) + (c− ν1)E.

Excluding f and substituting g(x) = Ey(E)/
(
y(E)− 1

)
, we obtain Eq. (P5) with the parameters

α =
ν2
2

2ε2
, β = − (c− ν1)2

2ε2
, γ =

c− ν

ε2
, δ = − 1

2ε2
.

The discrete evolution is governed by the system

g0,2 =
fg

f1,1
, f0,1 = f1,1 + g0,2 − g0,1 + ν2,

while
Tn(E) = E, Tn(c) = c+ ν2, T 2

n(c) = c+ ν2 + ν, T 3
n(c) = c+ ε,

whence

cn = c0 + εk +


0, n = 3k,
ν2, n = 3k + 1,
ν + ν2, n = 3k + 2.

Using the first integrals to exclude the variables f , we obtain

gn+1 + gn−1 = E

(
1 +

cn−1

gn

)
for the first equation in the system (the index m can be dropped). The form of this equation is similar
to equation (dP1), but the former is distinguished because its set of the parameters cn comprises three
arithmetic progressions, not just one. This equation was first obtained in [23], where its equivalence to
Eq. (dP4) was also found.
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Equation (P6). In the most advanced case f = f2,2 and g = g2,2, we can conveniently write the
composition of Darboux transformations (3.14) and (3.16) in the form

f ′ − g′0,1 = fg − f1,1g1,1,
f ′
1,0

f1,0
−

g′1,1
g1,1

= f1,1 + g1,1 − f − g + ν1 + ν2,

f1,0 + g0,1 + ν1 = f + g, f1,1g1,1 = f1,0g0,1,

which suggests introducing the new variables u = f1,0/g1,1 and v = f − g0,1. Using the first integrals

v + v1,1 = c, uu1,1 = E, E′ = εE, ε = ν + ν1 + ν2 + ν3

and using the formulas

f =
1

E − 1(u1,1v1,1 + Ev), g =
1

E − 1
(
u(v1,1 − ν3) + v − ν1

)
to exclude the variables f and g, we obtain the system

u′ =
1

E − 1
(
(2v − c)(u− 1)(u− E) + ν3u

2 + (ν1 + ν2)Eu − (ν2 + ν3)u− ν1E
)
,

v′ =
1

E − 1uv(c− ν3 − v) +
E

u(E − 1)(v − c)(v − ν1),

which can be reduced to Eq. (P6) by substituting u(x) = y(E) with arbitrary values of the parameters,

α =
(ν3 − c)2

2ε2
, β = − (ν1 − c)2

2ε2
, γ =

ν2
2

2ε2
, δ =

1
2
− ν2

2ε2
.

The evolution in n is described by the formulas

Tn(E) = E, Tn(c) = c+ ν + ν2, T 2
n(c) = c+ ε,

u0,1 =
uv + E(c− v)
uv + c− v

, v0,1 = ν2 +
u− 1

(E − 1)u
(
uv + E(c− v)

)
.

Excluding v and setting u = y + 1 and E = X + 1, we obtain the difference equation

cn
X − yn+1

yn+1yn +X
+ cn−1

X − yn−1

yn−1yn +X
= ν1 + cn−1,

where c2k = c0 + εk and c2k+1 = c0 + εk + ν + ν2.

3.4. Spectral properties.

Arithmetic progression. We now discuss the spectral properties of potentials related to the Painlevé
transcendents [1, 25]. All examples in Sec. 3.3 are algebraically similar: a quasi-periodic closing of the chain
of Darboux transformations results in an operator algebra that generalizes the creation and annihilation
algebra of the harmonic oscillator. This means that in terms of the Painlevé transcendents, we can explicitly
construct wave functions ψ for a discrete set of values of λn comprising several arithmetic progressions

µ1 +mε, . . . , µN +mε, m ∈ Z,

in the corresponding spectral problem. In the case of the Schrödinger operator for example, we obtain the
sequence of operators

Ln = un −D2
x, An = fn −Dx, A+

n = fn +Dx,
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Fig. 2. The beginning of constructing eigenfunctions.

related by the chain of Darboux transformations

Ln = A+
nAn + µn �−→ Ln+1 = AnA

+
n + µn = A+

n+1An+1 + µn+1.

The function fn then satisfies chain (3.7), and the wave functions ϕn,k of the potentials un, which correspond
to the values λ = βk, are constructed recursively,

ϕk,k = exp
(∫

fk dx

)
, ϕn,k = A+

nϕn+1,k, n < k. (3.22)

We impose the periodicity condition, apply the operators A+
n , and, after N steps, obtain a solution of

the equation with the potential shifted by ε. As a result, we obtain a spectrum comprising N arithmetic
progressions. For N = 3, this process is schematically depicted in Fig. 2. Therefore, as in the harmonic
oscillator case (N = 1), we construct eigenfunctions of the operator Ln using mutually conjugate creation
and annihilation operators of the Nth order,

Â+
n = A+

n · · ·A+
n+N−1, Ân = An+N−1 · · ·An.

The following operator relations are an analogue of the harmonic oscillator algebra:

Â+
n Ân = P (Ln), ÂnÂ

+
n = P (Ln + ε), P (λ) = (λ− µn) · · · (λ− µn+N−1),

[Ln, Â+
n ] = εÂ+

n , [Ln, Ân] = −εÂn.

A more complicated question is what are the conditions under which functions (3.22) become eigen-
functions. We encounter analytic difficulties here: we must select solutions of the Painlevé equation that
are regular in the given interval and have the proper asymptotic behavior. For example, we showed above
that solutions of system (3.7), (3.8) for N = 3, 4 are expressed through the respective fourth and fifth
Painlevé transcendents. Little is known about solutions with N ≥ 5, although they presumably have the
Painlevé property, i.e., their general solution has no movable essential singularities. Qualitative information
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about the solution behavior at infinity and about singularities on the real axis is crucial for the spectral
theory. The relation 2

∑
fn = εx implies that functions fn grow linearly “in the average,” which suggests

the asymptotic formula

fn = − ε

2N
x+O(1), un =

ε2

4N2
x2 +O(x), x → ±∞.

Moreover, if the functions fn are regular for real x, then the functions ϕn,k constructed by formulas (3.22)
are eigenfunctions. To justify the construction, we must verify these a priori assumptions about the solu-
tion. Here, we mostly rely on numerical simulations, which demonstrate that solutions with the required
properties exist in a large domain of the space of parameters and initial conditions of the system with odd
N . Potentials for even N have a singularity at zero, and we must pose the problem on the half-axis (see
Fig. 3). The number of arithmetic progressions constituting the spectrum becomes less than N .

Automodel reduction. The above ideas were first applied to a slightly different variant of quasi-periodic
closing in [26], where instead of the spectral shift λ → λ+ ε, the dilation

ψ̂(x, λ) = ψ(qx, qkλ), 0 < q < 1,

which is also admitted by spectral problem (2.3), was used, where k = 1 for the second-order potential and
k = 2 for the linear potential. Already in the simplest case of chain (3.7) closed on the first step, we obtain
the differential equation

f ′ + f̂ ′ = f2 − f̂2 − 1 + q2, f̂(x) = qf(qx),

with the shifted argument. Its general solution cannot be expressed through elementary nor known special
functions. This equation, however, has the Painlevé property [27–29] and admits a countable family of
rational solutions [29]. For this, we construct a solution fixing the initial value f(0), after which the Taylor
coefficients are unambiguously determined and the Taylor series converges in a circle |x| < a. The function
f̂(x) = qf(qx) is then determined in a larger circle |x| < a/q, and we can hence define f(x) in this circle
as the solution of the Riccati equation. Repeating this process, we consequently define the function f in
the whole complex plane. When solving the Riccati equation, singularities may be accumulated, but these
singularities can only be poles.

Numerical experiment shows that for
∣∣f(0)∣∣ < 1, real solutions are determined in the whole axis and

have the asymptotic behavior

f ′(x) = O

(
1
x3

)
, f(x) = ∓1 +O

(
1
x2

)
, x → ±∞.

Character graphs for the function f(x) are depicted in Fig. 3. Following the scheme in the previous section,
we can show that the potentials u(x) corresponding to such solutions are reflectionless and have an infinite
set of eigenvalues λj = −q2j , j = 1, 2, . . . , comprising a convergent geometric progression. For the operator

L = u−D2
x = Lf − 1, Lf = (f +Dx)(f −Dx),

we have the inequality

〈Lfϕ,ϕ〉 =
∫
(fϕ− ϕ′)2 dx ≥ 0,

and the ground state for Lf is determined by the function ϕ = exp
(∫

f dx
)
.

To conclude our examples, we formulate the following plausible statement.

The principle of quasi-periodic closing. The discrete spectrum of problem (2.3) invariant w.r.t.
the composition of a Darboux transformation and a classical symmetry can be found explicitly.
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Fig. 3. (Continued on the following page.)
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N = 4

N = 5

N = 6

Fig. 3. Potentials u1: the initial conditions for odd N are fj(0) = 0, which ensures that the potential

is even.
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4. Integrable Lagrangians

We now describe a wide class of systems of equations that is interesting from the applications standpoint
(see [10, 30]),

ut = A(u)uxx +B(u,ux), detA �= 0, u = (u1, u2), (4.1)

which has local higher conservation laws of the form

gt = fx. (4.2)

The term local means that the density g and the current f of conservation law (4.2) are functions of a
finite number of variables u,ux,uxx, . . . . We call necessary conditions for the existence of local higher
conservation laws the integrability conditions. The first two of these conditions are that trA = 0 and that
the function (detA)−1/4 is the density of the conservation law. With these conditions, we can prove that
with the change of variables

t′ = ct, u′ = u′(u) =
(
u′

1(u1, u2), u′
2(u1, u2)

)
, dx′ = g dx, g = (detA)−1/4,

we can reduce system (4.1) to the form

iut = uxx + F (u, v, ux, vx), ivt = −vxx +G(u, v, ux, vx). (4.3)

The simplest integrability conditions for system (4.3) are formulated in Appendix 2. In particular, for a
nonlinear nondecomposable system of the form

iut = uxx + F (u, v), ivt = −vxx +G(u, v),

the integrability conditions are satisfied in two cases: for the NS equation

iut = uxx + 2u2v, −ivt = vxx + 2v2u

and for the Boussinesq equation

iut = uxx + (u+ v)2, −ivt = vxx + (u+ v)2.

The list of equations (4.1) satisfying the integrability conditions can be segregated into two parts. We are
interested in the part that is related to auxiliary spectral problem (2.3) of the second order (the NS-type
equation). The second part of the list pertains to spectral problems of the third order (the class of the
Boussinesq equation). It contains interesting examples (see the appendices), but considering it is beyond
the scope of our theory, which is a more elementary alternative approach that does not use the integrability
conditions.

4.1. Systems of NS-type equations. We now write the key integrable systems of the NS-type
equations: the NS equation itself, the Heisenberg magnet, and the Landau–Lifshitz model. We first discuss
the divergent systems

ipt = Dx
(
px + F (p, z)

)
, izt = Dx

(
−zx +G(p, z)

)
,
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for which we have the third conservation law with the density pz. We then have Fp = Gz , and with the
redefinition z = qx, the system becomes Lagrangian with the Lagrange function

L = L0 + V (p, qx), L0 = iqpt + pxqx, F = Vz , G = Vp. (4.4)

All integrable divergent systems (see [10]) correspond to polynomials of the second degree in p and z,

V (p, z) = εp2z2 + αpz2 + βz2 + γp2z + δp2 (4.5)

(this is an arbitrary polynomial up to the terms pz, p, z, and 1, which we neglect). The corresponding
systems are

ipt = pxx +
(
2P (p)z + γp2

)
x
, izt = −zxx +

(
2Q(z)p+ αz2

)
x
, (4.6)

P (p) = εp2 + αp+ β, Q(z) = εz2 + γz + δ. (4.7)

In particular, all of them have local master symmetries (see Sec. 6.2). Up to linear transformations of p
and z and Galileo transformations, we have three cases:

V = εp2z2 + βz2 + δp2, V = pz2 + p2z, V = pz2 + p2.

We can obtain the famous NS-type systems (the NS equation and the Heisenberg magnet) from sys-
tem (4.6) by a change of variables of the form

p = h(u− v), z = vx. (4.8)

That the system in u and v has form (4.1) with A = diag(−i, i) automatically leads to the equation
h′ = P (h), which gives

iut = uxx + 2Q(ux)h(u − v) + αu2
x, ivt = −vxx + 2Q(vx)h(u − v) + αv2

x. (4.9)

Modifications of these systems of equations are obtained from (4.6) by the differential substitution

p = f(u− v)ux + g(u− v), z = vx. (4.10)

The form of functions f and g stems from the same condition as in (4.8), which in this case results in the
ODEs

f ′ = 2εfg + αf − γf2, g′ = P (g)− δf2, (4.11)

which admit the first integral

P (g)− γfg + δf2 = const ·f (4.12)

and can be solved in elementary functions.
The system in the variables u and v is

iut = uxx + 2Q(ux)
(
f(u− v)vx + g(u− v)

)
+ αu2

x,

ivt = −vxx + 2Q(vx)
(
f(u− v)ux + g(u− v)

)
+ αv2

x.
(4.13)
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System (4.13) can obviously be reduced to (4.9) by the transformation

ũ = v + h−1(fux + g), ṽ = v.

This transformation becomes trivial for f = 0 because the function g satisfies the same equation that the
function h does, i.e., system (4.13) becomes (4.9).

System (4.13) is also invariant w.r.t. the involution

u ↔ −v, x ↔ −x, t ↔ −t,

and there hence exists the additional transformation

p = f(u− v)vx + g(u− v), q = u,

which relates (4.6) and (4.13).
In addition to (4.4) and (4.5), we consider the Lagrangian

L = L0 + p2
(
q2
x − R(q)

)
+
1
2
pR′(q)− 1

12
R′′(q), RV = 0, (4.14)

which plays a special role in our classification. As in the previous case, this Lagrangian admits two param-
eterizations, which reduce the corresponding dynamic system to form (4.1) with A = diag(−i, i).

The first parameterization is p = (v − u)−1, q = v (cf. (4.8)) and leads to the system

iut = uxx + 2
R(u)− u2

x

u− v
− 1
2
R′(u), ivt = −vxx + 2

R(v)− v2
x

u− v
+
1
2
R′(v), (4.15)

where R is an arbitrary fourth-order polynomial.
The second parameterization is p = (rv − ux)/2r, q = v, where r = r(u, v) is a symmetric polynomial

of the second order in u and v such that R(u) is its discriminant,

R(u) = r2
v − 2rrvv , r(u, v) = r(v, u), ruuu = 0. (4.16)

This parameterization results in the system of equations

iut = uxx +
(
R(u)− u2

x

)vx + ru
r

− 1
2
R′(u),

ivt = −vxx +
(
R(v)− v2

x

)ux − rv
r

+
1
2
R′(v).

(4.17)

The transformation that reduces (4.17) to (4.15) is

ũ = v +
2r

ux − rv
, ṽ = v.

We now present several examples. System (4.9), which corresponds to the Lagrangian

L = L0 + pq2
x ± p2,

becomes the NS equation after the substitution ũ = eu, ṽ = e−v and the reduction ũ = ψ, ṽ = ψ̄:

iψt = ψxx ± 2|ψ|2ψ.
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Analogously, the Lagrangian L = L0 + p2q2
x results in the system of equations

iut = uxx − 2
u2
x

u− v
, ivt = −vxx − 2

v2
x

u− v
,

which is related to the complexification of the Heisenberg model,

st = [s, sxx], s ∈ C
3, 〈s, s〉 = 1,

upon the substitution

s = S(u, v) =
1

u− v
(1− uv, i+ iuv, u+ v) (4.18)

(for v = −1/ū, this substitution coincides with the stereographic projection). The same substitution relates
system (4.15) to the Landau–Lifshitz equation,

st = [s, sxx + Js], s ∈ C
3, 〈s, s〉 = 1, (4.19)

where J is a symmetric matrix with complex entities in general. The polynomials R and r are determined
through the matrix J ,

R(u) =
1
4
(u− v)4〈sv, Jsv〉, r(u, v) =

i

4
(u − v)2〈s,Ks〉, (4.20)

where s = S(u, v) and the matrices J and K are related by

J = CI − det(K)K−1, (4.21)

where C is a constant. We call (4.15) the Landau–Lifshitz system and (4.17) the modified Landau–Lifshitz
system. These systems of equations are the most general among systems of the NS type in the sense that
other systems can be obtained from these two similarly to how all the Painlevé equations can be obtained
from (P6). However, in contrast to the Painlevé list, we use both limiting transitions and differential
substitutions.

4.2. Generalizing the Toda chain. We now discuss the list of integrable chains corresponding to
the variational problem for the functional

L =
∫

dx
∑
n

L(zn, qn+1, qn), zn ≡ qn,x. (4.22)

The Euler–Lagrange equation is then

Dx(Lz) = Lq + T−1
n (Lq1), (4.23)

where Tn is the operator of the shift qn → qn+1. Below, we consider Lagrangians of the special form

L(z, q1, q) = L0(z, q) + zV (q1, q) + U(q1, q), (4.24)

where the first and the last terms determine the respective kinetic and potential energies and the middle
term determines the magnetic field (or gyroscopic forces). The cases V = 0 and V �= 0 are principally
different and correspond to two different parameterizations of (4.8) and (4.10) (see below).
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The selection criterion for integrable systems is the symmetry test for variational symmetries of the
form

qt = B(z1, z, z−1, q1, q, q−1). (4.25)

By virtue of the Noether theorem, a variational symmetry generates the conservation law according to the
formulas

Dt(L) ∈ ImDx + Im(Tn − 1) ⇔ B
δL

δu
∈ ImDx + Im(Tn − 1)

and is also a higher symmetry in the usual sense, i.e., an equation compatible with chain (4.23). For
example, the exponential Toda chain

qxx = eq1−q − eq−q−1 (4.26)

corresponds to the Lagrangian L = z2/2− eq1−q and has the variational symmetry

qt = eq1−q + eq−q−1 + q2
x.

We can segregate the chain systems into two classes: the shift-invariant chains and the elliptic-type
chains related to the Landau–Lifshitz model. Any Lagrangian that has a classical symmetry qτ = ψ(q) can
be reduced to the form

L = L0(z) + zV (y) + U(y), y ≡ q1 − q, (4.27)

which is invariant w.r.t. the shift qτ = 1 (corresponding to the momentum
∑
n Lzn conservation law). The

corresponding chain (4.23) is

qxx = Q(z)
(
z1f(y)− z−1f(y−1) + g(y)− g(y−1)

)
, (4.28)

where
Q(z) =

1
L′′

0(z)
, f(y) = −V ′(y), g(y) = −U ′(y).

A direct and simple calculation results in the following theorem.

Theorem 2. Lagrangians (4.27) admit the variational symmetry of the form

qt = Q(z)
(
z1f(y) + z−1f(y−1) + g(y) + g(y−1)

)
+ s(z) (4.29)

iff
f ′ = 2εfg + αf − γf2, g′ = P (g)− δf2, s = αz2,

P = εg2 + αg + β, Q = εz2 + γz + δ.
(4.30)

We note that the definitions of the functions P , Q, f , and g exactly coincide with (4.7) and (4.11).
In the important particular case f = 0 (it is convenient to identify g with the function h in (4.9)), we

obtain the class of integrable chains

qxx = Q(z)
(
h(y)− h(y−1)

)
, h′ = P (h), Q′′ = P ′′ = 2ε, (4.31)

which contains Toda chain (4.26). We call the general case (4.28), (4.30) with f �= 0 the class of the
relativistic Toda chain named after the most famous representative of this class, chain (R3) with ν = 0 in
the list at the end of this section.

As in Sec. 4.1, two Lagrangians of form (4.24), which do not admit the shift invariance, play a special
role. The kinetic energy for these Lagrangians is determined by the term

L0 =
1

2
√
R

[(√
R+ z

)
log

(√
R+ z

)
+
(√

R− z
)
log

(√
R− z

)]
,
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and the functions U and V are given by the formulas

V = 0, U = − log(q1 − q), (4.32)

Vq1 = − 1
2r(q1, q)

, U =
1
2
log r(q1, q), (4.33)

where in the both casesR(z) is a polynomial of degree not higher than four, r(u, v) is a symmetric polynomial
of the degree not higher than two in each variable, and R is its discriminant (see (4.16)). The chains
corresponding to these Lagrangians have the respective forms

qxx =
(
R(q)− z2

)( 1
q1 − q

− 1
q − q−1

)
+
1
2
R′(q), (4.34)

qxx =
(
z2 −R(q)

)(z1 + ∂qr(q1, q)
2r(q1, q)

− z−1 − ∂qr(q, q−1)
2r(q, q−1)

)
+
1
2
R′(q). (4.35)

The replacement q = ϕ(q̃), (ϕ′)2 = R(ϕ) allows setting R = 1 in the kinetic term L0. In the case
of multiple roots R (or, equivalently, the multiple reducibility of the polynomial r), this replacement and
fractional-linear transformations reduce the Lagrangian to form (4.27). In the general case, this reducibility
results in more involved chains expressed through elliptic functions. For example, chain (4.34) can be
written in terms of the Weierstrass zeta function,

qxx = (q2
x − 1)

(
ζ(q + q1) + ζ(q − q1) + ζ(q + q−1) + ζ(q − q−1)− 2ζ(q)

)
.

Statement 1. The equations

qt =
(
R(q)− z2

)( 1
q1 − q

+
1

q − q−1

)
, (4.36)

qt =
(
z2 −R(q)

)(z1 + ∂qr(q1, q)
2r(q1, q)

+
z−1 − ∂qr(q, q−1)

2r(q, q−1)

)
(4.37)

determine variational symmetries of Lagrangian (4.24) in the respective cases (4.32) and (4.33).

The functions P , Q, f , g, h, R, and r determine systems (4.9), (4.13), (4.15), and (4.17) of the NS
type, which coincide with the respective chains (4.28), (4.31), (4.34), and (4.35). This can be explained as
follows. Adding and subtracting chain (4.28) and its symmetry (4.29), we obtain system of equations (4.13)
in the functions u = q and v = q−1 (up to the replacement t → it). Analogously, chain (4.31) results
in system (4.9), and chains (4.34) and (4.35) result in the respective systems (4.15) and (4.17). Accord-
ing to the results in [31], we have this amazing fact because the lattice equations determine Bäcklund
autotransformations for systems of the NS type.

In order not to lose actual equations among the general formulas for chains and ODE systems, we
present two lists of integrable chains. We note that these lists together with chains (4.34) and (4.35) (R
and r are determined in (4.16)) completely reproduce the classification results in [32–35] excluding only one
modification of the Toda chain presented in Appendix 2. An analogous detailed list of equations of the NS
type was presented in [30]. Using the ideas in [31] on the correspondence between chain and continuous
equations and taking Lagrangians of forms (4.4) and (4.24), we can therefore unify theories that seem
absolutely different.

Lists (T) and (R) are obtained from (4.31) and (4.28) (with the determining functions (4.30)) using
rather simple pointwise transformations, in particular, linear transformations depending on x and n: q̃n =
qn+ax+ bn+ c. We recall that we use the notation z = qx and y = q1 − q; µ and ν are arbitrary constants.
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The class of the Toda chain comprises

zx = ey − ey−1 , (T1)

zx = z(y − y−1), (T2)

zx = z(ey − ey−1), (T3)

zx = (µ− z2)
(
1
y
− 1

y−1

)
, (T4)

zx = (µ− z2)(tanh y − tanh y−1). (T5)

The class of the relativistic Toda chain comprises

zx = z1e
y − z−1e

y−1 − e2y + e2y−1 , (R1)

zx = z

(
z1

y
− z−1

y−1
+ y − y−1

)
, (R2)

zx = z

(
z1

1 + µe−y
− z−1

1 + µe−y−1
+ ν(ey − ey−1)

)
, (R3)

zx = z(z + 1)
(
z1

y
− z−1

y−1

)
, (R4)

zx = z(z − µ)
(

z1

µ+ ey
− z−1

µ+ ey−1

)
, (R5)

zx = (z2 + µ)
(
z1 − y

µ+ y2
− z−1 − y−1

µ+ y2
−1

)
, (R6)

zx =
1
2
(z2 + 1− µ2)

(
z1 − sinh y
µ+ cosh y

− z−1 − sinh y−1

µ+ cosh y−1

)
. (R7)

4.3. The Hamiltonian description. We now turn from the Lagrangian to the Hamiltonian descrip-
tion of chains (4.23). The Legendre transformation for functional (4.22),

p =
∂L

∂qx
, H = pqx − L,

results in Hamiltonian systems of the form

qx =
δH

δp
, px = −δH

δq
, H = H(p, q, q1), (4.38)

where the variational derivative is
δf

δu
=
∑
k

∂

∂u
T kn (f).

The general transformation q, qx → q, p is given by a formula p = ϕ(qx, q, q1), i.e., it is an invertible
triangular differential substitution.

We first consider Lagrangians (4.24) with V �= 0. Integrable cases are selected because an additional
cancellation occurs in these cases and the Hamiltonian can be presented in the form H = A(q1, p) +
B(q, p). In actual calculations, it is convenient to improve the canonical Darboux brackets using a triangular
pointwise replacement, which transforms systems (4.38) into a more general form:

ux = r(u, v)
δH

δv
, vx = −r(u, v)

δH

δu
. (4.39)
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For instance, relativistic Toda chain (R3) with µ = 1 and ν = 0 can be conveniently written in the
polynomial form

ux = uv(u1 + u), vx = −uv(v + v−1), (4.40)

which corresponds to r = uv and H = u1v + uv. The invertible change of variables q, qx → u, v then has
the form

u = eq, v =
qx

eq1 + eq
.

We note that we do not need the Hamiltonian property to perform the inverse transition from systems
of the form

ux = f(u1, u, v), vx = g(v−1, v, u) (4.41)

with fv �= 0 to relativistic chains; this property may be even absent. Introducing the variables q = u and
z = f(u1, u, v), we find that the replacement is invertible, u = q and v = ψ(q1, q, z), and it is easy to verify
that q does satisfy a chain of the form qx = z, zx = Φ(z1, z, z−1, q1, q, q−1).

Using the list of relativistic Toda chains (R), we can thus obtain a list of integrable Hamiltonian chains.
We present them together with the Hamiltonians and structure functions r, which are chosen such that the
equations are polynomial or rational. The list of integrable Hamiltonian chains (4.39) is

ux = u1 + αu+ u2v, −vx = v−1 + αv + v2u, (H1)

r = 1, H = u1v + αuv +
1
2
u2v2;

ux = r(u1 − u+ αrv) + βrv, −vx = r(v−1 − v + αru) + βru, (H2)

r = k1uv + k2u+ k3v + k4, rurv �= 0, H = (u1 − u)v + αr + β log r;

and
ux =

2r
u1 − v

+ rv + αu+ β, −vx =
2r

v−1 − u
+ ru − αv − β, (H3)

where the polynomial r is given by one of three formulas

r = k1(u− v)2 + k2(u− v) + k3, α = 0,

r = k1uv + k2u
2 + k3v

2, β = 0,

r = k1u
2v2 + k2uv(u+ v) + k3(u2 + v2) + k4uv + k5(u+ v) + k6, α = β = 0,

and the respective Hamiltonians are

H = log r − 2 log(u1 − v)− s(u− v), s′ =
β

r
,

H = log r − 2 log(u1 − v) + s, sv =
αu

r
, su = −αv

r
,

H = log r − 2 log(u1 − v).

This list was obtained using the symmetry classification [36] before the equivalent list (the equivalence
recently became known) of the relativistic Toda chains. Some of the equations in this list were discussed
in [31, 37] (in the latter paper, zero-curvature representations and special autotransformations were obtained
for several chains).

A nonrelativistic Lagrangian has form (4.24) with V = 0, and the replacement q, qx → q, p is pointwise:
p = ϕ(qx, q). We therefore choose

u = q, v = qx
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as the Hamiltonian variables. In shift-invariant case (4.27), chain (4.39) is

r = P (v), H = G(u1 − u) + F (v), G′ = g, F ′(v) =
v

P (v)
,

and we have
r = v2 −R(u), H =

1
2
log r − log(u1 − u)

for elliptic chain (4.34).

4.4. Chains with n-dependence. Some of the chains above admit integrable n-dependent gener-
alizations. They appear if we treat a chain as Bäcklund transformation iterations at different values of
the spectral parameter. In the simplest case (H1), which corresponds to the NS equation, we can choose
the parameter ε to be an arbitrary series in n. For the rest of the Hamiltonian chains in list (H), such
generalizations were found in [37]. In the Lagrangian form, we obtain the relativistic Toda chains with
coefficient functions described by the same system (4.11) as before, but with a variable value of the first
integral (4.12) [38]:

f ′
n = 2εfngn + αfn − γf2

n, g′n = P (gn)− δf2
n,

P (gn)− γfngn + δf2
n = cnfn.

The next example is the chain of form (H3),

un,x =
2rn

un+1 − vn
+ rn,vn , −vn,x =

2rn
vn−1 − un

+ rn,un ,

where rn = rn(un, vn) as before, is a polynomial of degree not higher than two in each variable, but with
n-dependent coefficients, and is not necessarily symmetric. We let

Rn(u) = r2
n,v − 2rnrn,vv, R̃n(v) = r2

n,u − 2rnrn,uu

denote the discriminants of rn(u, v). This chain is integrable, i.e., has higher symmetries as soon as the
dependence of r on n is such that

R̃n(u) = Rn+1(u).

The algebraic problem of describing such polynomials can be easily solved assuming that at least one of
the discriminants Rn has no multiple roots, i.e., that the curve

z2 = Rn(u) = anu
4 + 4bnu3 + 6cnu2 + 4dnu+ en

is elliptic. A direct calculation shows that the relative invariants

g2,n = anen − 4bndn + 3c2n, g3,n = det

 an bn cn
bn cn dn
cn dn en


of the polynomial Rn coincide with the relative invariants R̃n. Because R̃n = Rn+1, these invariants are
n-independent, i.e., g2,n = g2 and g3,n = g3. We note that the polynomial Rn is changed under a fractional-
linear transformation exactly as the related curve. Hence (see [39]), fractional-linear transformations reduce
all the polynomials Rn to the canonical Weierstrass form. The parameter rn can then be reconstructed up
to a single arbitrary parameter,

Rn(u) = R(u) = 4u3 − g2u− g3, rn(u, v) =
1√

R(λn)
h(u, v, λn),
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where
h(u, v, w) =

(
uv + uw + vw +

g2

4

)2

− (u+ v + w)(4uvw − g3). (4.42)

The answer can be formulated in the invariant form: the polynomials R and rn are defined by formulas (4.20)
where J and K are symmetric matrices, J is n-independent, and K = Kn is determined by formula (4.21)
with arbitrary constants Cn.

In the degenerate case, we present two Heisenberg chains with a partial anisotropy for which the
n-dependence of r is

rn = −βn(un − vn)2 −
ε

βn

and
rn = γn(u2

n + v2
n) + βnunvn, γ2

n − β2
n = δ.

5. Additional lists of equations

5.1. Hyperbolic equations. At present, the problem of classifying integrable hyperbolic equations

uxy = f(x, y, u, ux, uy) (5.1)

is far from solved. The answer is known in the particular case f = f(u): the corresponding equations are
the Liouville, sine-Gordon, and Tzitzeika equations,

uxy = eu, uxy = sinu, uxy = eu + e−2u.

In the general case, the known lists are long and are constantly being extended. As an example, we note
the equation

uxy = sn(u)
√
(1− u2

x)(1 − u2
y),

recently found in [41, 42].
Substantial progress has been achieved in the problem of equations with two pseudoconstants, i.e., with

x and y integrals Dx(A) = Dy(B) = 0, where the function A depends on y, u, uy, uyy, . . . and B depends
on x, u, ux, uxx, . . . [43]. It was proved that for multicomponent exponential systems

uixy = exp
( N∑
j=1

aiu
i

)
, i = 1, . . . , N,

the requirement that 2N independent pseudoconstants exist results in Cartan matrices of semisimple Lie
algebras [44, 45].

Here, we prove that a list of two-component integrable systems of hyperbolic equations can be easily
obtained using symmetries of chains from lists (R) and (H). For example, the relativistic Toda chain

qxx =
q1,xqx

1 + eq−q1
− q−1,xqx
1 + eq−1−q

admits both the higher symmetry
qt =

q1,xqx
1 + eq−q1

+
q−1,xqx
1 + eq−1−q

in Theorem 2 and the symmetry

qy =
1
qx
(1 + eq1−q)(1 + eq−q−1).
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All chains in list (R) admit such symmetries. For Hamiltonian chains (4.41), these symmetries become

uy = f̃(u−1, u, v), ṽy = g(v1, v, u). (5.2)

Calculating the mixed derivatives uxy and vxy and using (5.2) and (4.41) to exclude the variables u1, v1,
and u−1, v−1, we can express the result through u and v and their first derivatives [31]. As a result, we
obtain a list of systems of the form

uxy = F (ux, uy, u, v), vxy = G(vx, vy, v, u).

This list is by no means complete and only provides examples of equations with the special structure of the
Bäcklund transformations (see the remark after Theorem 3 below).

The examples of integrable hyperbolic systems are

uxy = 2uvuy − u, vxy = −2uvvy − v; (h1)

uxy =
uxuy
r

+ r(1 − uy), vxy =
vxvy
r

+ r(1 + vy), r = u+ v; (h2)

uxy =
ux
r
(vuy − 1) + ruy, vxy =

vx
r
(uvy + 1)− rvy , r = uv + δ; (h3)

uxy =
vuxuy

r
− ur, vxy =

uvxvy
r

− vr, r = uv − 1; (h4)

and

uxy =
1
r

(
ruuxuy + r̃(ux + uy) + r̃vr − r̃rv

)
, vxy =

1
r
(rvvxvy − r̃(vx + vy) + r̃ur − r̃ru) , (h5)

r̃ = rruv − rurv, r(u, v) = r(v, u), ruuu = 0.

System (h4) is the well-known Pohlmeyer–Lund–Regge model (see [46, 47]), and system (h5) was
obtained in [48]. All systems from this list are Lagrangian. For example, we have

L =
∫∫

1
r
(uxvy + ruux − rvvy + r̃) dx dy

for (h5). All these systems also admit a complex reduction. For example, (h1) becomes

uxy = u− 2i|u|2uy

with the substitution ∂x → i∂x and ∂y → i∂y under the condition v = ū.
In system (h5), the function r̃, similar to r, satisfies the conditions r̃(u, v) = r̃(v, u) and r̃uuu = 0;

moreover, r̃r̃uv − r̃ur̃v = const ·r. In particular, the equations become simplified under the condition
r = const ·(u− v)2 (which corresponds to the isotropic case by virtue of (4.20)),

uxy =
2uxuy
u− v

− i(ux + uy), vxy =
2vxvy
v − u

+ i(vx + vy). (5.3)

In the following theorem, we present formulas establishing the exact correspondence between hyperbolic
systems (h) and Hamiltonian chains (H). All chains in this theorem can be reduced to the chains in list (H)
using simple pointwise replacements.
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Theorem 3. Hyperbolic systems (h1)–(h5) can be obtained by excluding the shifts from the respective

compatible pairs of chains:

ux = u1 + u2v, − vx = v−1 + v2u, (X1)

uy =
u−1

vu−1 − 1
, − vy =

v1

uv1 − 1
; (Y1)

ux = (u+ v)(u1 − u), − vx = (u + v)(v−1 − v), (X2)

uy =
u+ v

v + u−1
, − vy =

u+ v

u+ v1
; (Y2)

ux = (uv + δ)(u1 + u), − vx = (uv + δ)(v−1 + v), (X3)

uy =
u+ u−1

vu−1 − δ
, − vy =

v + v1

uv1 − δ
; (Y3)

ux± = (uv − 1)u±1, − vx± = (uv − 1)v∓1; (X±
4 )

ux± =
2r

u±1 − v
+ rv, vx± =

2r
u− v∓1

− ru. (X±
5 )

In the last two formulas, we use the concise notation x = x+ and y = x−.

The reduced chains determine the explicit Bäcklund transformations for systems (h). For example, for
system (h1), we have the transformations (u, v)→ (u, v)±1,

u1 = ux − u2v, v1 =
vy

uvy + 1
,

u−1 =
uy

vuy − 1
, v−1 = −vx − v2u,

which transform solutions of this system into new solutions. These transformations are inverse to each
other by virtue of (h1).

In conclusion, we note that as in the case of equations of form (5.1), the hierarchy of symmetries for
the systems from list (X,Y) can be segregated into two parts, each containing only x or y derivatives and
comprising systems of the NS type and their higher symmetries. This hierarchy can be obtained by excluding
shifts from the higher symmetries of chains (4.41) and (5.2). For example, the simplest representatives of
this hierarchy for Eq. (h1) are

ut1 = uxx − 2(u2vx + u3v2), − vt1 = vxx + 2(v2ux − v3u2),

ut−1 = uyy + 2u2
yvy, − vt−1 = vyy − 2v2

yuy.

5.2. The Sklyanin chain and one more class of integrable equations on a lattice. Because the
pairs of chains from Theorem 3 belong to the same hierarchy of integrable equations, a linear combination
of the corresponding currents, Dt = aDx + bDy, is also integrable. Obviously, it is Hamiltonian with the
same structure (4.39) and the Hamiltonian aH+ + bH−. We thus obtain examples of systems of the type

ut = F (u1, u−1, u, v), vt = G(v1, v−1, v, u). (5.4)

These chains have a form that is more symmetric w.r.t. the shifts, and they can therefore be interesting as
integrable approximations of the NS-type equations.

In particular, the Ablowitz–Ladik [49] chain,

ut = u1 − 2u+ u−1 − uv(u1 + u−1),

−vt = v1 − 2v + v−1 − uv(v1 + v−1),
(5.5)

1633



which appears as a linear combination Dt = −Dx−Dy+2Dz of Eqs. (X±
4 ) and an obvious dilation uz = u,

vz = −v, belongs to this class. Another linear combination Dt = Dx −Dy results in the chain

ut = (uv − 1)(u1 − u−1), vt = (uv − 1)(v1 − v−1),

which can be reduced to the modified Volterra equation

ut = (u2 − 1)(u1 − u−1)

by setting v = u. Therefore, a single pair of chains (X±
4 ) generates as many as three known equations:

Pohlmeyer–Lund–Regge equation (h4) and the Ablowitz–Ladik and Volterra chains.
We now consider an example related to the pair of chains (X±

5 ), which are governed by the Poisson
bracket (we hereafter indicate only nonzero brackets)

{un, vn} = 2r(un, vn) (5.6)

and by the Hamiltonians in involution

H± =
∑
n

(
1
2
log r(un, vn)− log(un±1 − vn)

)
.

This is an interesting example because it is closely connected (see [48]) with the known Sklyanin chain [50].
We recall that this chain is determined by the Poisson brackets

{σan, σ0
n} = (Jb − Jc)σbnσ

c
n, {σan, σbn} = −σ0

nσ
c
n (5.7)

(the indices a, b, and c indicate a cyclic permutation of 1, 2, and 3) and by the Hamiltonian

H =
∑
n

log
(
σ0
nσ

0
n+1 +

3∑
a=1

(
c1
c0

− Ja

)
σanσ

a
n+1

)
,

where c0 and c1 are the values of the Casimir functions (which coincide at all lattice sites),

c0 =
3∑
a=1

(σan)
2, c1 = (σ0

n)
2 +

3∑
a=1

Ja(σan)
2.

Landau–Lifshitz equation (4.19) can be obtained from the equations σan,t = (1/ε){H,σan} in the continuous
limit σ0

n → 1, σan → (ε/2)san(x), and x = iεn for ε → 0.
The following statement relates the Sklyanin chain to the current Dx+Dy, where x = x+ and y = x−

are times that correspond to the relative Hamiltonians H+ and H−.

Statement 2. Let sn = S(un, vn) be vector (4.18) and the polynomial r be related to the matrix J
by formulas (4.20) and (4.21):

r(u, v) =
i

4
(u− v)2

〈
S(u, v),KS(u, v)

〉
, J = CI − det(K)K−1

(i.e., K = diag(K1,K2,K3) and Ja = C −KbKc). The variables

σ0
n = ρ

√
detK 〈sn,Ksn〉−1/2, σn = −ρ〈sn,Ksn〉−1/2K1/2sn
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then satisfy brackets (5.7), and the values of the functions and the Hamiltonian are c0 = ρ2, c1 = Cρ2,

and H = −H+ −H− + const.

An arbitrary symmetric polynomial r of second order in each variable can be reduced to the form above
by a fractional-linear replacement u → v, which corresponds to the orthogonal transformation diagonalizing
the matrices J and K.

We also present the Hamiltonian structure in terms of the spin variables sn,

{san, sbn} = 〈sn,Ksn〉scn, H = −
∑
n

log
〈sn,Ksn〉

1 + 〈sn, sn+1〉
.

The chains corresponding to H± can be written in the compact form

2isx± = 〈s,Ks〉
(
S(u±1, v)− S(u, v∓1)

)
− 2i[s,Ks]

if we use the elementary property of mapping (4.18)

i
[
S(u, v), S(p, q)

]
+ S(u, v) + S(p, q)

1 +
〈
S(u, v), S(p, q)

〉 = S(p, v).

These chains individually are not consistent with the reality condition for the vector s. Their linear com-
binations Dx + Dy and i(Dx − Dy) already have this property, and we obtain a chain in the unit sphere
(s ∈ R3, |s| = 1),

st = a〈s,Ks〉
(

[s, s1]
1 + 〈s, s1〉

+
[s, s−1]

1 + 〈s, s−1〉

)
− 2a[s,Ks] + b〈s,Ks〉

(
s+ s1

1 + 〈s, s1〉
− s+ s−1

1 + 〈s, s−1〉

)
, (5.8)

where a and b are arbitrary real constants. The case b = 0 corresponds to the Sklyanin model, and the
chain corresponding to a = 0 is its symmetry.

The variables σ and s coincide at K = I and ρ = −1, and we obtain the Heisenberg chain

st = a

(
[s, s1]

1 + 〈s, s1〉
+

[s, s−1]
1 + 〈s, s−1〉

)
+ b

(
s+ s1

1 + 〈s, s1〉
− s+ s−1

1 + 〈s, s−1〉

)
. (5.9)

This chain was introduced by Ragnisco and Santini [51] for arbitrary a and b.
We can also use the spin variables s to rewrite other equations related to chains (X±

5 ). For example,
system (h5) (where r is determined by formulas (4.20) and (4.21)) becomes

sxy = p[s, sx + sy] +
〈s,Ks〉

2
〈
s, [sx, sy]

〉(py[s, sx]− px[s, sy]
)
+

+
〈sx,Ks〉〈sy, sy〉[s, sx]− 〈sy,Ks〉〈sx, sx〉[s, sy]

〈s,Ks〉
〈
s, [sx, sy]

〉 − 〈sx, sy〉s,

where p = ir̃/r = 〈Ks,Ks〉/〈s,Ks〉 − (trK)/2. In particular, system (5.3) becomes

sxy = [s, sx + sy]− 〈sx, sy〉s

in the isotropic case K = −2I.
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5.3. Chains of the Volterra equation type. There are four lists of integrable chains obtained
within the classification in the framework of the symmetry approach. Three of the lists, the Toda chain
class (4.31) and (4.34), the relativistic Toda chain class (4.28), (4.30), and (4.35), and the Hamiltonian
relativistic chain class (see list (H) in Sec. 4.3) are in the above scheme. The fourth list, the Volterra
equation class, fits this scheme only partially. This class is named after the simplest chain

ux = u(u1 − u−1). (5.10)

The Volterra equation class comprises

ux = P (u)(u1 − u−1), (V1)

ux = P (u2)
(

1
u1 + u

− 1
u+ u−1

)
, (V2)

ux = Q(u)
(

1
u1 − u

+
1

u− u−1

)
, (V3)

ux =
F (u1, u, u−1) + ν

(
F (u1, u, u1)

)1/2(
F (u−1, u, u−1)

)1/2
u1 − u−1

, (V4)

ux = f(u1 − u) + f(u− u−1), f ′ = P (f), (V5)

ux = f(u1 − u)f(u− u−1) + µ, f ′ =
P (f)
f

, (V6)

ux =
(
f(u1 − u) + f(u− u−1)

)−1 + µ, f ′ = P (f2), (V7)

ux =
(
f(u1 + u)− f(u+ u−1)

)−1
, f ′ = Q(f), (V8)

ux =
f(u1 + u)− f(u+ u−1)
f(u1 + u) + f(u+ u−1)

, f ′ =
P (f2)
f

, (V9)

ux =
f(u1 + u) + f(u+ u−1)
f(u1 + u)− f(u+ u−1)

, f ′ =
Q(f)
f

, (V10)

ux =

(
1− f(u1 − u)

)(
1− f(u− u−1)

)
f(u1 − u) + f(u− u−1)

+ µ, f ′ =
P (f2)
1− f2

, (V11)

where ν ∈ {0,±1}, P ′′′ = QV = 0,

F (z1, z2, z3) = (αz2
2 + 2βz2 + γ)z1z3 + (βz2

2 + λz2 + δ)(z1 + z3) + γz2
2 + 2δz2 + ε,

and µ and the coefficients of the polynomials P , Q, and F are arbitrary constants. The complete list is
presented only in [52] (see also [10, 53]).

All the equations except (V4) with ν = 0 are integrable at least because they can be reduced by discrete
substitutions to Volterra equation (5.10) or to the polynomial form of the Toda chain

ux = u(v1 − v), vx = u− u−1. (5.11)

It is easy to see that one of the two transformations

ũ = f(u1 + u), ũ = f(u1 − u)

reduces chains (V5) and (V6) to (V1), chains (V7), (V9), and (V11) to (V2), and chains (V8) and (V10)
to (V3). Equations (V1), (V2), (V3), and (V4) with ν �= 0 are more involved modifications of Eqs. (5.10)
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and (5.11), which are related to these equations by Miura transformations (see [52, 54]). For example, the
change

ũ =
bu1u+ (a− b)(u1 − u)/2 + a

u1 + u
, c =

a+ b

2

reduces Eq. (V2) with P = (u2 − 1)(a2 − b2u2) to the modified Volterra equation (V1) with P = u2 − c2,
which in turn can be reduced to Volterra equation (5.10) by the variable change

ũ = (u+ c)(u1 − c).

Chain (V4) with ν = 0 becomes the Krichever–Novikov equation in the continuous limit (see Eq. (A.4)
below); it occupies a special place in the list because it cannot be reduced to Eqs. (5.10) and (5.11) by discrete
substitutions. Nevertheless, this chain has an infinite hierarchy of higher symmetries and conservation laws
because it has the local master symmetry

un,y = (c+ n)un,x. (5.12)

The dependence of the coefficients of the polynomial F on the time y is introduced as in Sec. 6.3 (see
Eq. (6.16) and the comment below), the initial data being a symmetric polynomial h(z1, z2) = F (z1, z2, z1)
of the second order in each variable.

Chain (V4) with ν = 0 admits an integrable generalization with coefficients that are not constants but
are periodic in n [55]. The polynomial Fn for such a generalization is

Fn(z1, z2, z3) = (αz2
2 + 2βnz2 + γn)z1z3 + (βn+1z

2
2 + λz2 + δn)(z1 + z3) + γn+1z

2
2 + 2δn+1z2 + ε, (5.13)

where the n-dependent coefficients are doubly periodic in n,

βn+2 = βn, γn+2 = γn, δn+2 = δn.

The master symmetry is as above, and the y dependence is introduced analogously. However, the corre-
sponding polynomial hn(z1, z2) = Fn(z1, z2, z1) is n dependent and nonsymmetric. Local master symmetries
for some of the other equations in list (V) can be found in [56].

Some of the equations from the above list are closely related to equations in other sections. For example,
chains (V1) written in the variables

ũn = u2n, ṽn = u2n−1 (5.14)

become chains (6.8) and are therefore related to generalizations of Toda chain (4.31). Transition (5.14)
transforms Eq. (V4) with ν = 0 and with a polynomial of general form (5.13) into a system of two equations
with constant coefficients,

ux =
2r

v1 − v
+ rv, vx =

2r
u− u−1

− ru, r = r(u, v), ruuu = rvvv = 0 (5.15)

(the polynomial r is constructed from hn, r(ũn, ṽn) = h2n−1(u2n, u2n−1)). Differentiating the first equation
w.r.t. x, we can exclude the variables vi and obtain Eq. (4.34) in the variable q = u with the polynomial
R, which is the discriminant of r, R(u) = r2

v − 2rrvv .
System (5.15) and therefore chain (V4) with ν = 0 are related to Eq. (4.34). Master symmetry (5.12)

can be rewritten as the master symmetry of system (5.15),

un,y = (c+ 2n)un,x, vn,y = (c+ 2n− 1)vn,x.

The dependence of the coefficients of the polynomial r on the time y can be introduced using Eq. (6.16)
with the initial condition r̃(0, u, v) = r(u, v).
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5.4. Other integrable equations on a lattice. To complete the picture, we present a few more
interesting examples of integrable equations on a lattice (one- and two-dimensional).

In [55], we meet an interesting generalization of Toda chain (4.26) with variable coefficients,

qn,xx
cn+1cn

= exp
(
qn+1 − qn

cn+1

)
− exp

(
qn − qn−1

cn

)
, cn = an+ b,

where a and b are arbitrary constants. This equation can be reduced to chain (A.13) with µ = 0 (see below)
and therefore to the Toda chain by the transformation

qn
cn+1cn

= (Tn − 1)
(
q̃n
cn
+ λn

)
,

where q̃n is a solution of (A.13) and λn is determined from the equation

cn+1(λn+1 − λn)− cn−1(λn − λn−1) = log cn.

The Bogoyavlenskii chain,

un,x = un

( M∑
i=1

un+i −
M∑
i=1

un−i

)
,

generalizes Volterra equation (5.10) and is integrable for anyM ≥ 1. Some modifications of this chain were
found in [57].

We now briefly discuss hyperbolic chains of the type

Fn(un,x, un+1,x, un, un+1) = 0,

among which the Bäcklund transformation

un,x + un+1,x = αn sin(un+1 − un) (5.16)

for the sine-Gordon equation is the best known. The Miura transformation relates this chain to dressing
chain (3.7) (see Sec. 3.2). A general classification of equations of this type is still lacking although there
are numerous examples (see, e.g., [58]). To the best of our knowledge, all these examples except the chain

un,xun+1,x = r(un, un+1), r(u, v) = r(v, u), ruuu = 0

are related to Eq. (5.16) by a sequence of differential substitutions. It was shown in [59] that the above
chain determines the Bäcklund autotransformation for Krichever–Novikov equation (A.4) (see below); R is
then the discriminant of r (4.16).

To conclude this section, we present the list in [60] of two-dimensional equations on the lattice, which
comprises integrable two-dimensional generalizations of all chains in list (T) (see Sec. 4.2) and all chains of
form (6.8) (see Sec. 6.2 below), among them the well-known two-dimensional generalizations of the Toda
chain and the Volterra equation.

The two-dimensional chains are

qxy = eq1−q − eq−q−1 , (2D1)

qxy = qx(q1 − 2q + q−1), (2D2)

qxy = qx(eq1−q − eq−q−1), (2D3)

qxy = (qx + a)(qy − a)
(
f(q1 − q)− f(q − q−1)

)
, f ′ = f2 − b2, (2D4)

uy = u(v1 − v), vx = u− u−1, (2D5)

uy = u(v1 − v), vx = v(u − u−1), (2D6)

ux = (u2 − b2)(v1 − v), uy = (u2 − b2)(w1 − w), vy = wx = (v + a)(w − a)(u − u−1), (2D7)

1638



where a and b are arbitrary constants. The chains from this list determine the Bäcklund autotransformations
for (2+1)-dimensional systems of equations analogous to the Davey–Stewartson equation. All of them are
mutually related and can be eventually reduced to chain (2D5). Some of the variable changes are rather
simple, and the others are two-dimensional discrete analogues of the Miura transformation. The list of
transformations is

(2D1)→ (2D5) : u = eq1−q, v = qy,

(2D2)→ (2D5) : u = qx, v = q − q−1,

(2D3)→ (2D6) : u = qx, v = eq−q−1 ,

(2D4)→ (2D7) : u = f(q1 − q), v = qx, w = qy,

(2D7)→ (2D6) : ũ = (u+ b)(v1 + a), ṽ = (u − b)(w − a),

(2D6)→ (2D5) : ũ = uv1, ṽ = v +D−1
x uy.

6. Local master symmetries

We obtain the so-called integrability conditions by requiring that an evolution equation from the given
class have higher local symmetries and conservation laws. These conditions can be conveniently written as
a series of conservation laws with the densities ρj (j = 1, 2, . . . ), which can be calculated directly from the
right-hand side of the equation

ut =G(x,u,ux, . . . , ∂nu/∂xn), n ≥ 2 (6.1)

(see Appendix 1). Clearly, these necessary conditions do not ensure the existence of higher symmetries
and conservation laws. This difficulty can sometimes be overcome using master symmetries. If uτ = H

is a master symmetry, then the higher conservation law densities are Dk
τ (ρ) (k = 1, 2, . . . ), where ρ is a

nontrivial density from the necessary conditions.
The master symmetry was introduced by Fokas and Fuchssteiner [61]. The function H , which de-

termines the master symmetry, is nonlocal for many equations (e.g., for the KdV, NS, and Toda chain
equations). However, Fuchssteiner [8] found a local master symmetry for the Landau–Lifshitz model, which
is the universal equation for the classification of the NS-type equations. In this section, we present local
master symmetries (which are much more convenient to work with) for universal equations from the lists
of generalizations of the Toda chain and for other examples of integrable equations.

6.1. Locality conditions. We first discuss the general necessary conditions for the locality of master
symmetries for evolution equations (6.1). We recall the derivation of integrability conditions for scalar
evolution equations (see, e.g., [9, 10] for the details). The determining equation for higher symmetries
ut′ = A of scalar equation (6.1) (the function A depends on x derivatives of u up to the order m) can be
written in the commutator form: [A,G] = 0. The commutator of two functions F1 and F2 is

[F1, F2] = D1(F2)−D2(F1), Dj(u) = Fj .

Linearizing the determining equation, we obtain

[A∗, G∗] = Dt′(G∗)−Dt(A∗),

where A∗ and G∗ are the linearizing differential operators of the respective orders m and n,

A∗ =
m∑
k=0

∂A

∂uk
Dk
x, uk =

∂ku

∂xk
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for example. Because m � n, we obtain the equation

Lt = [G∗, L], (6.2)

where L is a pseudodifferential operator of the first order, L = a1Dx + a0 + a−1D
−1
x + . . . . The residue of

such an operator is the coefficient a−1 in the scalar case (tr a−1 in the general case). Integrability conditions
can be expressed through residues of powers of the operator L,

ρj = resLj , j = −1, 0, 1, 2, . . . ,

and are local conservation laws,
(ρj)t = (σj)x

(the so-called canonical conservation laws).
The master symmetry uτ = H can be found from the equation[

[H,G], G
]
= 0,

which is analogous to the symmetry-determining equation. We know the formula for the higher symmetries
utk = Ak,

Ak = adkH(G), adH(G) = [H,G]. (6.3)

Linearizing the relation [H,Ak] = Ak+1, we obtain[
H∗, (Ak)∗

]
= Dτ

(
(Ak)∗

)
−Dtk(H∗) + (Ak+1)∗,

and Eq. (6.2) is therefore replaced by the operator equation

Lτ = [H∗, L] + L̃, (6.4)

where L̃ is another solution of Eq. (6.2).
We now show how operator equation (6.4) results in a recursive formula for the canonical densities

ρj = resLj. For this, we consider the operator

L̃ = b1L
r+1 + b0L

r + b−1L
r−1 + . . . , r ≥ 1. (6.5)

For b1 �= 0, this case corresponds to a nontrivial master symmetry of weight r (i.e., such that formula (6.3)
results in higher symmetries of orders n+ kr). Rewriting operator equation (6.4) in the form

Ljτ = [H∗, L
j ] + jLj−1L̃ (6.6)

and evaluating the residues, we find that

(ρj)τ ∼ j(b1ρj+r + b0ρj+r−1 + b−1ρj+r−2 + · · · ) (6.7)

for any integer j (the equivalence means the equality up to total derivatives w.r.t. x).
Substituting j = −r − 1 in (6.7), we obtain the first condition for the existence of a local master

symmetry,
ρ−1 ∼ 0 ⇔ ρ−1 ∈ ImDx

for any order n ≥ 2 of an equation and for any weight r ≥ 1 of a master symmetry. This condition implies
that the canonical density ρ−1 must be trivial. For example, for Burgers-type equations (B2) and (B3) (see
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Appendix 1) we find that ∂G/∂uxx = 1/u2, i.e., ρ−1 = cu (c �= 0). These equations therefore have no local
master symmetries of positive weight. Burgers equation (B1) with a = 0 does satisfy this condition because
it has the local master symmetry uτ = xut + u2.

The general symmetry approach theory implies that orders of an equation and its higher symmetries
are odd for an equation with higher conservation laws of sufficiently high order (cf. [9]). The weight of a
local master symmetry of such an equation is greater than or equal to 2. Using relation (6.7) with j = 1−r,
we can show that (for r ≥ 2)

ρ1 ∈ ImDx.

For equations of form (A.2) in Appendix 1, we find

ρ1 = c1
∂F

∂un−2
+ c2, c1 �= 0.

Hence, the (nonlinear) equations of the third and fifth orders from lists (K) and (K5) in Appendix 1 admit
no local master symmetries.

For equation systems of form (A.5) (see Appendix 1), we can analogously prove that if a system has
a local master symmetry and the canonical density ρ1 from (A.6) is trivial, then the densities ρ2 and ρ3

must be trivial as well. For NS equation (A.5) with F = 2u2v and G = −2v2u, we obtain ρ1 = 0, and
ρ2 = 8uv + const is therefore a nontrivial density, i.e., all the master symmetries of this system are also
nonlocal.

More subtle considerations show that scalar evolution equations (6.1) may have a nontrivial local
master symmetry only if they are a kind of Burgers equation (linearized equations). But this is not true for
the NS-type systems and for equations on a lattice of the Toda and Volterra chain types. We demonstrate
this in Secs. 6.2 and 6.3.

6.2. Local master symmetries for a class of integrable equations. We now write local master
symmetries for divergent systems of equations (4.6) and (4.7) and (in the proper gauge) for the corresponding
Toda chain generalizations (4.28), (4.31), and (4.30) (or, equivalently, for chains in lists (T) and (R)
in Sec. 4.2).

Chains (4.28) and (4.31) can be conveniently written in the gauge related to divergent systems (4.6)
(chains thus rewritten determine the Bäcklund autotransformations for divergent systems [31]). With the
substitution

un = h(qn+1 − qn), vn = qn,x

(cf. gauge (4.8)), chain (4.31) becomes

un,x = P (un)(vn+1 − vn),

vn,x = Q(vn)(un − un−1), (6.8)

P (w) = εw2 + αw + β, Q(w) = εw2 + γw + δ.

Using the linear transformations of u, v, and x, we can segregate three cases in which the local master
symmetries are

un,y = P (un)
[
(2n+ k + c)vn+1 − (2n+ c)vn

]
+ γu2

n,

vn,y = Q(vn)
[
(2n− 1 + k + c)un − (2n− 1 + c)un−1

]
+ αv2

n,

where c is a constant (responsible for adding un,x and vn,x) and the number k is given differently in each
of the three cases:

P = w, Q = 1, k = 4;

P = w, Q = w, k = 3;

P = w2 + β, Q = w2 + δ, k = 2.
(6.9)
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These master symmetries were found in [62, 63].
Master symmetries of divergent systems (4.6) are obtained by excluding shifts by virtue of (6.8) (we

assume that p = un and z = vn) from the chain corresponding to the differentiation Dτ = xiDt + Dy.
These symmetries are

pτ = xipt + (k + c)px + kP (p)z + γp2,

zτ = xizt + (c− 1)zx + kQ(z)p+ αz2,

where we consider the same three cases for P and Q that are segregated by linear substitutions and k is
given in (6.9). The master symmetry of the system corresponding to P = Q = w2 was obtained in [64].

In chain (4.28), we substitute

un = qn,x, vn = qn,xf(qn+1 − qn) + g(qn+1 − qn),

which results in the system of equations of the form

un,x = An(un, vn)(un+1 − un) + P (un)(vn − vn−1),

vn,x = An(un, vn)(vn − vn−1) +Q(vn)(un+1 − un).
(6.10)

In the new notation, integrable chains are segregated by formulas (6.8) and by the equation in An

A2
n(u, v)− (λn + γu+ βv + 2εuv)An(u, v) + P (u)Q(v) = 0 (6.11)

(we assume that f �= 0). We note that chains (4.28) are transformed in (6.10) with λn (and hence An)
having no explicit dependence on n. We consider chains of a more general type. An example corresponding
to P = Q = w was presented in [22], and the whole class was considered in [38].

The local master symmetries are

un,y = (2n+ k + c)An(un, vn)(un+1 − un) + P (un)
(
(2n+ k + c)vn − (2n− k + c)vn−1

)
,

vn,y = (2n− k + c)An(un, vn)(vn − vn−1) +Q(vn)
(
(2n+ k + c)un+1 − (2n− k + c)un

)
,

(6.12)

where P , Q, and k are given in (6.9) and the parameter λn is y dependent by virtue of the equation
λn,y = −λ2

n in the first two cases and by virtue of the equation λn,y = 4βδ − λ2
n in the last case. A local

master symmetry for the relativistic case was found in [65], but in a different gauge.

6.3. Elliptic case. We present the local master symmetries for chains (4.34), (4.35) (r and R are
from (4.16)), and (H3) (see Sec. 4.3). We call these chains the elliptic-type equations because they are
closely related to systems (4.15) and (4.17) and therefore to Landau–Lifshitz equation (4.19), which depends
elliptically on the spectral parameter in the linear problem.

As is known, the master symmetry for Eq. (4.19) is [8]

sτ =
[
s, x(sxx + Js) + sx

]
= xst + [s, sx].

We now show that the master symmetries for the constructed chains result in the same formula. We do
not even need to change the gauge. For example, the master symmetries for chains (4.34) and (4.35) must
be written in the variables qn and zn = qn,x. However, we must deal with a complex dependence of the
master symmetry on time.

In the simpler nonrelativistic case (4.34), the master symmetry is

zn,y = (λ+ 2n)zn,x + qn,t, qn,y = (λ + 2n)qn,x, (6.13)
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where t is the time of the highest symmetry (4.36) and λ is an arbitrary constant. All the master symmetries
give examples of equations that are integrable in a sense and depend on time (y in the discrete case and τ

in the continuous case) and always on the spatial variable (n and x correspondingly). For example, we can
exclude the variable zn from master symmetry (6.13) and obtain a nice integrable equation with an explicit
(nonlinear) n dependence,

qn,yy =

(
(λ+ 2n)R(qn)−

q2
n,y

λ+ 2n

)(
λ+ 2n+ 1
qn+1 − qn

− λ+ 2n− 1
qn − qn−1

)
+
(λ+ 2n)2

2
R′(qn).

In the relativistic case, the formula for the master symmetry is also simple. It is

zn,y = (λ+ n)zn,x + qn,t, qn,y = (λ+ n)qn,x (6.14)

for chain (4.35) (t is the time of the highest symmetry (4.37)) and is

un,y = (λ+ n)un,x, vn,y = (λ+ n− 1)vn,x (6.15)

for chain (H3), which also contains a Hamiltonian representation for (4.35). The essential difference from
the nonrelativistic case is that the dependence of the master symmetry on the time y is introduced in
coefficients of the polynomial r, which determines chains (4.35) and (H3). This dependence is determined
by the partial differential equation in r̃ = r̃(y, u, v)

r̃y = r̃r̃uv − r̃ur̃v (6.16)

(r̃ is obtained from the polynomial r by substituting functions depending on y for the coefficients of the
polynomial). The polynomial in the right-hand side of (6.16) has the same form as the polynomial r̃ but with
different coefficients. Equation (6.16) is therefore equivalent to a closed system of ODEs in the coefficients
of the polynomial r̃, which has a solution for arbitrary initial data r̃(0, u, v) = r(u, v).

For example, if we want to construct a master symmetry for chain (H3) with r = u + v, then solving
Eq. (6.16) with this initial condition, we obtain the polynomial r̃ = u+ v− y. For Eq. (H3) with the found
polynomial r̃, instead of r, we have the master symmetry, which allows constructing higher symmetries and
densities of conservation laws. These symmetries and densities persist for all values of the parameter y. For
y = 0, we obtain the set of higher symmetries and conserved densities for initial chain (H3) with r = u+ v.
The master symmetries are thus constructed not for an equation itself but for its generalization depending
on the additional parameter y. Such master symmetries generate higher symmetries and conservation laws
for both this generalization and the initial equation.

We note that the same scheme for constructing master symmetries (and formulas (6.15) and (6.16)) is
suitable not only for a nonsymmetric polynomial r with n-independent coefficients but also for a general
n-dependent polynomial rn (see Sec. 4.4).For polynomial (4.42) for example, Eq. (6.16) results in the y

dependence of the parameter λn; this dependence is given by the equation

λn,y =
√
R
(
λn

)
.

As in Sec. 6.2, the chain master symmetries (6.13)–(6.15) can be rewritten in the form of master
symmetries of systems (4.15) and (4.17),

uτ = xiut + ux, vτ = xivt − vx,

uτ = xiut + ux, vτ = xivt.
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In the second case, the dependence on the time τ is introduced in the coefficients of the polynomial r
again using Eq. (6.16), in which the variable y is replaced by τ . Using transition formulas (4.18), (4.20),
and (4.21), we can prove that the master symmetry in the first case coincides with the master symmetry
of Landau–Lifshitz equation (4.19).

The Sklyanin chain, which was discussed in Sec. 5.2, must presumably have a local master symmetry
because the chain is an elliptic-type equation. However, we presently know such a master symmetry only
for the particular case corresponding to the Heisenberg magnet, namely, for chain (5.9) with b = 0 and
a = 1:

sn,y =
[
sn,

(ε+ n)sn+1

1 + 〈sn, sn+1〉
+
(ε+ n− 1) sn−1

1 + 〈sn, sn−1〉

]
.

7. Necessary condition for the integrability of two-dimensional
equations

We now consider equations that can be transformed into their nontrivial master symmetries by proper
invertible changes of variables. We call such equationsB-integrable (by analogy with the S- and C-integrable
Calogero equations). In the one-dimensional case, the Burgers equation

ut = uxx + 2uux

is B-integrable. Substituting
u → x1/2u, x → 2x1/2, t → τ,

it becomes the equation

uτ = xut + u2 +
3
2
ux,

which is its master symmetry. The B-integrable equations therefore satisfy the conditions[
[Dτ , Dt], Dt

]
= 0, Dτ ∼ Dt, (7.1)

where the respective evolution differentiations Dt and Dτ correspond to the equation and its master sym-
metry and the equivalence is up to invertible transformations. Moreover, a master symmetry must increase
the order of a symmetry such that the sequence of recursively determined higher symmetries

[Dτ , Dt] = Dt1 , [Dτ , Dtk ] = Dtk+1

(Dtk corresponds to the kth higher symmetry) is infinite.
If an equation admits B-integrability, it is necessarily integrable. In the (1+1)-dimensional case, B-

integrable equations are presumably just linearizable equations, while the situation is changed in the (2+1)-
dimensional case. The class of two-dimensional B-integrable equations that are simultaneously S-integrable
(i.e., integrable using the inverse scattering method) is rather wide. To demonstrate this, we present several
examples pertaining to the Kadomtsev–Petviashvili (KP) and Davey–Stewartson (DS) equations. The
definition of B-integrability is constructive, which feeds the hope that it can be used to classify integrable
cases and to refine the integrability test. An analogous example (the pointwise relation between the KP
equations and the cylindric KP equation) was given in [66].

7.1. The Kadomtsev–Petviashvili equation. We discuss the examples pertaining to the KP
equation. In [67], the KP equation

ut3 = uxxx − 6uux + 3vyy, vx = u (7.2)
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was endowed with the master symmetry

uτ1 = yut3 − 2ux + 2xuy + 4vy, (7.3)

which in turn can be obtained from the KP equation by a pointwise transformation of the form

x̃ = ξ(x, y), ỹ = η(y), ũ = α(x, y)u + β(x, y).

In what follows, we write such changes of variables concisely in the form

x → ξ(x, y), y → η(y), u → α(x, y)u + β(x, y), (7.4)

assuming that the variables x̃, ỹ, and ũ correspond to the initial equation and the variables x, y, and u

correspond to its master symmetry. We also often replace the formulas for transformations of x and y with
the formulas for Dx and Dy, which are more convenient for calculations.

In the KP equation, the replacement is

Dx → y1/3Dx, Dy →
1
3
xy−1/3Dx + y2/3Dy,

u → y2/3(u+ ax), v → y1/3(v + a), a =
x3

54y2
+

x

3y

(7.5)

(the variables x and y then are transformed as x → xy−1/3 and y → 3y1/3).
The modified KP equation and its master symmetry,

ut = uxxx − 6u2ux + 6uxvy + 3vyy, vx = u, (7.6)

uτ = yut − ux + 2xuy − u2 + 3vy (7.7)

are related to (7.2) and (7.3) by the Miura transformation

ũ = ux + u2 − vy (7.8)

(ũ satisfies the KP equation). The conjugation between change (7.5) and the Miura transformation is a
relation that is much more involved than a pointwise transformation. Nevertheless, we also have a pointwise
change of variables between (7.6) and (7.7) (this change is of form (7.4)). The variables x and y are changed
as in (7.5), and the dependent variables u and v are transformed by the formulas

u → y1/3(u+ ax), v → v + a, a =
x2

12y
− 1
6
log y. (7.9)

A higher symmetry of the KP equation is

ut4 = uxxy − 4uuy − 2uxvy + wyyy, wx = v. (7.10)

We now consider the integrable equation
ut = ut4 + εut3 , (7.11)

where ε is arbitrary, and show that different nontrivial master symmetries can be obtained by different
changes of variables.
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The first change of variables,

Dx → y1/4Dx, Dy →
(
1
4
xy−1/2 − εy1/4

)
Dx + y1/2Dy,

u → y1/2(u+ axx), v → y1/4(v + ax), w → w + a,

a =
x4

256y2
+
(
3
16

y−1 − 3ε2

8
y−1/2

)
x2 + 2ε3y1/4x− 3

8
log y,

transforms Eq. (7.11) into its master symmetry

uτ2 = yut4 +
x

4
ut3 + uxx −

3
2
uy +

3
2
wyy −

1
2
vux − 2u2. (7.12)

The second, simpler change transforms (7.11) into the linear combination uτ = ut4 +kuτ1 of Eq. (7.10)
and lower master symmetry (7.3), which is also its nontrivial master symmetry,

Dx → Dx, Dy → (ky − ε)Dx +Dy,

u → u+ axx, v → v + ax, w → w + a,

where

a = − k

12
x3 +

3
8
(k2y2 − ε2)x2 −

(
7
16

k3y3 − 3
8
ε2ky − k − ε3

)
yx+

+
k

96
(15k3y3 − 9kε2y − 64k − 48ε3)y3.

This change is analogous to the simpler transformation

Dx → Dx, Dy → 2cyDx +Dy,

u → u+ ax, v → v + a, a = 2c2xy2 − 5
3
c3y4 − 1

2
cx2,

which relates the KP equation to its deformation

uτ = ut3 + 6c
(
xux + 2(yu)y

)
.

We note that the equation
uτ0 = xux + 2(yu)y (7.13)

is then a trivial master symmetry. Indeed, giving the variables x, y, and u the respective weights −1, −2,
and 2 (i.e., Dx and Dy have the respective weights 1 and 2) and the differentiations Dtn and Dτn the
weights n, Eqs. (7.2) and (7.10) become homogeneous with the homogeneity powers 5 and 6, and master
symmetries (7.3), (7.12), and (7.13) have the homogeneity powers 3, 4, and 2. The master symmetries Dτn

increase the degrees of higher symmetries by n.
We showed in Sec. 2 that Painlevé equations (P1)–(P5) describe stationary solutions of deformations

of the KdV and NS equations. The two-dimensional analogue of Eq. (2.2) is the linear combination

ut = c2uτ2 + c1uτ1 + c0uτ0 . (7.14)

However, this combination can be reduced to Eq. (7.10) (for c2 �= 0) or to (7.2) (for c2 = 0, c1 �= 0) by a
pointwise substitution, which leaves time the invariant variable, and the stationarity condition then does
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not lead to “two-dimensional” Painlevé equations. For example, for c2 = 0, the stationary equation is
pointwise equivalent to the Boussinesq equation

(uxxx − 6uux)x + 3uyy = 0.

On the other hand, Eqs. (7.14) determine the two-dimensional analogue of the Painlevé equation therefore
relating it not only to the Boussinesq equation itself (see, e.g., [68]) but also to its higher symmetry.

All the above changes of variables belong to the group of gauge transformations of the auxiliary linear
problem for the KP equation,

ψy = ψxx − uψ, (7.15)

which is a two-dimensional analogue of the one-dimensional Schrödinger spectral problem (2.5). The gauge
transformations are

Dx → aDx, Dy → 2a2σxDx + a2Dy, ψ → eσψ,

u → a2(u+ σxx − σ2
x − σy), σ =

a′

4a
x2 + bx+ c,

where a, b, and c are arbitrary functions of y. In particular, replacement (7.5) together with the formula
ψ → y−1/6 exp(x2/12y)ψ transforms the symmetry of linear problem (7.15)

ψt = A(y)ψxxx +
1
2
xA′ψxx −

3
2
Auψx −

1
4
(
3A(ux + vy) +A′(2xu + v)

)
ψ

with A = 1, which corresponds to the KP equation, into the symmetry with A = y, which corresponds to
its master symmetry (7.3). We note that the function ψx/ψ satisfies modified KP equation (7.6) and its
master symmetry (7.7). This formula determines the transformation inverse to Miura transformation (7.8).

To conclude this section, we recall the well-known matrix KP equation, which is also B-integrable. It
is easy to verify that the equation

ut = uxxx − 3(uux + uxu− vyy + vyu− uvy), vx = u,

where u ∈Matn(R), and its master symmetry

uτ = yut − 2ux + 2xuy + 4vy + uv − vu

are mutually related by the same change of variables (7.5) as in the scalar case.

7.2. The Davey–Stewartson equation. The class of equations discussed in this section differs
from the previous one by simpler formulas for transformations of the independent variables x and y. These
replacements belong to the group of gauge transformations

Dx → a(x)Dx, Dy → b(y)Dy, ψ → c(x)ψ,

u → a

(
u+

c′

c

)
, v → abv

(7.16)

of the spectral problem
ψxy = uψy + vψ. (7.17)

Equation (7.17) is a two-dimensional analogue of spectral problem (2.6) with arbitrary parameters, and
(7.15) is an analogue of reduced problem (2.5). We consider the basic examples of equations that are
integrable through (7.17) and are hence close to the DS equation.
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Example 1. Starting with the linear equation

ψt = A(x)ψxx − (2Awx +Axw)ψ,

we obtain the systems

ut = (ux + u2 − 2wx)x, vt = (−vx + 2uv)x, wy = v, (7.18)

uτ =
(
x(ux + u2 − 2wx)− w

)
x
, vτ =

(
x(−vx + 2uv)− v

)
x
, (7.19)

corresponding to A = 1 and A = x respectively. The second system is the master symmetry of the first
system. In particular, [Dτ , Dt] = 2Dt′ , where the differentiation w.r.t. t′ determines the higher symmetry
of system (7.18)

ut′ = (uxx + 3uux + u3 − 3uwx − 3w1,x)x,

vt′ = (vxx − 3uvx + 3u2v − 3vwx)x, w1,y = uv.

Systems (7.18) and (7.19) are related by the pointwise substitution

Dx → x1/2Dx, Dy → Dy,

u → x1/2u− 1
4
x−1/2, v → x1/2v, w → x1/2w − 3

16
x−1/2,

(7.20)

i.e., system (7.18) is B-integrable.

The following three examples, as well as the example with the modified KP equation, demonstrate
that a pointwise equivalence between an equation and its master symmetry can survive even noninvertible
transformations and reductions.

Example 2. The following formulas determine the system and its master symmetry:

ut = uxx + 2uwx, −vt = vxx + 2vwx, wy = uv, (7.21)

uτ = xut + uw + (2k + 1)ux, vτ = xvt − vw + (2k − 1)vx. (7.22)

They are related to (7.18) and (7.19) by the transformation

ũ =
ux
u
, ṽ = −uv

(the tilde denotes variables in systems (7.18) and (7.19)). Strictly speaking, this transformation is consistent
with master symmetry (7.22) at k = −1/2, but the parameter k can be arbitrary in general because it
corresponds to adding a classical symmetry. For k = ±1/4, Eqs. (7.21) and (7.22) are related by the
pointwise transformation given by formulas (7.20) and

u → x1/4+ku, v → x1/4−kv, w → x1/2w. (7.23)

To pass to the DS equation, we relabel the evolution differentiations Dt and Dτ corresponding to (7.21)
and (7.22) with Dt+ and Dτ+ . The involution

x ↔ y, Dt+ ↔ Dt− , Dτ+ ↔ Dτ− , w ↔ ŵ (7.24)
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results in the system, the master symmetry, and the pointwise transformation relating them dual to (7.21)–
(7.23). For example, the system of equations dual to (7.21) is

ut− = uyy + 2uŵy, −vt− = vyy + 2vŵy, ŵx = uv. (7.25)

The differentiations Dt+ and Dt− commute, and their linear combination therefore results in the integrable
system of equations (cf. Sec. 5.2)

ut = αut+ + βut− , vt = αvt+ + βvt− . (7.26)

In particular, the condition β = ±α corresponds to the DS equation. The composition of replace-
ment (7.20), (7.23) and the dual replacement transforms system (7.26) into the master symmetry cor-
responding to the differentiation Dτ = αDτ+ + βDτ− . System (7.26) with arbitrary α and β and therefore
the DS equation are then B-integrable. We note that the differentiation Dτ+ commutes with Dt− , which
follows because replacement (7.20), (7.23) leaves the variable y invariant and does not change system (7.25).
The differentiations Dτ− and Dt+ commute for the same reason.

Example 3. The higher symmetry of system (7.21) constructed using (7.22) is

ut3 = uxxx + 3uxD−1
y (uv)x + 3uD−1

y (uxv)x,

vt3 = vxxx + 3vxD−1
y (uv)x + 3vD−1

y (uvx)x.
(7.27)

It admits the reduction v = 1, which results in the equation

ut = (uxx + 3uwx)x, wy = u. (7.28)

The master symmetry and the replacement, which allows constructing this master symmetry, are

uτ =
(
x(uxx + 3uwx) + ux + uw

)
x
, (7.29)

Dx → x1/3Dx, Dy → Dy,

u → x1/3u, w → x1/3w − 1
18

x−2/3.
(7.30)

For example, this master symmetry generates the higher symmetry [Dτ , Dt] = 3Dt5 ,

ut5 =
(
uxxxx + 5(uxwx)x + 5u(wxxx + w2

x + w1,x)
)
x
,

where w1 is nonlocal and such that w1,y = uwx.
Equations (7.28) and (7.29) arise from the compatibility condition for the two linear problems

ψxy + uψ = 0, ψt = A(x)ψxxx +A′ψxx + Cψx, C = 3Awx +A′w

corresponding to the respective choices A = 1 and A = x. The form of the linear problem suggests that we
deal with the Veselov–Novikov hierarchy [69–71]. Using involution (7.24) as in Example 2, we obtain the
equation

ut′ = (uyy + 3uŵy)y, ŵx = u (7.31)

and can prove that the equations, which correspond to differentiations of the form Dt̂ = αDt + βDt′ and
hence the Veselov–Novikov equation, are B-integrable.
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Example 4. The reduction v = u of system (7.27) results in the equation

ut = uxxx + 3uxwx +
3
2
uwxx, wy = u2.

This reduction has all the properties of the preceding two examples. In particular, the master symmetry

uτ = xut +
3
2
uxx + 3uxw + 2uwx

can be obtained using the pointwise transformation

Dx → x1/3Dx, Dy → Dy,

u → x1/6u, w → x1/3w − 7
72

x−2/3.

Using involution (7.24), we can prove the B-integrability of an arbitrary linear combination.

7.3. The two-dimensional Boussinesq equation. We now discuss the hierarchy of the system of
equations

ut = uxx + 2vx, −vt = vxx − 2uux + 2uy, (7.32)

which differs from those above from the standpoint of B-integrability and provides a negative example.
System (7.32) generalizes (Bq1) in the list of systems of the Boussinesq equation type in Appendix 1. We
can exclude the variable v by differentiating the first equation w.r.t. t, which results in the equation

utt = Dx(uxxx + 4uux − 4uy). (7.33)

Up to the redefinition y ↔ t and scalings, it is KP equation (7.2). To be precise, the independent variables
t3 and y in the KP equation become the respective y and t variables in Eq. (7.33). We can easily rewrite
higher symmetries in the new variables and, in particular, obtain the higher symmetry of system (7.32)

ut4 = Dx(uxxx + 2uy + 2vxx + 2uux + 4uv) + 4vy,

−vt4 = Dx

(
vxxx + 2vy + 2uxy − 2uuxx − u2

x + 2uvx − 2v2 − 4
3
u3

)
+ 4wyy

(7.34)

from (7.10), where wx = u.
On the one hand, the master symmetry for system (7.32) cannot be related to the very equation by a

pointwise transformation as was the case in the previous examples. Indeed, if such a system existed, a master
symmetry would become local and therefore generate local higher symmetries, while higher symmetries
of (7.32) are nonlocal. On the other hand, the pointwise transformation in (7.34),

Dx → y1/4Dx, Dy → y3/4Dy +
1
4
xy−1/4Dx,

u → y1/2u+
1
4
xy−1/2, v → y3/4v, w → y1/4w +

1
8
x2y−3/4,

corresponds to the master symmetry

uτ = yut4 + xut +
5
2
ux + 4v,

vτ = yvt4 + xvt − uxx −
5
2
vx − 5wy + u2.
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In particular, letting Dt1 and Dt3 denote the differentiations corresponding to the respective equations
ut1 = ux and ut3 = uy, we obtain

adDτ : Dt1 → Dt → Dt3 → Dt4 .

We therefore have a mismatch on the very first step; all other hierarchy members presumably remain
B-integrable.

Similar examples exist for (1+1)-dimensional equations, where the integrability within the symmetry
approach naturally means the existence of infinite hierarchies of local higher symmetries and conserva-
tion laws. This integrability can sometimes be broken by a simple transformation analogous to ũ = ux.
Such examples nevertheless do not distort the picture, and we can use this definition for classifying and
testing. One such example pertains to system of equations (Bq1) in Appendix 1, whose two-dimensional
generalization is system (7.32). The transformation ũ = u, ṽ = vx − u2/2 results in the system

ut = uxx + p, vt = −vxx + u2
x − up, p = 2v + u2. (7.35)

Equations (A.6) imply that ρ2 = 4u+const, but this function is not a conserved density. System (7.35), in
contrast to (Bq1), therefore cannot have local conservation laws and higher symmetries.

7.4. The calculation technique. In fact, we must not use the auxiliary linear problem to verify
conditions (7.1). We now describe this procedure with the example of the equation

uyt + αuxuxy + βuyuxx + uxxxy = 0, αβ �= 0. (7.36)

The known test indicates that it is integrable only for α = β (see [72, 73]).
The first problem is the choice of the general form of the change of variables. In the scalar equation

case, we must a priori admit arbitrary contact transformations (for systems, they are exhausted by pointwise
transformations according to the classic Bäcklund result, but we must also include invertible differential
substitutions). Nevertheless, in the most of the significant examples, it suffices to consider pointwise
substitutions of the form

x → ξ(x, y), y → η(x, y), u → ϕ(u, x, y). (7.37)

Roughly speaking, this corresponds to equations with constant coefficients in the principal linear part.
Nonlocal terms of an equation provide corrections to the form of the replacement. Indeed, in practice, the
structures of singularities of an equation and of its master symmetry coincide. Because the operators Dx
and Dy under replacement (7.37) are changed as

Dx → 1
∆
(ηyDx − ηxDy), Dy →

1
∆
(ξxDy − ξyDx) (7.38)

(where ∆ = ξxηy − ξyηx), which implies that if, for instance, the equation contains the operator D−1
y (as

is the case for Eq. (7.28)), then ξy = 0. Indeed, supposing the opposite, we find that the operator D−1
y

transforms into the operator that is inverse to the operator in the right-hand side of (7.38), which drives the
master symmetry out of the limits of the class under consideration. Analogously, if an equation contains
the operator D−1

x (as is the case for KP equation (7.2)), then ηx = 0. Eventually, for equations containing
nonlocalities of both types in the right-hand side, we have ξy = ηx = 0, which means that we deal with the
simplest change of variables. The Veselov–Novikov equation, which is a linear combination of Eqs. (7.28)
and (7.31), has such a structure.

In all the examples above, the replacement was linear in u. This is because a nonlocality of the type
D−1
x (u) must be expressed through a nonlocality of the same type. Of course, if we “distort” an equation

with such a nonlocality by a transformation u = f(ũ), then the linearity of the substitution is broken.
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The above reasoning is by no means rigorous; it only clarifies how the form of an equation determines the
form of the substitution. However, we can easily prove it for a concrete equation by analyzing determining
relation (7.1).

The second problem is the problem of nonlocalities, which is general for the theory of two-dimensional
integrable equations. We do not propose new tools for solving it and only briefly discuss the specific
properties of our problem.

In the simplest cases, we can work with local equations at the price of abandoning the evolution
property. For example, an equation of the form (which is true for Eq. (7.36))

uy,t = F (x, y, u, ux, uy, uxx, uxy, uyy, . . . )

can be transformed by replacement (7.37) with ξy = 0 into an equation of the form

uy,τ = G(x, y, u, ux, uy, uxx, uxy, uyy, . . . ).

Defining
uy,t′ = H = Dτ (F )−Dt(G),

we can in principle verify the equality R = Dt(H) −Dt′(F ) = 0. The difficulty is that this equality now
contains not only derivatives w.r.t. x and y but also w.r.t. t, t′, and τ . We can eliminate these derivatives
using a multiple differentiation w.r.t. y, which also produces the condition for the equation R = 0 to be
consistent with the initial equation.

It is more convenient to work with the evolutionary type of equations. Replacing t → −t and αuy → 3u,
we can reduce Eq. (7.36) to the form

ut = uxxx + 3uD−1
y uxx + 3λuxD−1

y ux, (7.39)

which coincides with (7.28) for λ = 1 (which corresponds to α = β). When verifying determining rela-
tion (7.1), we encounter the need to further replace the changes around nonlocalities. We must then take
the integration constants into account; for example, the nonlocality of D−1

y u is transformed as

D−1
y u → D−1

y

(
ηyϕ(u, x, y)

)
+ µ(x).

If we have several nonlocalities, we must introduce several functions µ.
In conclusion, we note that the operator language is convenient for actual calculations where the equal-

ity of functions is replaced by the condition for equality of the corresponding pseudodifferential operator of
the form ∑

i,j<∞
aijD

i
xD

j
y =

∑
i<∞

AiD
i
x,

obtained by the linearization. Determining equation (7.1) is then replaced by the relations

[F∗, H∗] +Dt′(F∗)−Dt(H∗) = 0, H∗ = [F∗, G∗] +Dτ (F∗)−Dt(G∗), (7.40)

where F∗, G∗, and H∗ are the linearization operators for the right-hand sides of the equation, its master
symmetry, and their commutator, i.e.,

ut = F, uτ = G, ut′ = H = Dτ (F )−Dt(G).

We analyze relation (7.40) step by step, subsequently fitting the replacement form. For example, to verify
the linearity of a replacement, we can verify it only for the first two terms in F∗ and in G∗. We have

F∗ = D3
x + uD−1

y D2
x + . . . .
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Because the nonlocality is related to D−1
y , we have ξ = ξ(x) and

Dx → A = a(x)Dx + b(x, y)Dy, Dy → c(x, y)Dy, ac �= 0.

The transformed equation is

uτ = G =
1
ϕu

(
A3(ϕ) + 3ϕA2(ψ) + 3A(ϕ)A(ψ)

)
, ψ = D−1

y

(ϕ
c

)
+ µ(x),

whence

G∗ = g3D
3
x + 3g2D

2
x + . . . ,

g3 = a2b, g2 = g2,1Dy + g2,0 + . . . ,

g2,1 = a2b, g2,0 =
ϕuu
ϕu

a2(aux + buy) + d(u, x, y).

Substituting these expressions in (7.40) and zeroing the coefficients of D7
x and D6

x, we obtain

D2
x(g3) = D2

x(g2,1) = D2
x(g2,0) = 0,

which proves the linearity of the replacement: ϕuu = 0. Clarifying its form further and analyzing condi-
tions (7.40) in several steps, we obtain either a contradiction if λ �= 1 or formula (7.30) if λ = 1.

Appendix 1: Canonical densities

We now briefly discuss the integrability conditions and lists of integrable equations for the classes of
KdV, Burgers, NS, and Boussinesq equations (see, e.g., [10, 12]). We first consider the scalar evolution
equations

ut = G(x, u, u1, u2, . . . , un), n ≥ 2, (A.1)

where u1 = ux, u2 = uxx, etc. In what follows, we use the notation G0 = ∂G/∂u and Gk = ∂G/∂uk for
brevity.

For Eq. (A.1) of any order n, we can write the simplest integrability conditions (the necessary conditions
for the existence of higher symmetries and conservation laws), which are local conservation laws ρt =
σx, where ρ is the special density (the so-called canonical density) constructed by the right-hand side of
the equation. This condition states that there exists such a function σ of a finite number of variables
x, u, u1, u2, . . . , and this condition can be easily verified for any given equation.

Statement 3. If Eq. (A.1) has a symmetry of order higher than n, then the function ρ = G
−1/n
n is a

canonical density. If the equation

ut = un + F (x, u, u1, u2, . . . , um), Fm �= 0, m ≤ n− 2, (A.2)

has a symmetry of order higher than n+m, then the function ρ = Fm is also a canonical density.

As shown in Sec. 6.1, canonical densities for Eq. (A.1) are defined as the residues of powers of the
first-order solution of Eq. (6.2): ρk = resLk. If an equation is integrable, the operator L coincides in
principal with G

1/n
∗ , i.e., the first among the canonical densities is ρ−1. Similar considerations show that

the n subsequent densities ρk are

ρk = res(G∗)k/n, k = 1, . . . , n− 1, ρn = σ1,
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where σ1 is found from the relation (ρ1)t = (σ1)x. For equations of form (A.2), we present the first four
such canonical densities:

ρ1 = Fn−2, ρ2 = Fn−3,

ρ3 = Fn−4 +
3− n

2n
F 2
n−2, ρ4 = Fn−5 +

4− n

n
Fn−3Fn−2.

(A.3)

For example, for the third-order equations

ut = u3 + F (x, u, u1),

the canonical densities are
ρ1 = F1, ρ2 = F0, ρ3 = σ1.

Up to pointwise transformations (including the Galileo transformation) and potential transformations u →
ux, the equations that have higher symmetries and conservation laws constitute the following list.

The list of equations of the KdV type is

ut = u3 + P (u)u1, P ′′′ = 0; (K1)

ut = u3 −
1
2
u3

1 + (αe
2u + βe−2u)u1. (K2)

In [12], the reader can find a wider list of integrable third-order equations from which we select the
Krichever–Novikov equation [74]

ut = u3 −
3
2u1

(
u2

2 +R(u)
)
, (A.4)

where R is an arbitrary polynomial of the fourth degree. This equation, akin to the Landau–Lifshitz model
or to Eq. (P6), is the universal equation in the corresponding class.

For the fifth-order equations
ut = u5 + F (x, u, u1, u2, u3),

the canonical densities are

ρ1 = F3, ρ2 = F2, ρ3 = F1 −
1
5
F 2

3 , ρ4 = F0 −
1
5
F2F3, ρ5 = σ1.

In this case, the list of integrable equations (up to the same transformations as in the previous example)
comprises five equations. (The higher symmetries of third-order equations are excluded.)

The list of equations of the fifth order is

ut = u5 + 5uu3 + 5u1u2 + 5u2u1, (K5
1)

ut = u5 + 5uu3 +
25
2
u1u2 + 5u2u1, (K5

2)

ut = u5 + 5(u1 − u2)u3 + 5u2
2 − 20uu1u2 − 5u3

1 + 5u
4u1, (K5

3)

ut = u5 + 5(u2 − u2
1 + ae2u − be−4u)u3 + 15(ae2u + 4be−4u)u1u2 −

− 5u1u
2
2 + u5

1 − 90be−4uu3
1 + 5(ae

2u − be−4u)2u1, (K5
4)

ut = u5 + 5(u2 − u2
1 − ae2u + be−u)u3 − 5u1u

2
2 −

− 15ae2uu1u2 + u5
1 + 5(ae

2u − be−u)2u1. (K5
5)
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There is a hypothesis that starting with order six, all nonlinear integrable equations of form (A.2) are
exhausted by higher symmetries of equations of orders 2, 3, 4, and 5.

For the second-order equations, the classification problem was completely solved for equations of general
form (A.1). Up to contact transformations, the list of nonlinear equations is as follows.

The list of equations of the Burgers type is

ut = Dx(u1 + u2 + a), (B1)

ut = Dx

(u1

u2
+ αxu + βu

)
, (B2)

ut = Dx

(u1

u2
− 2x

)
, (B3)

where α and β are arbitrary constants and a(x) is an arbitrary function. This classification result was
obtained in [75].

Eventually, for the systems of equations

ut = u2 + F (u, v, u1, v1), vt = −v2 +G(u, v, u1, v1) (A.5)

(comparing with (4.3) we scale the time, which does not change the symmetry properties of the equations),
the three lowest canonical densities are

ρ1 =
1
2
(Fu1 +Gv1),

ρ2 = σ1 −
1
4
(F 2
u1
+G2

v1) + Fv1Gu1 + Fu −Gv, (A.6)

ρ3 = σ2,

where σi must be found from the relations (ρi)t = (σi)x. The lists of NS-type systems having conservation
laws with such densities are in Sec. 4.1 (the complete lists of such integrable systems were found in [10, 30]),
and we here present only those systems from the Boussinesq equation class that are related to spectral
problems of the third order.

The list of systems of the Boussinesq type is

ut = u2 + 2v1, vt = −v2 + 2uu1, (Bq1)

ut = u2 + v1, vt = −v2 + u2
1 +

(
v +

u2

2

)
u1, (Bq2)

ut = u2 + (u+ v)2, −vt = v2 + (u+ v)2, (Bq3)

ut = u2 + (u+ v)v1 −
(u + v)3

6
, vt = −v2 + (u+ v)u1 +

(u+ v)3

6
, (Bq4)

ut = u2 + v2
1 +Wuv1 + Zv, −vt = v2 + u2

1 −Wvu1 + Zu, (Bq5)

where

W =
3∑
k=1

αke
−wk , Z =

3∑
k=1

(βkewk + γke
−2wk), wk = εku+ ε−kv,

and ε = exp(2πi/3) is the cubic root of unity: ε3 = 1.
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Appendix 2: Integrability conditions and classification results for
differential–difference equations

The classification results and integrability conditions for equations on the lattice, which we discuss in
this section, are presented in the literature not as well as for the continuous equations. There are four
classification results obtained for the lattice equations with one discrete and one continuous variable within
the symmetry approach. These results pertain to the classes of equations

ux = f(u1, u, u−1), fu1fu−1 �= 0, (A.7)

qxx = f(qx, q1, q, q−1), fq1fq−1 �= 0, (A.8)

qxx = f(q1, q, q1,x, qx)− g(q, q−1, qx, q−1,x), fq1,xgq−1,x �= 0, (A.9)

ux = f(u1, u, v), vx = g(v−1, v, u), fu1fvgv−1gu �= 0. (A.10)

Elementary representatives of these classes are the respective Volterra equation (5.10), Toda chain (4.26),
relativistic Toda chain (R3) with µ = 1 and ν = 0 (see Sec. 4.2), and its Hamiltonian form (4.40). The
classification results explain, in particular, why the three lists presented in Sec. 4 using several Lagrangians
are indeed three complete lists of integrable chains. The detailed derivation of integrability conditions and
the scheme of the symmetry approach as applied to lattice equations was given in [9, 55].

For Eqs. (A.7) (see [52, 53]), several lower integrability conditions are

ρix = (T − 1)σi, i = 1, 2, 3,

ρ1 = log fu1 , ρ2 = σ1 + fu, ρ3 = σ2 +
1
2
(ρ2)2 + fu1Tfu−1

(A.11)

and

ωi = (T − 1)si, i = 1, 2,

ω1 = log
(
− fu1

fu−1

)
, ω2 = s1

x + 2fu.
(A.12)

Theorem 4. If an equation of form (A.7) has two local conservation laws of orders N1 > N2 > 4 then
it satisfies conditions (A.11) and (A.12).

We recall that the functions ρ and σ, which determine the local conservation law ρx = (T −1)σ, depend
on a finite number of variables u, u±1, u±2, . . . in the case of chains (A.7). The formal variational derivative
δρ/δu is

δρ

δu
=

∑
k

∂

∂u
T kρ = ρ̂(uN , uN−1, . . . , u−N),

and the number N is the order of the conservation law.
The presented integrability conditions do not depend (as is the case in the classical scheme of the

symmetry approach) on the forms and orders of conservation laws. We can use a formal variational derivative
when verifying integrability conditions because

δh

δu
= 0 ⇔ h ∈ const+ Im(T − 1).
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Integrability conditions (A.11) and (A.12) are sufficiently effective for us to obtain the complete list of
equations satisfying these conditions. An extra analysis of equations from this list shows that these con-
ditions are simultaneously sufficient conditions for the existence of symmetries and conservation laws of
arbitrarily high orders. The integrability conditions, which we present below for other classes of chains,
are both necessary and sufficient conditions. The list of equations satisfying conditions (A.11) and (A.12)
coincides (up to the transformations ũn = ν(un), x̃ = cx) with list (V) in Sec. 5.3.

We also note that first-type conditions (A.11) allow constructing simplest local conservation laws for
the equations in list (V). Both conditions (A.11) and conditions (A.12) can be easily verified for any given
equation, i.e., provide a convenient integrability test.

We now discuss the chains of form (A.8). The integrability conditions are then determined by the
functions (see [32])

ρ1 = log fq1 , ρ2 = 2σ1 + fqx , ρ3 = 2σ2 − 1
2
(fqx)x +

1
4
(
f2
qx
+ (ρ2)2

)
+ fq,

ω1 = log
(

fq1
fq−1

)
, ω2 = s1

x + fqx .

Theorem 5. The conditions with the above functions ρi and ωi are satisfied if we have at least two
conservation laws of orders N1 ≥ 8 and N2 > 2N1 − 3.

The functions ρ and σ, which determine a local conservation law, now depend on the variables
q, qx, q±1, q±1,x, . . . . The variational derivatives δρ/δq and δρ/δqx are

δρ

δq
= ρ̂(qN , qN,x, . . . , q−N , q−N,x),

δρ

δqx
= ρ̃(qN , qN,x, . . . , q−N , q−N,x)

(we assume that ρ̂ or ρ̃ depends on at least one of the variables qN , qN,x, q−N , q−N,x), and the number N of
higher variables is called the order of the conservation law. Verifying the integrability conditions, we must
investigate double variational derivatives because

δh

δq
=

δh

δqx
= 0 ⇔ h ∈ const+ Im(T − 1).

The list of equations satisfying the integrability conditions comprises (up to the transformations q̃n =
ν(qn), x̃ = cx, and q̃n = (−1)nqn) chains (4.31), (4.34), and

qxx = exp(q1 − 2q + q−1) + µ. (A.13)

Chain (A.13) is an obvious modification of Toda chain (4.26); the transformation is q̃ = q1 − q (q̃ is a
solution of (4.26)). Using the integrability conditions, we can construct not only simplest conservation laws
but also higher symmetries for chains (4.31) and (4.34) because these chains are Hamiltonian.

The class of chains (A.10), in contrast to (A.7) and (A.8), is less convenient from the standpoint
of the symmetry approach because of the presence of “nonstandard” higher symmetries and integrability
conditions. The list of integrability conditions and the classification result, which we present below, are
from [36].

We consider systems that have Hamiltonian structure (4.39). We can then demand only the presence
of higher symmetries. It is of no purpose to involve local conservation laws because they cannot not lead
to additional integrability conditions analogous to (A.12) (see, e.g., [36, 55]). The higher symmetries of
chains (A.10) are segregated into two absolutely different kinds.
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If we consider a symmetry of order N ,

ut = F (uN , vN , uN−1, vN−1, . . . ), vt = G(uN , vN , uN−1, vN−1, . . . ) (A.14)

and investigate the condition for the compatibility of (A.14) and (A.10), we find that FvN = GuN = 0 and
derive the first integrability condition. In the case FuN �= 0, we obtain the condition

(log fu1)x = (T − 1)σ, (A.15)

which is a standard integrability condition analogous to (A.11). The developed technique for investigating
these conditions shows that they are sufficiently effective to classify integrable equations.

In the case GvN �= 0, we obtain a condition of another type,

ρx = (TN − 1)gv. (A.16)

It is again a local conservation law because

TN − 1 = (T − 1)(TN−1 + TN−2 + · · ·+ T + 1),

but it now depends on the symmetry order N and has no definite density ρ. We do not know how to deal
with such conditions. To implement a classification, we introduce the so-called special symmetries, which
allow avoiding nonstandard conditions (A.16). The special symmetry of order N is

ut = F (uN , uN−1, vN−1, . . . ), vt = G(uN−1, uN−2, vN−2, . . . ), FuN �= 0.

We therefore consider chains of form (A.10) with Hamiltonian structure (4.39), which have special symme-
tries of sufficiently high orders. The classification is up to pointwise transformations of the form

ũn = ν(un), ṽn = η(vn), x̃ = cx, (A.17)

which preserve the given structure of chains and their symmetries.

Theorem 6. If system (A.10) admits a special symmetry of orderN ≥ 4, then it satisfies the conditions
of form (A.11) with the functions

ρ1 = log fu1 , ρ2 = σ1 + fu, ρ3 = σ2 +
1
2
(ρ2)2 + fvgu.

The chain of form (A.10) with Hamiltonian structure (4.39) satisfies the given conditions iff change of
variables (A.17) can be reduced to one of the chains in list (H) in Sec. 4.3. Because the systems in list (H)
are Hamiltonian, their integrability conditions provide both the simplest conservation laws and the higher
symmetries for these systems. When verifying integrability conditions for the given system, it is convenient
to use the statement

δh

δu
=

δh

δv
= 0 ⇔ h ∈ const+ Im(T − 1).

We therefore see that the last classification result, albeit weaker than the two previous results, provides us
with a number of integrable chains having numerous applications.
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From the standpoint of the general symmetry approach, the class of chains (A.9) is analogous to that
of (A.10). Here, we again have two types of higher symmetries, which result in two different types of
integrability conditions. The corresponding classification result was obtained in [33], where integrability
conditions were not written and a simplified symmetry approach scheme was used. In [33], chains (A.9),
having symmetries of the form

qt = f(q1, q, q1,x, qx) + g(q, q−1, qx, q−1,x), (A.18)

were considered. Such a symmetry can obviously be written in the variables u = qn+1 and v = qn as a
system of the NS type (we can rewrite the symmetry by virtue of (A.9)),

ut = uxx + 2g(u, v, ux, vx), vt = −vxx + 2f(u, v, ux, vx). (A.19)

It is known (see, e.g., [10]) that a system of form (A.19) that admits conservation laws of sufficiently
high order must satisfy the condition gux − fvx ∈ ImDx. This condition gives a relation of the form

gux − fvx =
(
s(u, v)

)
x
= suux + svvx.

Returning to the variables qi, we obtain the representation

T (gqx)− fqx = sq1q1,x + sqqx (A.20)

in terms of the right-hand side of the chain and a function of two variables s(q1, q). Relation (A.20) can be
treated as the second condition (we also need a function s satisfying (A.20)).

Up to transformations of the form q̃n = ν(qn), chains (A.9) that have a symmetry of form (A.18) and
satisfy condition (A.20) are exhausted by the list of equations comprising (4.28), (4.30), and (4.35).
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University Publ., Minsk (1990).

69. A. P. Veselov and S. P. Novikov, Sov. Math. Dokl., 30, 588–591 (1984).

70. L. P. Nizhnik, Sov. Phys. Dokl., 25, 706–708 (1980).

71. M. Boiti, J. J.-P. Leon, M. Manna, and F. Pempinelli, Inverse Problems, 2, 271–279 (1986).

72. E. L. Mansfield and P. A. Clarkson, Math. Comput. Simul., 43, 39–55 (1997).

73. A. V. Mikhailov and R. I. Yamilov, J. Phys. A, 31, 6707–6715 (1998).

74. I. M. Krichever and S. P. Novikov, Russ. Math. Surv., 35, 53–79 (1980).

75. S. I. Svinolupov, Russ. Math. Surv., 40, No. 5, 241–242 (1985).

1661


