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Abstract

The paper contains the description of the theory of approximate calculation of
integrals over arbitrary multi-dimensional domains. This research branch is devel-
oped in several research centers in Russia and, in particular, in the Ufa Mathematical
Institute of the Russian Academy of Sciences. We consider the best approximations
of linear functionals on a certain semi-Banach space B by linear combinations of
the Dirac functions with supports in the nodes of a certain lattice:

(lN , f) ≡
∫
Ω

f(x)dx−
∑
k∈Zn,
HNk∈Ω

ckf(HNk), (1)

where HN is an n × n matrix, such that detHN 6= 0 and detHN → 0 as N → ∞
and f : Rn → C, f ∈ B ⊂ C(Rn).

This setting of the problem was given by academician Sergei L’vovich Sobolev
in the middle of the last century.

Introduction

For the sake of brevity we give a simplified setting of the problem.
The Sobolev cubature formulas Khf = hn

∑
hHk∈Ω

ckf(hHk) allow approximate calcula-

tion of integrals If =
∫
Ω

f(x)dx, where Ω is a domain in Rn and {hHk| k ∈ Zn} is a lattice

of nodes. Here H is an n × n matrix and h is a small parameter. The sharpness of the
approximation is determined by the norm of the error functional I −Kh : B → C, where
B ⊂ C(Rn) is a certain semi-Banach space. A cubature formula Kopt

h is called optimal if

‖I −Kopt
h ‖B∗ = min

ck
‖I −Kh‖B∗ . (2)

1Supported by the Russian Foundation for Basic Research (project 09-01-00349-a) and by the pro-
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Moreover, a cubature formula Kas
h is called asymptotically optimal or optimal by order if

ν(h) =
‖I −Kas

h ‖B∗
‖I −Kopt

h ‖B∗
→ 1 as h→ 0, (3)

lim
h→0

ν(h) <∞ respectively.

S.L. Sobolev gave an algorithm of calculation of the coefficients ck of an asymptotically
optimal formula for the case in which B is the space L

(m)
2 (Ω) with the semi-norm

‖f‖m =

∫
Ω

∑
|α|=m

m!

α!
|Dαf(x)|2dx

 1
2

where m >
n

2
. (4)

His main investigations were carried out in the sixties-seventies of the last century —
see [1] and [2].

There is a well-known algebraic approach of constructing cubature formulas of high
precision. The parameters of the cubature formula are chosen in such a way that the
formula is exact for all polynomials of given degree. One of examples is the Gaussian
quadrature formula. The main postulate of Sobolev’s theory is the symbiosis of an al-
gebraic and an analytical approaches. He constructed asymptotically optimal formulas
as the sum of local formulas with the sizes of supports of order O(h) and exact for all
polynomials of degree m. He worked out and theoretically justified the algorithm of his
“Sobolev formulas”. Now these formulas are known as RBL (Regular Boundary Layer)
formulas. The words “Regular Boundary Layer” mean that the coefficients are calculated
only in O(h)-neighbourhood of the boundary Γ and for inner nodes all coefficients are
equal to 1.

Let us give the exact description of the RBL algorithm. Let Ω be the domain of
integration and {hk| k ∈ Zn} be the lattice of nodes. We define the elementary mesh of
the lattice as

h(Q+ k) = {x| x = hk + hy, y ∈ Q}, (5)

where Q = [0, 1)n is the unit cube. The elementary cubature formula is∫
h(Q+k)

f(x)dx u hn
∑
s∈Zn,
|s|≤L

ak,sf(hk + hs). (6)

The coefficients ak,s are determined by the conditions of exactness for all polynomials
of degree M . If ρ(x,Γ) is the distance of x ∈ Ω to Γ and ρ(hk,Γ) > L1h for some L1 > 0
independent of h and k, then it is assumed that ak,s = as are independent of k and h.
Otherwise the coefficients ak,s essentially depend on k, s and h.

Later on it was proved that these RBL formulas possess the property of asymptotic
optimality not only for B = L

(m)
2 (Ω) but also for some other spaces B.

Sobolev’s algorithm was modified in order to make it applicable for designing practical
programmes for calculation of integrals, and new BBL (Bounded Boundary Layer) cuba-
ture formulas were constructed. The programmes using BBL formulas work for domains
of arbitrary shape and for dimensions from 2 to 10.

They are designed for multiprocessor computing systems and have high efficiency of
using processors — around 70–90%. These programmes were, in particular, applied for
solving integral equations on domains of arbitrary shapes.
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Let us give the definition of BBL formulas.
We say that a cubature formula

KNf ≡ detHN

∑
k∈Zn,
HNk∈Ω

ck,Nf(HNk), N =
|Ω|

detHN

(7)

is a BBL formula if for some L2 > 0

∀k |ck,N | ≤ L2; ρ(HNk,Γ) > L2h⇒ ck,N = 1. (8)

Among these formulas there exist some with bad approximation properties. For ex-
ample, if all coefficients ck,N are equal to 1, the approximation is only of degree 1, O(h).
So it is important to find algorithms giving high-precision BBL formulas. We describe
one of such algorithms. It produces asymptotically optimal formulas.

For the sake of simplicity we discuss only the case of cubic lattices of nodes

{hk| k ∈ Zn}. (9)

Let Ω be an n–dimensional bounded domain:

Ω = {x| x ∈ Rn, Φ(x) > 0, Φ ∈ CM , DΦ(x) 6= 0 if Φ(x) = 0}. (10)

The boundary Γ = {x| x ∈ Rn, Φ(x) = 0} is smooth and could be locally represented
by graphs of some functions, i.e. ∀x̂ ∈ Γ ∃ ε(x̂) > 0 such that, if Ux̂ = {x| |x− x̂| < ε(x̂)},
then

Γ ∩ Ux̂ = {x| x ∈ Ux̂, ∃ j = j(x̂), xj = ψj(x1, . . . , xj−1, xj+1, . . . , xn), ψj ∈ CM}. (11)

Consider a finite covering of Γ with some Ux̂(α), α = 1, . . . , k. Let Ω0 = Ω\
k⋃

α=1

Ux̂(α),

then

ρ(Ω0,Γ) ≡ ε0 > 0. (12)

Let U0 = {x| ρ(x,Ω0) < ε0/2}, then the set {Uα}kα=0 is a finite covering of Ω. It is
well known that there exists a partition of unity {ϕα}Kα=0 subordinated to this covering

∀α ϕα ∈ CM
0 (Rn), supp ϕα ⊂ Uα,

K∑
α=0

ϕα(x)|x∈Ω ≡ 1. (13)

Our BBL formulas are sums of local formulas for the sets ωα ≡ Uα ∩ Ω:

hn
∑
k∈Zn,
hk∈Ω

ckf(hk) =
K∑
α=0

hn
∑
k∈Zn,
hk∈ωα

ck,αϕα(hk)f(hk). (14)

For the inner domain ω0 we put ck,0 ≡ 1.
The local formulas for all ωα, α = 1, k are constructed in a similar way. So we describe

one of them. Let

ω1 = {x| xn ≥ ψ(x1, . . . , xn−1) ≡ ψ(x′), x′ ∈ σ b Rn−1, ψ ∈ CM(σ)}. (15)
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Let us change variables: y′ = x′, yn = xn − ψ(x′). In the variables y the boundary
Γ∩ω1 is a part of the coordinate hyperplane {y| yn = 0, y′ ∈ σ}. We construct auxiliary
RBL cubature formulas as sums of elementary formulas (6) with the coefficients ak,s ≡ as
independent of k and h and with the additional property as = 0 for sn < 0. The inverse
change of variables from y to x produces the cubature formula with the curved lattice of
nodes

{x(k)| x(k)
j = hkj for j = 1, n− 1, x(k)

n = hkn + ψ(hk′), k ∈ Zn}. (16)

This lattice of nodes does not coincide with the cubic lattice of nodes (9). Moreover, the
distance from a node of the curved lattice to the nearest node of the cubic lattice is the
same for all nodes on any ray {x| x = (hk′, t), t ≥ 0}. Furthermore

x(k)
n = hkn + h

ψ(hk′)

h
= h

(
kn +

[
ψ(hk′)

h

])
+ h

{
ψ(hk′)

h

}
, (17)

where [α] and {α} denote the integer and the fractional parts of the number α. Keeping
this in mind we can substitute every value of the given function on the nodes of the curved
lattice by finite linear combinations of the values of this function on neighbouring nodes
of the cubic lattice, i.e.

f
(
hk′, h

(
kn +

[
ψ(hk′)
h

])
+ h

{
ψ(hk′)
h

})
≈

≈
S∑
s=0

bs(hk
′)f
(
hk′, h

(
kn +

[
ψ(hk′)
h

])
+ s
)
.

(18)

The coefficients bs(hk
′) are determined by the condition of exactness of this formula

for any polynomial of degree M . The corresponding algebraic system has a solution if
S ≥M + 1. After changing all values f(hk′, hkn + ψ(hk′)) by

S∑
s=1

bs(hk
′)f

(
hk′, h

(
kn +

[
ψ(hk′)

h

]))
we get the desired cubature formula. This formula has the BBL-property and is asymp-

totically optimal on any space W̃m
p (Ω), 1 < p < ∞, with m ∈

(
n
p
,M
)

and on several

other spaces which are often used in numerical mathematics.
We must note that we use some special norms of the spaces Wm

p . For example, if

Ω ⊂ Q = [0, 1)n, then
‖f‖W̃m

p (Ω) ≡ inf
g|Ω=f

‖g‖W̃m
p (Q), (19)

where g(x) =
∑
k∈Zn

gke
2πikx and

‖g‖W̃m
p (Q) =

∫
Q

∣∣∣∣∣∑
k∈Zn

gk(1 + |k|2)m/2e2πikx

∣∣∣∣∣
p
 1
p

. (20)

Next we present the results of numerical experiments for the programme which uses the
BBL cubature formulas described above. This programme was designed in the Institute
of Mathematics, Ufa, by Dr. D.Y. Rakhmatullin [3].
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Programme “CubaInt”

The programme “CubaInt” is designed for calculating integrals on multi-dimensional con-
vex bounded domains with smooth boundaries. It was tested for the following parameters:

• dimension n from 2 to 10;

• integrand f(x) =
∑n

i=1 aix
bi
i ;

• parameter of smoothness M from 2 to 6;

• lattice step h from 10−1 to 10−5;

• domain Ω = {x : Φ(x) > 0, Φ(x) = 1−
∑n

i=1 ci(xi − 0.5)di};

• number of processors P from 1 to 7000.

For the parameters listed below we compared calculations with the theoretical evalu-
ations:

a = (2, 1, 2, 1, ..., 2, 1), b = (2, 4, 2, 4..., 2, 4),
c = (6.25, 39.0625, ..., 6.25, 39.0625), d = (2, 4, 2, 4..., 2, 4),
We conducted a number of tests with decreasing values of the parameter h. Thus we

had a sequence of the parameters:

h1, h2, h3, . . . with h1 > h2 > h3 > . . .

For them we computed the appropriate values of cubature formulas:

Kh1 , Kh2 , Kh3 , . . .

The absolute error of the calculations at the k -th step was computed as the absolute
value of the difference of the value of the cubature formulas with two sequential values of
the parameter h :

4k = |Khk −Khk+1
|.

The theoretical error we considered is the value of the error functional ‖lh‖∗.
We represent every absolute error in the form w1 · 10−w2 with integer number w2 and

1 6 w1 < 10.
Tables 1–3 demonstrate the degrees of absolute errors (numbers w2) of the results

obtained by computer calculations and by theoretical approximations.
For example, we have the same accuracy 10−15 for Ñ = 3200, Ñ := 1/h = N1/n and

M = 4 in both the left and the right sides of Table 1.
The calculations are bad in two cases. First, when rounding errors are significant (we

use long double type). Secondly, when h and M are not sufficiently small which prevents
including 2M lattice nodes along the corresponding rays to the boundary layer.

We must note that the convexity of a given domain is not necessarily required. Let us
take for example the domain (Fig. 1).

Ω =
{
x : 1− 6.25(x1 − 0.5)2 − 6.25(x2 − 0.6 + 3(x1 − 0.5)2)2 > 0

}
.

Numerical results are shown in the Table 4.
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Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 6
50 3 3 2 2 1 50 4 6 7 9 11

100 4 4 3 2 2 100 4 6 8 10 12
200 7 5 4 5 3 200 5 7 10 12 14
400 8 9 11 7 7 400 6 8 11 14 16
800 8 10 12 13 14 800 6 9 12 15 18

1600 9 11 13 15 16 1600 7 10 13 17 20
3200 10 12 15 16 17 3200 8 11 15 18 22
6400 11 14 16 18 18 6400 8 12 16 20 23

12800 12 15 17 18 17 12800 9 13 17 21 25

Table 1: Experimental (left) and theoretical (right) degrees of the absolute errors, n=2

Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 6
50 3 3 2 2 1 50 4 6 7 9 11

100 4 4 3 3 3 100 4 6 8 10 12
200 6 7 5 4 4 200 5 7 10 12 14
400 8 8 8 8 7 400 6 8 11 14 16
800 9 9 10 9 9 800 6 9 12 15 18

1600 9 10 11 11 10 1600 7 10 13 17 20

Table 2: Experimental (left) and theoretical (right) degrees of the absolute errors, n=3

Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 6
25 4 3 3 3 2 25 3 5 6 7 9
50 4 4 4 3 3 50 4 6 7 9 11
75 5 4 4 3 2 75 4 6 8 10 12

100 5 4 4 4 3 100 4 6 8 10 12
125 6 5 4 4 4 125 5 7 9 11 13
150 7 6 5 5 4 150 5 7 9 11 14
175 7 7 5 5 4 175 5 7 9 12 14
200 7 7 6 5 5 200 5 7 10 12 14

Table 3: Experimental (left) and theoretical (right) degrees of the absolute errors, n=5
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Figure 1: Non-convex domain

Ñ\M 2 3 4 5 6
50 4 3 3 3 2

100 4 4 4 4 4
200 4 4 4 4 4
400 5 5 5 5 5

Table 4: Numeric results for non-convex domain

Let us analyze the programme speed and the quality of its parallelization. We use the
speedup and efficiency parameters:

SP =
T1

TP
, EP =

SP
P
,

where TP is time of calculating on P processors.
Figure 2 demonstrates both experimental (dark line) and theoretical (bright line)

speedups.
For example, when n = 2, M = 3, Ñ = 3200, P = 1200, the efficiency is 0.83.
The efficiency is gradually decreasing with the growth of the number of processors. It

is caused by different computational complexity in different lattice nodes and therefore
non-uniform processors load.
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Figure 2: Experimental and theoretical speedups

Programme for solving integral equations

The programme was designed in the Institute of Mathematics, Ufa, by the post-graduate
E.L. Bannikova [4].

Algorithm

We consider the integral equation

u(x)−
∫
Ω

K(x, y)u(y)dy = f(x), x ∈ Ω ⊂ R2. (21)

Here Ω is a two-dimensional bounded closed domain with smooth boundary, K ∈
CM(Ω× Ω) and f ∈ CM(Ω).

Assume that ||K||C(Ω×Ω) = θ < 1. This is sufficient for convergence of successive
approximations

u0(x) = f(x), us+1(x) = f(x) +

∫
Ω

K(x, y)us(y)dy, s = 1, 2, . . . .

The functions us(x) are approximations of the solution u of equation (21) in the norm of
the space C(Ω).

Numerical realization of this method uses BBL cubature formulas on every iteration.

Programme

The program for numerical solution of integral equations was designed on the base the
above algorithms.
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Calculations stop when the condition ||us − us−1|| ≤ ε becomes true, where ||u|| =
max
x∈Ω
|u(x)|, ε — given accuracy.

Input data of the programme:

1. Integration domain Ω defined implicitly: Ω = {x|Φ(x) > 0}, Φ(x) ∈ CM(Q),
|Φ(x)|+ |DΦ(x)| 6= 0, Ω ⊂ [0, 1)2.

2. Function K(x1, y1, x2, y2), max
x,y
|K(x, y)| < 1.

3. Function f(x1, x2).

4. Cubic lattice step h < 0.01.

5. Smoothness parameter M .

6. Number of processors P .

The approximate solution of the integral equation is the function us obtained on the
last iteration. It is displayed as the table of the values of the function us(x) in the nodes
x = hk ∈ Ω.

Programme tests

The programme was tested on the supercomputer “MVS-100k” of the Joint Supercom-
puter Center, Russian Academy of Sciences, Moscow.

We demonstrate some experimental results of solving integral equations. In order to
compare experimental results with the precise solution, we took a function that must be
a solution and calculated f(x). Numerical experiment was done with that f(x).

Here is the input data.
The precise solution was the function u(x) = (x1 − x2)5 .

1. K(x, y) = (0.1x1y1 + 0.5x2y2)3.

2. f(x) = (x1 − x2)5 − (3.5 · 10−6x2x
2
1 + 9.9 · 10−7x3

1 − 1.4 · 10−5x2
2x1 − 1.1 · 10−4x3

2).

3. Integration domains Ω1 = {x|Φ1(x) > 0},
Φ1(x) = 1 − ((x1 − 0.5)/0.4)2 − ((x2 − 0.5)/0.4)4 — this is a convex domain (see
Fig. 3).

4. Cubic lattice step h = 1/200, 1/300.

5. Smoothness parameter M = 2, 3.

6. Number of processors 10–1000 .

The expected accuracy of the calculations is O((h/ε0)M), where ε0 estimates the thick-
ness of the boundary layer (see (12)).

The calculation accuracy was obtained in two ways — by comparing with the precise
solution and by the Runge rule, i.e. by stability of decimal digits in the results with
decreasing h.
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Figure 3: The domain Ω1

s — iteration number h = 1/200, ‖us − us−1‖ h = 1/300, ‖us − us−1‖
1 0.0987 0.0988
2 0.000776 0.000778
3 0.0000268 0.0000269
4 0.00000310 0.00000310

Table 5: The achieved accuracy for the smoothness parameter M = 2

Table 5 contains iterative process data with given parameters.
In Table 5 the accuracy was calculated by decimal digits stability. After comparing

last iteration result with the exact solution u(x) = (x1−x2)5 we have got the coincidence
of 5− 6 decimal digits.

Here the influence of 1/ε0 when ε = 0.1 is insignificant, because the domain Ω1 is
convex and the number of regions of the partition of the unity is small.

Table 6 shows the programme working time for different numbers of processors quan-
tity.

P 10 20 30 40 50 100
TP 230 127 93 75 63 36
SP 10 18 24.7 36 42.6 63.8
EP 1 0.9 0.8 0.8 0.72 0.63

Table 6: Running time with different numbers of processors P , h = 1/200, M = 2. The
achieved accuracy is 10−5.

The next numerical experiment was conducted with the non-convex domain

Ω2 = {x|Φ2(x) > 0}, Φ2(x) = 1−
√

8(x1 − 0.5)2 + 8(x2 − 0.5)2+

+(2(x1−0.5)(x2−0.5) sin(1)+cos(1)((x1−0.5)2−(x2−0.5)2)2)/((x1−0.5)2+(x2−0.5)2)2,

which is shown on Fig. 4.
In view of the fact that in this test the exact solution of the equation is not known,

the accuracy of calculations is evaluated according to the stability of decimal digits. We
have got that the theoretically expected accuracy of the numerical solution of the integral
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Figure 4: The domain Ω2

equation (h/ε0)M of order 10−5 is achieved on the fifth iteration with h = 0.004, M =
3, ε0 = 0.1.

Yet another test with the following data:
1. K(x, s) = (0.1x1s1 + 0.5x2s2)3.
2. f(x) = (x1 + x2)3.
3. The integration domain (disconnected)

Ω3 = {x|Φ3(x) > 0},
Φ3(x) = −(1− 9(x1 − 0.5)2 − 100((x2 − 0.3)− 2(x1 − 0.5)2)2)·
·(1/144− ((x1 − 0.5)− 1/10)2 − (((x2 − 0.5) + 0.2)− 0.3)2),

see Fig. 5.

Figure 5: The domain Ω3

The accuracy was calculated by decimal digits stability. Table 7 shows that the theo-
retically expected accuracy (h/ε0)M of order 10−5 is achieved on the fourth iteration with
h = 0.005, M = 3, ε0 = 0.3.

s—iteration number 1 2 3 4
||us − us−1|| 0.01 0.0001 0.00001 0.000001

Table 7: The achieved accuracy

The programme running time for 1000 processors was 12 seconds.
Thus, using of BBL-formulas is good for numerical solution of integral equations. The

application of the iteration method in combination with BBL lattice cubature formulas
allows to achieve accuracy 10−5 by 5–6 iterations.
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We must note that this algorithm of solving integral equations allows to parallelize
well the computing programme for use on the multiprocessor computing systems.

Conclusions

Here are the most important results of the theory of BBL formulas. In fact the asymptotic
optimality and the optimality by order are very close concepts for cubature formulas with
the bounded boundary layer. For simplicity, we assume that the domain Ω belongs to the
unit cube Q = [0, 1)n and has the boundary Γ ⊂ CM . Let the lattice of nodes be cubical,

{h · k | k ∈ Zn}, with lattice step h, i.e., h = 1/Ñ, Ñ ∈ Z+. The spaces W̃m
p (Ω) are

defined by the norms (19), (20) where m ∈ (n/p, M) with some natural M > n
p
.

Let
Kh : f → hn

∑
hk∈Ω

ck(h)f(hk) (22)

be any sequence of BBL formulas.

Theorem. Let 1 < p1 < p2 < ∞ and n
p1
< m1 < m2 < M. Then the sequence {Kh}

is asymptotically optimal in every space of the family {W̃m
p (Ω)}m∈(m1,m2)

p∈(p1,p2)

, if and only if it

is optimal by order in every of these spaces.

Remark. The numberM is involved in the design of our BBL formulas described above,
ensuring optimality by order for each of the spaces W̃m

p (Ω) with m < M . Therefore, these
formulas are universally asymptotically optimal for every m ∈ (n/p, M) .

This is very important for the success of the programme for approximate integration
of functions with various smoothness. We name algorithms with this property as condi-
tionally unsaturated algorithms, trying to follow the terminology proposed in his time by
K.I. Babenko [5].

The same sequence of cubature formulas remains asymptotically optimal on some
spaces with anisotropic smoothness. Namely, let the space W̃ µ

2 (Ω) be defined with the
help of the norm

‖f‖W̃µ
2 (Ω) = inf

g|Ω=f
‖g‖W̃µ

2 (Q), g(x) =
∑
k∈Zn

gke
2πikx,

‖g‖W̃µ
2 (Ω) =

(∫
Q

∑
k∈Zn
|gkµ(2πik)|2 dx

) 1
2

.
(23)

We assume that |µ(ξ)| ≤ C(1+|ξ|)m with some m < M and the function µ (that describes
smoothness) satisfies the estimate

∀α ∈ Zn+
|Dαµ(ξ)|
|µ(ξ)|

≤ Cα(1 + |ξ|)−ρ|α| with some ρ > 0. (24)

This is exactly the conditions of the hypoellipticity of pseudodifferential operator

g(x)→
∑
k∈Zn

gkµ(2πik)e2πikx. (25)

See [6]–[12] for details.
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