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RIESZ BASES IN WEIGHTED SPACES

A.A. PUTINTSEVA

Abstract. The article deals with weighted Hilbert spaces with convex weights. Let h be
a convex function on a bounded interval I of the real axis. We denote a space of locally
integrable functions on I, such that

||f || :=

√∫
I
|f(t)|2e−2h(t) dt <∞

by L2(I, h).
If I = (−π;π), h(t) ≡ 1, the space L2(I, h) coincides with the classical space L2(−π;π)

and the Fourier trigonometric system is a Riesz basis in this space. As it has been shown
by B.J. Levin, nonharmonic Riesz bases in L2(−π;π) can be constructed using a system
of zeros of entire functions of a sine type. In this paper, we prove that if a Riesz basis of
exponentials exists in the space L2(I, h), this space is isomorphic (as a normed space) to
the classical space L2(I). Thus, the existence of Riesz bases of exponentials is the exclusive
property of the classical space L2(−π;π).

Keywords: Riesz basis, weighted Hilbert spaces, reproducing kernel, Fourier-Laplace
transform, functions of sine type.

Let us assume that I ia a bounded interval of a real axis, h(t) is a convex function on this
interval, and L2(I, h) is a space of locally integrable functions on I satisfying the condition

||f || :=

√∫
I

|f(t)|2e−2h(t) dt <∞.

It is a Hilbert space with a scalar product

(f, g) =

∫
I

f(t)g(t)e−2h(t) dt.

The present paper is devoted to existence of the Riesz exponential bases in spaces L2(I, h).
In the classical case, the Fourier system eπni constructs an orthonormal basis when I = (−π; π),
h(t) ≡ 1. Evidently, there can be no orthonormal exponential bases in the spaces L2(I, h) in
other cases. The notion of the Riesz basis is introduced in [10] by N.K. Bary and indicates
the image of an orthonormal basis when the operator is bounded and invertible. Investigation
of nonorthonormal exponential bases in the space L2(−π; π) has a long history and is vital
nowadays as well. This topic is referred to as the nonharmonic Fourier analysis in the
literature. Initially, coefficients of the exponential basis (eλnt), n = 1, 2, ..., were considered
as a perturbation of integers, i.e. in the form λn = n + αn. B.Ya. Levin suggested for the first
time in [11] that a sequence of coefficients should be characterized as a set of zeroes of an
entire function with various properties. These entire functions were later termed as the entire
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sine-type functions in [12]. Namely, an entire sine-type function is a term for entire exponential
functions that satisfy the estimate

0 < c ≤ |L(z)|e−πRe z ≤ C <∞
outside a certain vertical strip. It is demonstrated in [11], that a system of exponentials, whose
sequence of coefficients coincides with a set of all zeroes of an entire sine-type function generates
a generalized basis in L2(−π; π). Soon, V.D. Golovin demonstrated in [13] that if zeroes of a
sine-type function have the separation property, i.e.

inf
n6=m
|λn − λm| > 0,

then the corresponding system of exponentials constructs the Riesz basis in the space L2(−π; π).
The present paper demonstrates that exponential Riesz bases do not exist in nonclassical

cases.
The basic tool of the present investigation is the Fourier-Laplace transform of functionals. A

function
Ŝ(λ) = S(eλt), λ ∈ C

is called a Fourier-Laplace transform of the functional S in the space L2(I, h). If the functional
S is generated by an element g ∈ L2(I, h), then

Ŝ(λ) =

∫
I

eλt−2h(t)g(t)dt, λ ∈ C.

Manifestly, the mapping L : S −→ Ŝ embeds the conjugate space L∗2(I, h) into a space of entire
functions. For the sake of brevity, the space L2(I, h) is denoted by H. The image of mapping
is designated by Ĥ = L̂2(I, h). The mapping L : H∗ −→ Ĥ is one-to-one, because the system
of all exponentials {eλt}, λ ∈ C is complete. One can introduce an induced structure of the
Hilbert space in the space Ĥ by the formula

(Ŝ1, Ŝ2)Ĥ = (S1, S2)H∗ , S1, S2 ∈ H∗.

The mapping L is an isomorphism of spaces L̂2(I, h) and L∗2(I, h). Making use of the standard
identification of linear continuous functionals in the Hilbert space with an element of the space,
one obtains a conjugate linear isomorphism of spaces H and Ĥ by the formula

f −→ (eλt, f)H .

Such mapping is denoted by L as well and the image L(f) for f ∈ L2(I, h) is denoted by f̂ .
Thus,

f̂(λ) =

∫
I

f(t)eλt−2h(t)dt, f ∈ L2(I, h),

while
(f̂ , ĝ)L̂2(I,h) = (g, f)L2(I,h).

Lemma 1. For w ∈ C, let us indicate the functional generated by the function ewt by Ew.
Then, the function K(λ,w) = Êw(λ) is a reproducing kernel (see [3]) in the space L̂2(I, h), i.e.
for any function F ∈ L̂2(I, h)

F (w) = (F (λ), K(λ,w)).

Proof. Indeed, if F = f̂ , then

(F (λ), K(λ,w)) = (f̂ , Êw) = (ewt, f)L2(I,h) = f̂(w) = F (w).

Writing it directly, one obtains

K(λ,w) = (eλt, ewt) =

∫
I

eλt+wt−2h(t)dt.
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The system of elements ek, k = 1, 2, ..., in a Hilbert space is called an unconditional basis (see
[1]), if it is complete and there are numbers c, C > 0 such that the correlation

c

n∑
j=1

|ck|2||ek||2 ≤ ||
n∑
j=1

ckek||2 ≤ C

n∑
j=1

|ck|2||ek||2

holds for any set of numbers c1, c2, ..., cn. It is known (see [2],[4]), that if the system ek, k = 1, 2, ...
is an unconditional basis, then any element of the space H is represented uniquely in the form
of the series

x =
∞∑
k=1

xkek,

and

c
∞∑
k=1

|xk|2||ek||2 ≤ ||x||2 ≤ C
∞∑
k=1

|xk|2||ek||2.

An unconditional basis ek, k = 1, 2, ... in a Hilbert space is called the Riesz basis if ||ek|| � 1
(see [4]).

Lemma 2. The system of exponentials {eλkt}, k = 1, 2, ... is an unconditional basis in the
space L2(I, h) if and only if the system {K(λ, λk)}, k = 1, 2, ... constructs an unconditional
basis in the space L̂2(I, h).

Proof. Indeed, if a system of exponentials generates an unconditional basis, then any element
f ∈ L2(I, h) is expanded into the series

f(t) =
∞∑
k=1

cke
λkt, (1)

and

||f ||2 �
∞∑
k=1

|ck|2||eλkt||2 =
∞∑
k=1

|ck|2K(λk, λk) =
∞∑
k=1

|ck|2||K(λ, λk)||2. (2)

Upon scalar multiplication of (1) by eλt, one obtains

f̂(λ) =
∞∑
k=1

ckK(λ, λk),

and the relation (2) means that

||f̂ ||2 �
∞∑
k=1

|ck|2||K(λ, λk)||2.

The following properties of unconditional bases are proved in [4] (p. 374).
B1. The system ek, k = 1, 2, ... is an unconditional basis in the space H if and only if the

biorthogonal system hn, n = 1, 2... is an unconditional basis in the space H.
B2. If ek, k = 1, 2, ..., is an unconditional basis in the space H, and hn, n = 1, 2... is a

biorthogonal system, then ||ek|| · ||hk|| � 1.
Suppose that K(z, z) = K(z).

Lemma 3. If a system of exponents {eλkt}, k = 1, 2, ..., is an unconditional basis in the
space L2(I, h), then there are such constants c, C > 0 that the following estimates hold for any
function F ∈ L̂2(I, h):

c||F ||2 ≤
∞∑
k=1

|F (λk)|2

K(λk)
≤ C||F ||2. (3)
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Proof. Let the system of exponents {eλkt}, k = 1, 2, ..., be an unconditional basis in the
space L2(I, h). According to Lemma 2, the system {K(λ, λk)}, k = 1, 2, ... is an unconditional
basis in the space L̂2(I, h). Let En(λ), n = 1, 2, ... be an biorthogonal basis in L̂2(I, h). Due
to the property B1, the system En(λ), n = 1, 2, ... is an unconditional basis, i.e. every element
F ∈ L̂2(I, h) is represented by the series

F (λ) =
∞∑
n=1

FnEn(λ),

and

||F ||2 �
∞∑
n=1

|Fn|2||En(λ)||2.

Due to biorthogonality, one has Fn = (F (λ), K(λ, λn)) = F (λn) and by the property B2
||En||K(λn) � 1. Thus, the relation (3) holds.

The works [7],[8] contain description of the space L̂2(I, h).

Theroem A. The space L̂2(I, h) is isomorphic (as a Banach space) to the space of entire
functions F, satisfying the conditions

|F (z)| ≤ CF
√
K(z), z ∈ C,

||F ||2 =

∫
R

∫
R

|F (x+ iy)|2

K(x)
dh̃′(x)dy <∞,

where

K(z) =

∫
I

|e2zt|e−2h(t)dt, h̃(x) = sup
t∈I

(xt− h(t)).

Theorem 1. If there is an exponential Riesz basis in the space L2(I, h), then eh(t) � 1, i.e.
the space L2(I, h) is isomorphic (as a Banach space) to the classical space L2(I).

Proof. If the system {eλkt} is the Riesz basis in L2(I, h), then the coefficients λk belong to a
vertical strip, i.e. |Re λk| ≤ d for some d > 0.

As it was shown in [5] (see also [6]), coefficients of the unconditional basis {eλkt} satisfy the
separation condition, i.e. |λk − λm| ≥ δ for some δ > 0 when m 6= k. Let us take a number
T > 0 from the conditions h̃′(T ) − h̃′(−T ) ≥ |I|

2
and T ≥ d + δ. Such number can be found

because h̃′(∞)− h̃′(−∞) = |I|.
Since the function K(z) = K(Re z) is bounded from zero and infinity in the strip |Re z| ≤ d

then the relation

c||F ||2 ≤
∞∑
k=1

|F (λk)|2 ≤ C||F ||2, F = f̂ ∈ L̂2(I, h) (4)

holds due to Lemma 3. The left-hand side of the equality provides
∞∑
k=1

|F (λk)|2 ≥ c

∫
|x|≤T

∫
R
|F (x+ iy)|2dydh̃′(x). (5)

The equality

F (x+ iy) =

∫
I

eiytext−2h(t)f(t)dt,∀x ∈ R,

provides ∫
R
|F (x+ iy)|2dy =

∫
I

|f(t)|2e2xt−4h(t)dt
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by the Plancherel formula. Whence, if max{|t|, t ∈ I} = a, the estimate

e−2aT

∫
I

|f(t)|2e−4h(t)dt ≤
∫

R
|F (x+ iy)|2dy ≤ e2aT

∫
I

|f(t)|2e−4h(t)dt (6)

holds for all x ∈ [−T ;T ]. The left-hand inequality together with (5) indicates that
∞∑
k=1

|F (λk)|2 ≥
|I|c
2
e−2aT

∫
I

|f(t)|2e−4h(t)dt. (7)

The properties of subharmonic functions provide the estimate

|F (λk)|2 ≤
1

πδ2

∫
B(λk,δ)

|F (z)|2dm(z).

Since the coefficients are separable, this provides
∞∑
k=1

|F (λk)|2 ≤
1

πδ2

∫
⋃

k B(λk,δ)

|F (z)|2dm(z) ≤ 1

πδ2

∫
|x|≤T

∫
R
|F (x+ iy)|2dydx.

Invoking the right-hand inequality in (6), one has
∞∑
k=1

|F (λk)|2 ≤
2T

πδ2
e2aT

∫
I

|f(t)|2e−4h(t)dt.

This estimate, together with (4) and (7) means that the relations

b

∫
I

|f(t)|2e−4h(t)dt ≤
∫
I

|f(t)|2e−2h(t)dt ≤ B

∫
I

|f(t)|2e−4h(t)dt

hold for some constants b, B and for all f ∈ L2(I, h). Whence, one can conclude by means of
standard methods with the use of "cap"type functions that b ≤ e−2h(t) ≤ B.

Theorem 1 is proved.
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