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RIESZ BASES IN WEIGHTED SPACES

A.A. PUTINTSEVA

Abstract. The article deals with weighted Hilbert spaces with convex weights. Let h be
a convex function on a bounded interval I of the real axis. We denote a space of locally
integrable functions on I, such that

11 = \//If(t)|2e2h<t> dt < oo
I
by LQ(I, h)

If I = (—mm), h(t) = 1, the space Lo(I,h) coincides with the classical space Lo(—m;7)
and the Fourier trigonometric system is a Riesz basis in this space. As it has been shown
by B.J. Levin, nonharmonic Riesz bases in Lo(—7;7) can be constructed using a system
of zeros of entire functions of a sine type. In this paper, we prove that if a Riesz basis of
exponentials exists in the space Lo(I, h), this space is isomorphic (as a normed space) to
the classical space La(I). Thus, the existence of Riesz bases of exponentials is the exclusive
property of the classical space La(—m;7).

Keywords: Riesz basis, weighted Hilbert spaces, reproducing kernel, Fourier-Laplace
transform, functions of sine type.

Let us assume that I ia a bounded interval of a real axis, h(t) is a convex function on this
interval, and L?(I,h) is a space of locally integrable functions on I satisfying the condition

IF11:= \//Ilf(t)Pe?h(t) dt < oco.

It is a Hilbert space with a scalar product

(f.9) = /1 F(H)g(t)e™2® dt.

The present paper is devoted to existence of the Riesz exponential bases in spaces Ly(I, h).
In the classical case, the Fourier system ™ constructs an orthonormal basis when I = (—7; ),
h(t) = 1. Evidently, there can be no orthonormal exponential bases in the spaces Ls(1, h) in
other cases. The notion of the Riesz basis is introduced in [10] by N.K. Bary and indicates
the image of an orthonormal basis when the operator is bounded and invertible. Investigation
of nonorthonormal exponential bases in the space Lo(—m;7) has a long history and is vital
nowadays as well. This topic is referred to as the nonharmonic Fourier analysis in the
literature. Initially, coefficients of the exponential basis (e*!), n = 1,2,..., were considered
as a perturbation of integers, i.e. in the form A\, = n 4+ a,,. B.Ya. Levin suggested for the first
time in [11] that a sequence of coefficients should be characterized as a set of zeroes of an
entire function with various properties. These entire functions were later termed as the entire
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sine-type functions in [12]. Namely, an entire sine-type function is a term for entire exponential
functions that satisfy the estimate

0<c<|L(z)]e™* <0< o0

outside a certain vertical strip. It is demonstrated in [11], that a system of exponentials, whose
sequence of coefficients coincides with a set of all zeroes of an entire sine-type function generates
a generalized basis in Lo(—m; 7). Soon, V.D. Golovin demonstrated in [13] that if zeroes of a
sine-type function have the separation property, i.e.

inf (A — Am| > 0,
n#Em

then the corresponding system of exponentials constructs the Riesz basis in the space Lo(—7; 7).

The present paper demonstrates that exponential Riesz bases do not exist in nonclassical
cases.

The basic tool of the present investigation is the Fourier-Laplace transform of functionals. A
function R

S(\) = S(eM), xeC

is called a Fourier-Laplace transform of the functional S in the space Lo(I, h). If the functional
S is generated by an element g € Ly(I, k), then

§(A):/I M2t A e C.

Manifestly, the mapping £ : S — S embeds the conjugate space L5(1, h) into a space of entire
functions. For the sake of brevity, the space Lo(I, k) is denoted by H. The image of mapping

is designated by H= LQ(I h). The mapping £ : H* — H is one-to- one, because the system
of all exponentials {e*}, A\ € C is complete. One can introduce an induced structure of the

Hilbert space in the space H by the formula
(§1,§2)§ = (51, S2)m+, S1,59 € H”.

The mapping £ is an isomorphism of spaces Ly(I, h) and L3(I, h). Making use of the standard
identification of linear continuous functionals in the Hilbert space with an element of the space,
one obtains a conjugate linear isomorphism of spaces H and H by the formula

f - (eAtaf>H'

Such mapping is denoted by L as well and the image L(f) for f € Lo(I,h) is denoted by f
Thus,

= /me)‘t%(t)dt, f € La(I,h),

while
(f 9)L2(1h (9, f)La(rny-

Lemma 1. For w € C, let us indicate the functional generated by the functzon eV by E,.
Then, the function K(\, w) = Ey(\) is a reproducing kernel (see [3]) in the space Ly(I, h), i
for any function F € Ly(1,h)

F(w) = (F(A), K(Aw)).
Proof. Indeed, if F' = ]?, then
(FO), KO w)) = (f,Ew) = (€, raam = Fw) = F(w).
Writing it directly, one obtains

K(}\, w) _ (ekt’ ewt) _ /6At+wt2h(t)dt.
I
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The system of elements e, k = 1,2, ..., in a Hilbert space is called an unconditional basis (see
[1]), if it is complete and there are numbers ¢, C' > 0 such that the correlation

n n n
ey lallled® <11 erenll” < C Y lewfllell”
j=1 j=1 j=1

holds for any set of numbers ¢y, ¢g, ..., ¢,,. It is known (see |2],[4]), that if the system eg, k = 1,2, ...
is an unconditional basis, then any element of the space H is represented uniquely in the form

of the series
oo
T = E Tp€k,
k=1

and
e lanlllexl® < Yzl < O laalllel
k=1 k=1
An unconditional basis e;, k = 1,2,... in a Hilbert space is called the Riesz basis if ||ex|] < 1
(see [4]).

Lemma 2. The system of exponentials {e*}, k = 1,2, ... is an unconditional basis in the
space Lo(I,h) if and only if the system {K(\ )}, k = 1,2,... constructs an unconditional
basis in the space Lo(I,h).

Proof. Indeed, if a system of exponentials generates an unconditional basis, then any element
f € Lo(I,h) is expanded into the series

Ft) =" cre™, (1)
k=1
and
P =) lerPeM P =) lenl K (s M) = > w1 M) 1P (2)
k=1 k=1 k=1

Upon scalar multiplication of (1) by e*, one obtains
T =3 ek (0w,
k=1
and the relation (2) means that
A7 =D eI (s M)l
k=1

The following properties of unconditional bases are proved in [4] (p. 374).

B1. The system e;, k = 1,2, ... is an unconditional basis in the space H if and only if the
biorthogonal system h,,, n = 1,2... is an unconditional basis in the space H.

B2. If e, kK = 1,2,..., is an unconditional basis in the space H, and h,, n = 1,2... is a
biorthogonal system, then ||ex|| - ||hx]| < 1.

Suppose that K(z,z) = K(z).

Lemma 3. If a system of exponents {eM'}, k = 1,2,..., is an unconditional basis in the
space Lo(I, h), then there are such constants ¢,C > 0 that the following estimates hold for any
function F € Ly(I,h):

 [F W)
qEr < S EME oy, 3
[1£]] _; KOw) = [1£1] (3)
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Proof. Let the system of exponents {e*!}, k = 1,2,..., be an unconditional basis in the
space Ly(I,h). According to Lemma 2, the system {K (A, \r)}, k= 1,2,... is an unconditional
basis in the space Lo(I, h). Let E,.(\), n =1,2,... be an biorthogonal basis in Ls(I,h). Due
to the property B1, the system FE,(\), n = 1,2, ... is an unconditional basis, i.e. every element
F € Ly(1, h) is represented by the series

=Y F.E,(\)
n=1
and
1P = Z!FI EL (M)

Due to biorthogonality, one has F,, = (F()\),K()\,/\n)) = F()\,) and by the property B2
||En||K(A,) < 1. Thus, the relation (3) holds.
The works [7],[8] contain description of the space Lo(I, h).

Theroem A. The space Eg(], h) is isomorphic (as a Banach space) to the space of entire
functions F, satisfying the conditions

|F(2)] < Cpy/K(z), z€C,

iwe- [ [ %d’mdw

where

= / le2|e=2" 0 qt, h(z) = sup(xt — h(t)).
I

tel

Theorem 1. If there is an exponential Riesz basis in the space Lo(I,h), then e"® < 1, i.e.
the space Lo(1,h) is isomorphic (as a Banach space) to the classical space Lo(I).

Proof. If the system {e*:'} is the Riesz basis in Lo(1, h), then the coefficients \; belong to a
vertical strip, i.e. |[Re A\x| < d for some d > 0.

As it was shown in [5] (see also [6]), coefficients of the unconditional basis {e:'} satisfy the
separation condition, i.e. [\, — Ap| > 4 for some § > 0 when m # k. Let us take a number

T > 0 from the conditions 1/(T) — h'(—=T) > \II and T' > d + 4. Such number can be found
because ' (co) — ' (—o0) = |1].

Since the function K(z) = K(Re z) is bounded from zero and infinity in the strip |Re z| < d
then the relation

c[FIP <D IFOW)I? < CIIFI?, F = f € Lo, h) (4)
k=1
holds due to Lemma 3. The left-hand side of the equality provides

SOIFOWPE > ¢ / / F o + i) Pdydi (). (5)
k=1 |z[<T JR
The equality

F(z +1y) :/ Wtert=2MO (1) dt, YV € R,
I

provides

[ G+ ikay = [irwpesoa
R 1



RIESZ BASES IN WEIGHTED SPACES 49

by the Plancherel formula. Whence, if maz{|t|,t € I} = a, the estimate

o2 / F(B)Pe M Ods < / F(z +iy)Pdy < T / F)Pe Oy (6)
I R I

holds for all # € [—T;T]. The left-hand inequality together with (5) indicates that

> Iic _,, B
S IFO0P 2 e [ ke O @
k=1

The properties of subharmonic functions provide the estimate

1
|F(A))? < —52 |F(2)[*dm/(z).
O™ JB(A\k.0)

Since the coefficients are separable, this provides

- 1 1
FOI?P < — F(2)2dm(z S—/ /Fm—i—i 2dydz.
SIS FEPInG) < g [ 1Py

Uk B(Ak,9)

Invoking the right-hand inequality in (6), one has

- 2T
S IFOWFE < e [lpeOa
— ™o I

This estimate, together Wlth (4) and (7) means that the relations

/|f |2 —4h(t dt</|f ’2 —2h(t dt<B/’f ‘2 74h(t

hold for some constants b, B and for all f € Ly(I,h). Whence, one can conclude by means of
standard methods with the use of "cap"type functions that b < e=2*") < B.

10.

11.

Theorem 1 is proved.
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