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UNCONDITIONAL EXPONENTIAL BASES
IN HILBERT SPACES

K.P. ISAEV, R.S. YULMUKHAMETOV

Annotation. In the present paper, we consider the existence of unconditional exponential
bases in general Hilbert spaces H = H(E) consisting of functions defined on some set E ⊂ C
and satisfying the following conditions.

1. The norm in the space H is weaker than the uniform norm on E, i.e. the following
estimate holds for some constant A and for any function f from H :

||f ||H ≤ A sup
z∈E
|f(z)|.

2. The system of exponential functions {exp(λz), λ ∈ C} belongs to the subset H and it
is complete in H.

It is proved that unconditional exponential bases cannot be constructed in H unless a
certain condition is carried out.

Sufficiency of the weakened condition is proved for spaces defined more particularly.

Keywords: series of exponents, unconditional bases, Hilbert space.

1. Introduction

The notion of unconditional exponential bases is one of generalizations of the classical Fourier
systems in the space L2([−π; π]). The undivided attention of numerous mathematicians was
first of all attracted by unconditional exponential bases in weighted spaces L2(I, w). The
current status of research in this field is described in the monograph [13]. The work [14] started
investigation of unconditional exponential bases in Hilbert subspaces of the space H(D), that
are analytical in the convex domain D ⊂ C of functions. Unconditional exponential bases were
constructed for the Smirnov space E2(D) over a convex polygon. A futile attempt to construct
exponential bases in E2(D) over a convex domain with a smooth boundary was made in [15].
The dissertation [16] proves that unconditional exponential bases do not exist in Smirnov spaces
over convex domains with a smooth arc on the boundary. Finally, it is demonstrated in [7] that
unconditional exponential bases do not exist in Bergman spaces over convex domains with a
point of a non-zero curvature on the boundary. This result was extended to weighted spaces on
intervals in the dissertation [12].

The present paper generalizes methods of the above woks to general Hilbert spaces and proves
sufficient conditions for nonexistence of unconditional exponential bases.

The second section considers more specific weighted spaces on intervals.
Let H(E) be a Hilbert space of functions given on a bounded set E ⊂ C. Assume that the

following conditions are met.
1. A norm in the space H is weaker than a uniform norm in E, i.e. the estimate

||f ||H ≤ A sup
z∈E
|f(z)|

holds for an arbitrary constant A and for any bounded function f of H.
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2. Exponents exp(λz), λ ∈ C, belong to the space E, and the system is complete in the space
H.

According to Banach’s theorem, the second condition entails that the Laplace transform

L : S −→ Ŝ(λ) := S(eλz), λ ∈ C, S ∈ H∗

is an injective mapping from a conjugate space, and it follows from the fist condition that the
Laplace transform injects the conjugate space H∗ into a space of entire functions H(C). The
image with this mapping L(H∗) is designated by Ĥ. We consider an induced structure of the
Hilbert space in the space Ĥ, i.e. if F1, F2 ∈ Ĥ, Fj = L(Sj), then

(F1, F2)Ĥ = (S1, S2)H∗ .

A system of elements ek, k = 1, 2, ... in a Hilbert space is termed as an unconditional basis (see
[1]), if it is complete and there are numbers c, C > 0, such that the relation

c

n∑
j=1

|ck|2||ek||2 ≤ ||
n∑
j=1

ckek||2 ≤ C

n∑
j=1

|ck|2||ek||2

holds for any set of numbers c1, c2, ..., cn. It is known (see [2],[3]), that if a system ek, k = 1, 2, ...
is un unconditional basis, then any element of the space H is uniquely represented in the form
of a series

x =
∞∑
k=1

xkek,

and

c
∞∑
k=1

|xk|2||ek||2 ≤ ||x||2 ≤ C
∞∑
k=1

|xk|2||ek||2.

2. Unconditional exponential bases in Hilbert spaces of functions

This section is devoted to unconditional exponential bases in Hilbert spaces satisfying the
conditions 1, 2 of Introduction.

Theorem 1. Let
K(λ) = ||eλz||2.

If the system {eλkt} is an unconditional basis in the space H, then there exists an entire function
L with simple zeroes at points λk, k = 1, 2, ... for which the following correlation holds:

1

P
K(λ) ≤

∞∑
k=1

|L(λ)|2K(λk)

|L′(λk)|2|λ− λk|2
≤ PK(λ), λ ∈ C. (1)

Here P is a positive constant.

Proof. Let

eλz =
∞∑
k=1

ck(λ)eλkz, z ∈ E,

and Sk be a biorthogonal system of functionals on H. Then,

ck(λ) = Ŝk(λ).

Hence, if L(λ) = c1(λ)(λ− λ1), then due to completeness of the system (eλkz)

ck(λ) =
L(λ)

L′(λk)(λ− λk)
, k = 1, 2, ...

The statement of the theorem follows from unconditional basis character of the system of
exponents (eλkz). Theorem 1 is proved.
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Theorem 2. Let us assume that

K(λ) = ||eλz||2

and that δλ : F −→ F (λ) is a point functional in the space Ĥ. Then, δλ is a linear continuous
functional on Ĥ and

K(λ) = ||δλ||2Ĥ∗ ,
i.e.

√
K(λ) is the Bergman function (see [4]) of the space Ĥ. Moreover, lnK(λ) is a continuous

subharmonic function on a plane.

Proof. On the one hand, if F ∈ Ĥ, then F = Ŝ for a functional S ∈ H∗. Hence,
δλ(F ) = F (λ) = S(eλz).

Therefore,
|δλ(F )| = |S(eλz)| ≤ ||S|| · ||eλz|| = ||F ||

√
K(λ).

Thus,
||δλ|| ≤

√
K(λ), λ ∈ C.

On the other hand, when λ ∈ C is fixed, it is the function eλz ∈ H that generates some linear
continuous functional E ∈ H∗. One has

δλ(Ê) = Ê(λ) = E(eλz) = (eλz, eλz)H =

= ||eλz||2 =
√
K(λ)||eλz||H =

√
K(λ)||E||H∗ =

√
K(λ)||Ê||Ĥ .

Since the function lnK(λ) is an upper family envelope of subharmonic functions {ln |F (λ)|, F ∈
Ĥ, ||F || ≤ 1}, it follows that it is subharmonic. Theorem 2 is proved.

Let us introduce a characteristics for functions u continuous on a plane. Let z be a fixed
point on a plane. Let us designate a circle {w : |w − z| < r} for any positive number r > 0 by
B(z, r) and assume that

‖f‖r = max
w∈B(z,r)

|f(w)|

for the function f continuous in B(z, r). Let d(f, z, r) be a distance from the function f to the
space of functions harmonic in B(z, r) :

d(f, z, r) = inf{‖f −H‖r, H is harmonic in B(z, r)}.
Suppose that

τ(u, z, p) = sup{r : d(u, z, r) ≤ p}
for a positive number p. It follows directly from the definition that if ∃z0 : τ(u, z0, p) = ∞,
then τ(u, z, p) = ∞ for all z. If ∃z0 : τ(u, z0, p) < ∞, then τ(u, z, p) < ∞ for all z. The
following statement holds.

Lemma 1. Let ∃z : τ(u, z, p) < ∞. Then, the function τ(z) = τ(u, z, p) satisfies the
Lipschitz condition: for all z1 and z2

|τ(z1)− τ(z2)| ≤ |z1 − z2|.

Proof. By definition, there is a harmonic function h1(z) in the circle B(z1, τ(z1)) satisfying
the condition

|u(z)− h1(z)| ≤ p.

If |z1− z2| < τ(z1), then this inequality holds in the circle B(z2, τ(z1)− |z1− z2|) as well. Thus,
τ(z2) ≥ τ(z1)− |z1 − z2|.

Or τ(z1)− τ(z2) ≤ |z1 − z2|. If |z1 − z2| ≥ τ(z1), then all the more so

τ(z1)− τ(z2) ≤ |z1 − z2|.
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Let us interchange z1 and z2:
τ(z2)− τ(z1) ≤ |z1 − z2|.

Thus,
|τ(z1)− τ(z2)| ≤ |z1 − z2|.

It is demonstrated in [6] (Lemma 1.1), that if u is a continuous subharmonic function, the
value τ = τ(u, λ, p) is completely defined by the following condition. If H(z) is a harmonic
majorant of u in the circle B(λ, τ), then

max
z∈B(λ,τ)

(H(z)− u(z)) = 2p. (2)

Let us determine this value for the function u(λ) = lnK(λ) and the number ln(5P ), where P
is a constant from (1). In what follows, it is designated just by τ(λ). Thus,

inf
v∈A(B(λ,τ(λ)))

max
z∈B(λ,τ(λ))

| lnK(z)− v(z)| = ln(5P ),

where A(B(λ, τ)) indicates a set of functions harmonic in the circle B(λ, τ(λ)) and continuous
in the closure B(λ, τ(λ)).

Theorem 3. Let L(λ) be an entire function with simple zeroes λk, k = 1, 2, ... that satisfies
the two-sided estimate

1

P
K(λ) ≤

∞∑
k=1

|L(λ)|2K(λk)

|L′(λk)|2|λ− λk|2
≤ PK(λ)

when P is arbitrary. Then,
1) there is at least one zero λk of the function LВ in any circle B(λ, 2τ(λ));
2) the inequality

|λk − λn| ≥
max(τ(λk), τ(λn))

10P
3
2

holds for any n, k, n 6= k;
3) the relation

1

56P 8
K(λ) ≤ K(λk)|L(λ)|2

|L′(λk)|2|λ− λk|2
≤ PK(λ)

holds for any k in the circle B(λk,
τ(λk)

20P
3
2
).

(see [7], Theorem 1).

Theorem 4. Let us assume that λk, k = 1, 2, ..., are zeroes of the function L(λ), satisfying
the conditions of the above theorem. Then, in any finite set of zeroes B, containing at least two
zeroes, there is an index n such that∑

λk∈B,k 6=n

τ 2(λk)

|λk − λn|2
≤ (4P )12. (3)

Proof. By condition of the theorem the estimate∑
λk∈B

K(λk)|L(λ)|2

|L′(λk)|2|λ− λk|2
≤ PK(λ) (4)

holds for any λ. Since the set B is finite, then there is such a number n, that
K(λn)τ

2(λn)

|L′(λn)|2
= min

λk∈B

(
K(λk)τ

2(λk)

|L′(λk)|2

)
.

According to the statement 3 of Theorem 3, the estimate
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1

56P 8
K(λ) ≤ 202P 3 K(λn)|L(λ)|2

|L′(λn)|2τ 2(λn)

holds for the points λ, lying on the boundary of the circle B
(
λn,

1

20P
3
2
τ(λn)

)
, or

K(λ)

|L(λ)|2
≤ 4258P 11 K(λn)

|L′(λn)|2τ 2(λn)
.

This together with estimate (4) yields

4258P 11 K(λn)

|L′(λn)|2τ 2(λn)
≥ 1

P

∑
λk∈B

K(λk)

|L′(λk)|2|λ− λk|2
.

Hence,

4258P 12 K(λn)

|L′(λn)|2τ 2(λn)
≥
∑
λk∈B

K(λk)

|L′(λk)|2τ 2(λk)
· τ 2(λk)

|λ− λk|2

for the points λ, lying on the boundary of the circle B
(
λn,

1

20P
3
2
τ(λn)

)
.

Invoking selection of the number n for the points λ on the boundary B
(
λn,

1

20P
3
2
τ(λn)

)
, one

has

4258P 12 K(λn)

|L′(λn)|2τ 2(λn)
≥ K(λn)

|L′(λn)|2τ 2(λn)

∑
λk∈B

τ 2(λk)

|λ− λk|2

or ∑
λk∈B

τ 2(λk)

|λ− λk|2
≤ 4258P 12. (5)

According to the statement 2 of Theorem 3, the estimate

|λ− λk| ≤ |λ− λn|+ |λn − λk| =
τ(λn)

20P
3
2

+ |λn − λk| ≤
3

2
|λn − λk|

holds for the indicated points λ when k 6= n. Therefore, (5) entails the estimate∑
λk∈B,k 6=n

τ 2(λk)

|λn − λk|2
≤ (4P )12.

Theorem 4 is proved.
Corollary.
Let us assume that λk, k = 1, 2, ..., are zeroes of the function L(λ), satisfying conditions of

the above theorem and b = 1

20P
3
2
. Then, for any finite set of zeroes B, containing at least two

zeroes, there is an index n such that∑
λk∈B,k 6=n

∫
B(λk,bτ(λk))

dm(λ)

|λ− λn|2
≤ 410P 9. (6)

Proof. Since one has

|λ− λn| ≥ |λk − λn| − |λ− λk| ≥
1

2
|λk − λn|

for points λ ∈ B(λk, bτ(λk)), then∫
B(λk,bτ(λk))

dm(λ)

|λ− λn|2
≤ 4πb2τ 2(λk)

|λk − λn|2
.
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Hence, ∑
λk∈B,k 6=n

∫
B(λk,bτ(λk))

dm(λ)

|λ− λn|2
≤ 4πb2(4P )12 =

4π

400P 3
(4P )12 ≤ 410P 9.

Theorem 5. Let us assume that H(E) is a Hilbert space, satisfying the conditions 1, 2 of
Introduction and

√
K(λ) is a Bergman function of the space Ĥ. Suppose that for any positive

number p, there is a number δ = δ(p) > 0, such that the function τ(λ) = τ(lnK(z), λ, p)
satisfies the condition

min
z∈B(λ,2τ(λ))

τ(z) ≥ δτ(λ) (7)

for all λ ∈ C and τ(λ) = o(|λ|) when |λ| −→ ∞. Then, there are no unconditional exponential
bases in the space H.

Proof. Let us make use of the following statement (see [8], p.216).
Lemma (Lemma on covering with spheres)
Let us assume that the set A ⊂ Rp is covered with spheres so that every point x ∈ A is a

centre of a sphere S(x) with the radius r(x). If supx∈A r(x) <∞, then one can single out from
the system {S(x)} no more than a countable system {S(xk)}, covering all the set A and having
the order not exceeding a number N(p), depending only on the dimension of the space.

One can readily verify that N(2) = 6.
Let us prove by contradiction. Let us assume that conditions of the theorem are met, but

an unconditional exponential basis {eλkz} exists in the space Ĥ. Then, Theorems 1,3 and 4
hold. Suppose that p = ln(5P ) in a condition of the theorem under consideration and let
τ(λ) = τ(lnK(z), λ, ln(5P )).

Let us select an arbitrary ε > 0, and consider the number R large enough to meet the
condition

max
|λ|≤R

τ(λ) ≤ εR. (8)

Such R can be found by condition on τ(λ). Indeed, there is such R′ that τ(λ) < ε|λ| holds
when |λ| ≥ R′. If we assume that R = 2R′

ε
, then one has τ(λ) < ε|λ| ≤ εR when |λ| ∈ [ ε

2
R;R].

The correlation τ(λ) ≤ τ(0) + |λ| holds due to Lemma 1. Therefore, if |λ| ∈ [τ(0); ε
2
R], then

τ(λ) ≤ 2|λ| ≤ εR. Finally, selecting R larger than 1
ε

max
|z|≤τ(0)

τ(z), one obtains (8).

Consider a system of circles B(λ, 2τ(λ)), λ ∈ B(0, R). According to the statement 1 in
Theorem 3, every circle contains at least one coefficient λk, and these circles cover all the circle
B(0, R). Due to Lemma on covering with circles, one can single out no more than a countable
set of circles Bn = B(zn, 2τ(zn)), covering the circle B(0, R), and every point of this circle gets
in no more than N(2) = 6 covering circles. Let us select one index λk(n) in every circle Bn.
Meanwhile, some indices λk(n) can appear to be selected more than once, but due to properties
of the singled out covering, the multiplicity of the choice of one index is not larger than six.
Let us renumber the system of selected indices and assign them the number of the circle where
this index is selected. We obtain a set of indices (wn), where every index occurs no more than
six times. Let us apply Theorem 4 to the resulting selection. There is a number m such that
the estimate ∑

wn 6=wm

τ 2(wn)

|wn − wm|2
≤ 6(4P )12 (9)

holds if multiplicity is taken into account. In our notation wn ∈ Bn = Bn(zn, 2τ(zn)). Further,
consider such n, that wm /∈ B′n = Bn(zn, 3τ(zn)). Then, one has |w − wm| ≥ τ(zn) for any
w ∈ Bn. Hence, one has

|wn − wm| = |wn − w|+ |w − wm| ≤ 4τ(zn) + |w − wm| ≤ 5|w − wm|,
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or
1

|w − wm|2
≤ 25

|wn − wm|2
, w ∈ Bn, wm /∈ B′n

for the point w, lying on the intersection of the length [wn;wm] with the boundary of the circle
Bn. Integrating this inequality with respect to the circle Bn, one obtains∫

Bn

dm(w)

|w − wm|2
≤ 100πτ 2(zn)

|wn − wm|2
, wm /∈ B′n.

Since wn ∈ B(zn, 2τ(zn)), then τ 2(wn) ≥ δ2τ 2(zn) according to the condition (7). Thus, the
latter estimate and (9) provide∑

wn 6=wm /∈B′n

∫
Bn

dm(w)

|w − wm|2
≤ 100π

δ2

∑
wn 6=wm /∈B′n

τ 2(wn)

|wn − wm|2
≤ 600(4P )12

δ2
:= C. (10)

If the number n is such that wm ∈ B′n, then one has

|w − zm| ≤ |w − wm|+ |wm − zm| ≤ |w − zn|+ |zn − wm|+ 2τ(zm) ≤

≤ 2τ(zn) + 3τ(zn) + 2τ(zm) ≤ 5τ(zn) + 2τ(zm)

for any w ∈ Bn. According to the selection of the number R, one has |w − zm| ≤ 7εR, i.e.
the circles Bn lie completely in the circle B(zm, 7εR). It means that the covering circles whose
numbers take part in summation in (10) cover the set C(R) = B(0, R) \B(zm, 7εR). Hence,∫

C(R)

dm(w)

|w − wm|2
≤ C.

Let us substitute the variables w = Rζ, wm = Rζm, ζm ∈ B(0, 1), and obtain∫
B(0,1)\B(zm,7ε)

dm(ζ)

|ζ − ζm|2
≤ C.

The number ε > 0 was chosen arbitrarily. If ε tends to zero one, arrives to a contradiction.
Theorem 5 is proved.

3. Unconditional exponential bases in weighted Hilbert spaces on a
bounded interval

In what follows, Theorem 4 and its Corollary are applied to more specific weighted Hilbert
spaces of functions on a bounded interval of the real axis.

Let us assume that I is a bounded interval of the real axis, h(t) is a convex function on this
interval, and L2(I, h) is a space of locally integrable functions on I, satisfying the condition

||f || :=

√∫
I

|f(t)|2e−2h(t) dt <∞.

It is a Hilbert space with a scalar product

(f, g) =

∫
I

f(t)g(t)e−2h(t) dt.

One can readily verify that the space L2(I, h) satisfies the conditions 1 and 2 from
Introduction.

The space L̂2(I, h) is described in the works [9],[10],[11]. It is proved that the space L̂2(I, h)
is isomorphic (as a Banach space) to the space of entire functions F , satisfying the conditions

|F (z)| ≤ CF
√
K(z), z ∈ C.
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||F ||2 =

∫
R

∫
R

|F (x+ iy)|2

K(x)
dh̃′(x)dy <∞,

where
K(z) =

∫
I

|e2zt|e−2h(t)dt, ĥ(x) = sup
t∈I

(xt− h(t)).

Theorem 6. Let us assume, that for any p > 0 there is a number δ = δ(p) > 0 with the
following property. There exists a sequence xk ∈ R, k ∈ Z, such that the intervals

Ik = {x : |x− xk| ≤ 2τ(lnK(z), xk, p)}
are pairwise disjoint and

min
x∈Ik

τ(lnK(z), x, p) ≥ δ(p)τ(lnK(z), xk, p).

Further, suppose that for any ε > 0 there is an interval [m; s], s > m of an integer-valued series
with the following properties.

1) If Im,s =
⋃
m≤k≤s Ik, I

0
m,s is the smallest segment of the real axis containing Im,s, then dm,s

is the sum of lengths of intervals composing Im,s, and d0
m,s is the length of the interval I0

m,s,
then dm,s ≥ (1− ε)d0

m,s.
2) The estimate maxk∈[m,s] τ(lnK(z), xk, p) ≤ εd0

m,s holds.
Then, there are no Riesz exponential bases in the space L2(I, h).

Proof. Let us use proof by contradiction. Suppose that there exists an unconditional
exponential basis {eλkt}∞k=1 in the space L2(I, h). Then, Theorems 1,3,4 hold. Let us
follow the notation introduced in these theorems. In particular, τ(λ) designates a function
τ(lnK(z), λ, ln(5P )), while

K(z) = ||ezt||2 =

∫
I

|ezt|2e−2h(t)dt =

∫
I

e2Re zt−2h(t)dt = K(Re z),

and the constant P comes from properties of the basis (correlation (1)). The value δ(ln(5P ))
is designated just by δ. Assume that τ(lnK(z), xk, ln(5P )) = τk,

Qk,n = {x+ iy : x ∈ Ik, 4nτk ≤ y < 4(n+ 1)τk}, k = 0, 1, 2, ..., n ∈ Z.
Since the square Qk,n contains the circle B(xk+i(4n+2)τk, 2τk) then, according to the statement
1 of Theorem 3, every square contains at least one zero of the function L. Let us select one zero
λk,n in every square Qk,n.

Take a positive ε and the interval [m, s], mentioned in the conditions of the theorem. Consider
a set of zeroes B = {λk,n : k ∈ [m, s], |n| ≤M} for a large positive integer M . Let us apply
Theorem to the set of zeroes and find the corresponding index. A zero value with this index is
denoted by λ∗ = x∗ + iy∗. Without loss of generality, we suppose that y∗ ≤ 0. Thus, the point
λ∗ is one of zeroes and depends on parameters m, s,M .

Let us assume that

n(k) =

[
y∗

4τk
+

4

3

]
for every k ∈ [m, s]. Here [t] indicates the integer part t. Let τk,n = τ(λk,n). If n ≥ n(k), then
the square Qk,n and the circle Bk,n = B(λk,n, pτk,n) (recall that p = 1

20P
3
2
) lie in a half-plane

Im z ≥ y∗ + τk. Indeed, by definition of the number n(k), if λ ∈ Qk,n, then

Imλ ≥ 4nτk ≥ 4n(k)τk ≥ y∗ +
4

3
τk.

If x ∈ Ik then, due to Lemma 1,

τ(x) ≤ τ(xk) + |xk − x| ≤ 3τk.
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Therefore, one has

Imλ ≥ Imλk,n − pτk,n ≥ Imλk,n − 3pτk ≥ y∗ + τk

for the points λ ∈ Bk,n. Note that p < 1/20. If λ belongs to a half-plane Im z ≥ y∗ + τk then,

|λ− λ∗| ≥ Im (λ− λ∗) ≥ τk

or
τk ≤ |λ− λ∗|.

Thus, if points λ,w lie in A = Qk,n

⋃
Bk,n, n ≥ n(k) then,

|λ− λ∗| ≤ |w − λ∗|+ |λ− w| ≤ |w − λ∗|+ (4
√

2 + 3p)τk ≤ 7|w − λ∗|.

Here, we use the fact that p < 1/20 again. Hence,

α := max
z∈A

1

|z − λ∗|2
≤ 49 min

z∈A

1

|z − λ∗|2
:= 49β.

Since τ 2
k,n ≥ δ2τ 2

k due to condition of the theorem, one has∫
Qk,n

dm(z)

|z − λ∗|2
≤ 16ατ 2

k ≤
16ατ 2

k

βπ(pτk,n)2
βπ(pτk,n)

2 ≤ 784

πp2δ2

∫
Bk,n

dm(z)

|z − λ∗|2
.

Summation of the resulting inequalities first over every n(k) ≤ n ≤ M when k is fixed, and
then over every k ∈ [m, s] provides

s∑
k=m

M∑
n=n(k)

∫
Qk,n

dm(z)

|z − λ∗|2
≤ 784

πp2δ2

s∑
k=m

M∑
n=n(k)

∫
Bk,n

dm(z)

|z − λ∗|2
.

The point λ∗ is selected by Theorem 4. Then, by virtue of (6), one has
s∑

k=m

M∑
n=n(k)

∫
Qk,n

dm(z)

|z − λ∗|2
≤ 784

πp2δ2
410P 9 := C. (11)

By definition of squares Qk,n

M⋃
n=n(k)

Qk,n = {x+ iy : x ∈ Ik, 4n(k)τk ≤ y ≤ 4(M + 1)τk}.

Therefore,

M∑
n=n(k)

∫
Qk,n

dm(z)

|z − λ∗|2
=

∫
Ik

∫ 4(M+1)τk

4n(k)τk

dydx

|z − λ∗|2
.

By definition of the number n(k), we have 4n(k)τk < y∗ + 6τk. Let us substitute the variables
w = z− y∗ in the latter integral. We assume that y∗ ≤ 0. By virtue of the choice of the number
n(k), we have

M∑
n=n(k)

∫
Qk,n

dm(z)

|z − λ∗|2
≥
∫
Ik

∫ 4(M+1)τk

6τk

dm(w)

|w − x∗|2
.

If we had y∗ > 0, then likewise, we would obtain the estimate
−n(k)∑
n=−M

∫
Qk,n

dm(z)

|z − λ∗|2
≥
∫
Ik

∫ −6τk

−4(M+1)τk

dm(w)

|w − x∗|2
,
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which is equivalent to the previous estimate because the integrand function with respect to y
is even. Summation of these estimates over all k ∈ [m, s] provides

s∑
k=m

M∑
n=n(k)

∫
Qk,n

dm(z)

|z − λ∗|2
≥

s∑
k=m

∫
Ik

∫ 4(M+1)τk

6τk

dm(w)

|w − x∗|2
.

Let us use the estimate (11)
s∑

k=m

∫
Ik

∫ 4(M+1)τk

6τk

dm(w)

|w − x∗|2
≤ C.

By definition x∗ = Reλ∗, and λ∗ is one of the points λk,n, k ∈ [m, s], |n| ≤ M . Thus, when
the interval [m, s] is fixed, the number x∗ can vary within the interval I0

m,s with the change of
the number M . Thus, one can select the sequence Mn, extending to +∞ or −∞ so that the
corresponding values of x∗n converge to a limiting value x∗.

Invoking that the integrals are limited, one can turn to the limit
s∑

k=m

∫
Ik

∫ +∞

6τk

dm(w)

|w − x∗|2
≤ C. (12)

Let s make use of the evident estimates. If p ∈ [0; 1), then

p

∫ ∞
p

dt

1 + t2
≥ p

∫ ∞
1

dt

1 + t2
=
π

4
p ≥ 1

2
p,

and if p ≥ 1, then

p

∫ ∞
p

dt

1 + t2
≥ p

∫ ∞
p

dt

2t2
=

1

2
.

Hence, one has

p

∫ ∞
p

dt

1 + t2
≥ 1

2
min(p, 1)

with any p ≥ 0. Whence,∫ ∞
a

dy

x2 + y2
=

1

a
· a
|x|

∫ ∞
a
|x|

dt

1 + t2
≥ 1

2a
min

(
a

|x|
, 1

)
=

1

2
min

(
1

|x|
,
1

a

)
for any a ≥ 0 and x ∈ R.

Thus, the estimate ∫ +∞

6τk

dy

(x− x∗)2 + y2
≥ 1

2
min

(
1

|x− x∗|
,

1

6τk

)
holds. The latter formula together with (12) provides

s∑
k=m

∫
Ik

min

(
1

|x− x∗|
,

1

6τk

)
dx ≤ 2C. (13)

Let us denote the interval (x∗− 6τk;x
∗+6τk) by I∗k , k ∈ [m, s]. Separate the set of all indices

k ∈ [m, s] in two parts A1 = {k ∈ [m, s] : Ik
⋂
I∗k = ∅} and A2 = {k ∈ [m, s] : Ik

⋂
I∗k 6= ∅}.

The summarized length of all intervals Ik with respect to k ∈ Aj, j = 1, 2 is indicated by dj.
If k ∈ A2 then |xk − x∗| ≤ 8τk. Hence, all the interval Ik belongs to {x : |x− x∗| ≤ 10τk}.

In other words, all the intervals Ik, k ∈ A2 lie in the interval {x : |x − x∗| ≤ 10τ ∗}, where
τ ∗ = 10 maxk∈[m,s] τk. It means that d2 ≤ 20τ ∗ and by condition 2) of the theorem, one has

d2 ≤ 20εd0
m,s, (14)

d1 = dm,s − d2 ≥ (1− 20ε)d0
m,s.
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The set of indices A1 is separated in two parts: A+
1 are those indices from A1 for which xk ≥ x∗,

and A−1 are the remaining indices from A1. The symbol d±1 indicates the summarized length of
intervals Ik with indices from A±1 . One of the values is not less than the half d1. Let d+

1 ≥ d1
2
.

The previous estimate demonstrates that in this case

d+
1 ≥

1− 20ε

2
d0
m,s.

In particular, if I0
m,s = (A;B) then

B − x∗ ≥ d+
1 ≥

1− 20ε

2
d0
m,s. (15)

Let us shift the intervals Ik, k ∈ A+
1 to the right end of the interval (A;B) so that the resulting

intervals I ′k fill the interval (B−d+
1 ;B). The length of the interval (x∗;B−d+

1 ) does not exceed
the summarized length of intervals Ik, k ∈ A2 and a linear measure of the Lebesgue set I0

m,s\Im,s.
Condition 1) of the theorem and the estimate (14) provide

|B − d+
1 − x∗| ≤ 21εd0

m,s. (16)

Let us extend the estimate (13). Since∫
Ik

dx

|x− x∗|
≥
∫
I′k

dx

|x− x∗|

for k ∈ A+
1 , then∑

k∈A+
1

∫
Ik

min

(
1

|x− x∗|
,

1

6τk

)
dx =

∑
k∈A+

1

∫
Ik

dx

|x− x∗|
≥
∑
k∈A+

1

∫
I′k

dx

|x− x∗|
.

The relation (13) yields ∑
k∈A+

1

∫
I′k

dx

|x− x∗|
≤ 2C

or ∫ B

B−d+1

dx

|x− x∗|
≤ 2C.

The estimates (14) and (16) provide

ln
1− 20ε

42ε
≤ 2C.

This is impossible due to arbitrary smallness of ε. The resulting contradiction proves Theorem 5.
The following theorem is proved in [12] (Theorem 2.4).

Theorem 7. Let us assume that I is an arbitrary interval on R, h(t) is a convex function
on this interval

K(λ) =

∫
I

e2Reλt−2h(t) dt, J = {x : K(x) <∞}.

Suppose that for a certain p > 0, there exists a sequence of intervals [am; bm] and positive
numbers τm, m = 1, 2, ..., so that

1) the inequality
δτm ≤ τ(lnK(z), x, p) ≤ τm, m = 1, 2, ...,

holds for a certain positive number δ and for all x ∈ [am; bm]
2) the relation

lim
m−→∞

bm − am
τm

=∞

holds, then the Riesz exponential basis does not exist in the space L2(I, h).
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This theorem follows from Theorem 6.
It is known that two-sided estimates

τ(lnK(z), x, q) ≥ τ(lnK(z), x, p) ≥ p

16q
τ(lnK(z), x, q)

hold when q ≥ p > 0 (see [5], Lemma 5). Therefore, if the sequence of intervals required in
Theorem 7 exists only for a certain p > 0 then, such sequence exists for any number p > 0.
Every interval of [am; bm] in Theorem 7 should be represented in the form of a union of disjoint
intervals of the form {x : |x − y| ≤ 2τ(y)}. It is possible, that we will not be able to cover
the interval [am; bm] completely, but we can cover it so that more than a half of its length is
covered. Then, we will have a union of intervals from [am; bm] as a set Im,s in Theorem 6. They,
or to be more exact, their closures will be the intervals I0

m,s as well. Therefore, the condition 1)
of Theorem 6 is met trivially. The condition 2) follows from the condition 2) of Theorem 7.
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