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INFLUENCE OF WINKLER–STEKLOV CONDITIONS ON

NATURAL OSCILLATIONS OF ELASTIC WEIGHTY BODY

S.A. NAZAROV

Abstract. We consider the spectral problem for the spacial system of equations of the
elasticity theory. Small parts of the body surface are supplied with the Winkler–Steklov
conditions, which model spring mount, while the remaining part of the boundary is traction-
free. In several cases (the relative stiffness of springs and their positions are varied) we
construct asymptotics for eigenfrequencies of the body and for corresponding eigenmodes.
The limiting problems are ones for the body (spectral or stationary in some case) and
problems of the elasticity theory for the half-spaces with the Winkler–Steklov conditions on
flat sets (separated or joined into a single spectral theory in some cases). The discreteness
of the spectrum of the problem in the half-space is ensured by a polynomial property of
the system of equations of the elasticity theory. We study particular cases, formulate open
questions and discuss patological situations, in which the spectrum loses usual properties.
We construct asymptotic models of the problem, which provide two-terms asymptotics for
the eigenpairs of the initial problem and which use the technique of self-adjoint extensions
of differential operators or Hilbers spaces with separated asymptotics.

Keywords: elastic body, Winkler–Steklov conditions of spring mount, singular perturba-
tion, asymptotics of eigenfrequencies.
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1. Introduction

1.1. Formulation of problem. Let Ω be a convex domain in the Euclidean space R3 with
a smooth (of class 𝐶∞ for simplicity; cf. Subsection 4.1) boundary Γ = 𝜕Ω and a compact
closure Ω = Ω ∪ 𝜕Ω. On the surface 𝜕Ω we choose pairwise different points 𝑃 1, . . . , 𝑃 𝐽 and
introduce fine sets

𝜔𝜀
𝑗 = {𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝜕Ω : (𝜀−1𝑠𝑗1, 𝜀

−1𝑠𝑗2) ∈ 𝜛𝑗}, 𝑗 = 1, . . . , 𝐽. (1.1)

Here 𝜀 > 0 is a small parameter, 𝜛𝑗 are domains in the plane R2 enveloped by simple smooth
closed contours 𝛾𝑗 = 𝜕𝜛𝑗, while 𝑥

𝑗 = 𝜃𝑗(𝑥 − 𝑃 𝑗) are local Cartesian coordinates and 𝜃𝑗 is

an orthogonal (3× 3)-matrix introduced in order to direct the axis 𝑥𝑗3 along the outer normal
𝑛(𝑃 𝑗) to the surface Γ at the point 𝑃 𝑗, and the axes 𝑥𝑗1 and 𝑥𝑗2 are located in the tangential
plane Π𝑗 ∋ 𝑃 𝑗. Finally, (𝑠𝑗1, 𝑠

𝑗
2, 𝑛

𝑗) are curvilinear coordinates in a neighbourhood 𝒱𝑗 ∋ 𝑃 𝑗, 𝑛𝑗

is an oriented distance to Γ, 𝑛𝑗 < 0 in Ω ∩ 𝒱𝑗, and 𝑠𝑗𝑖 is an oriented distance to the point 𝑃 𝑗

measured along the projection of the axis 𝑥𝑗𝑖 on Γ, 𝑖 = 1, 2. The set of the points 𝑃 1, . . . , 𝑃 𝐽 is
denoted by 𝒫 .
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In the domain Ω we consider a problem of the elasticity theory:

𝐿(∇)𝑢(𝑥) := 𝐷(−∇)⊤𝐴𝐷(∇)𝑢(𝑥) = 𝜆𝜌𝑢(𝑥), 𝑥 ∈ Ω, (1.2)

𝑁(𝑥,∇)𝑢(𝑥) := 𝐷(𝑛(𝑥))⊤𝐴𝐷(∇)𝑢(𝑥) = 0, 𝑥 ∈ Ω ∖ 𝜔𝜀, (1.3)

𝑁(𝑥,∇)𝑢(𝑥) = 𝜆𝜌𝜀𝑄(𝑥)𝑢(𝑥), 𝑥 ∈ 𝜔𝜀 = 𝜔𝜀
1 ∪ . . . 𝜔𝜀

𝐽 . (1.4)

At the same time we use a matrix1 form of constitutive relations of the linear elasticity theory,
that is, the displacement vector 𝑢 = (𝑢1, 𝑢2, 𝑢3)

⊤ is interpreted as a column in R3 (⊤ is the
transposition sign), 𝑁(𝑥,∇)𝑢(𝑥) is a vector of normal stresses determined by the column of
stresses

𝜎(𝑢) =
(︁
𝜎11(𝑢), 𝜎22(𝑢), 𝜎33(𝑢),

√
2𝜎23(𝑢),

√
2𝜎31(𝑢),

√
2𝜎12(𝑢)

)︁⊤
, (1.5)

where 𝜎𝑝𝑞(𝑢) are the Cartesian coordinates of the stress tensor generated by the displacements
𝑢 and obeying the Hooke’s law

𝜎(𝑢) = 𝐴𝐷(∇)𝑢,

∇ = (𝜕1, 𝜕2, 𝜕3)
⊤ is a gradient operator, 𝐷(∇)𝑢 is the column of strains of the same structure

as (1.5) and

𝐷(∇)⊤ =

⎛⎝ 𝜕1 0 0 0 2−1/2𝜕3 2−1/2𝜕2
0 𝜕2 0 2−1/2𝜕3 0 2−1/2𝜕1
0 0 𝜕2 2−1/2𝜕2 2−1/2𝜕1 0

⎞⎠ , 𝜕𝑝 =
𝜕

𝜕𝑥𝑝
. (1.6)

The factors 2±1/2 are introduced in formulas (1.5) and (1.6) in order to equate the natural norms
of the tensor of the two rank and of the corresponding column of height six. Finally, equations
(1.2) for the oscillations of the body Ω involve a symmetric positive definite (6×6)-matrix 𝐴 of
elastic moduli, a constant density 𝜌 > 0 of a material and a spectral parameter 𝜆, that is, the
square of the oscillation frequency. Spectral conditions (1.4), called Winkler-Steklov conditions
and modelling [4] dense sets of fine stiff springs, which react only to normal displacements of
the surface Γ, involve an orthogonal projector in the Euclidean space R3

𝑄(𝑥) = 𝑛(𝑥)𝑛(𝑥)⊤ (1.7)

and the stiff compliance coefficient of the spring

𝜌𝜀 = 𝜀𝛼𝜌0, 𝜌0 > 0, 𝛼 ∈ R. (1.8)

In the following sections the coefficient 𝛼 varies for achieving various asymptotic regimes. Fi-
nally, conditions (1.3) mean that the surface Γ ∖ 𝜔𝜀 is traction-free.
A variational formulation of problem (1.2)–(1.4) appeals to integral identity [5], [6]

𝐸(𝑢, 𝜓; Ω) = 𝜆 (𝜌(𝑢, 𝜓)Ω + 𝜌𝜀(𝑢, 𝜓)𝜔𝜀) , 𝜓 ∈ 𝐻1(Ω)3, (1.9)

where ( , )Ω is a natural scalar product in the Lebesgue space 𝐿2(Ω), scalar or vector, while
an eigenfunction 𝑢 is sought in the Sobolev space 𝐻1(Ω)3 and the superscript 3 indicates the
number of the components of the vector but such superscript is absent in the notation of norm
and scalar products. Moreover, 𝐸(𝑢, 𝑢; Ω) is a doubled elastic energy kept by the body Ω and
generating a bilinear form

𝐸(𝑢, 𝜓; Ω) = (𝐴𝐷(∇)𝑢,𝐷(∇)𝜓)Ω. (1.10)

Owing to the Korn’s inequality, see, for instance, [7],

‖𝑢;𝐻1(Ω)‖2 ⩽ 𝐾(𝐸(𝑢, 𝑢; Ω) + 𝜌‖𝑢;𝐿2(Ω)‖2),

1In the English literature it is called Voigt-Mendel notation, while in the Russian literature it is related with
the name of S.G. Lekhnitskii, see, respectively, monographs [1] and [2], [3].
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in which the factor 𝐾 depends on the parameters of the problem, and the bilinear form

⟨𝑢, 𝜓⟩ = 𝐸(𝑢, 𝜓; Ω) + 𝜌(𝑢, 𝜓)Ω + 𝜌𝜀(𝑢, 𝜓)𝜔𝜀 (1.11)

can serve as the scalar product in the Sobolev space ℋ = 𝐻1(Ω)3. We introduce also a positive
symmetric continuous and hence self-adjoint operator 𝒦 in ℋ by means of the identity

⟨𝒦𝑢, 𝜓⟩ = 𝜌(𝑢, 𝜓)Ω + 𝜌𝜀(𝑢, 𝜓)𝜔𝜀 , 𝑢, 𝜓 ∈ ℋ. (1.12)

This operator is compact and according to Theorems 10.1.5 and 10.2.2 [8], its essential spectrum
consists of a single point 𝜅 = 0, while the discrete spectrum composes a monotone infinitesimal
sequence

1 ⩾ 𝜅1 ⩾ 𝜅2 ⩾ 𝜅3 ⩾ . . . ⩾ 𝜅ℓ ⩾ · · · → +0. (1.13)

By definitions (1.11) and (1.12) integral identity (1.9) is equivalent to an abstract equation

𝒦𝑢 = 𝜅𝑢 in ℋ, (1.14)

and the spectral parameters are related by the identity

𝜅 = (1 + 𝜆)−1, (1.15)

which transforms sequence (1.13) into a monotone unbounded sequence of eigenvalues of prob-
lem (1.2)–(1.4)

0 = 𝜆1 = · · · = 𝜆6 < 𝜆7 ⩽ 𝜆8 ⩽ . . . ⩽ 𝜆𝑚 ⩽ · · · → +∞. (1.16)

The corresponding eigenvectors 𝑢𝜀(1), . . . 𝑢
𝜀
(𝑚), · · · ∈ ℋ are chosen as obeying the orthogonality

and normalization conditions

⟨𝑢(𝑚), 𝑢(𝑝)⟩ = 𝛿𝑚,𝑝, 𝑚, 𝑝 ∈ N, (1.17)

where 𝛿𝑚,𝑝 is the Kronecker delta and N = {1, 2, 3, . . . } is the natural series.
A root subspace for 𝜆 = 0 is a six-dimensional linear space of rigid motions

ℛ = {𝑢(𝑥) = 𝑑(𝑥)𝑐 | 𝑐 = (𝑐1, . . . , 𝑐6)
⊤ ∈ R6}, (1.18)

where

𝑑(𝑥) =

⎛⎝ 1 0 0 0 2−1/2𝑥3 −2− 1/2𝑥2
0 1 0 −21/2𝑥3 0 2−1/2𝑥1
0 0 1 2−1/2𝑥2 −21/2𝑥1 0

⎞⎠ . (1.19)

The columns 𝑎𝑡 = (𝑎1, 𝑎2, 𝑎3)
⊤ and 𝑎𝑟 = (𝑎4, 𝑎5, 𝑎6)

⊤ correspond to translation and rotation dis-
placements. The columns of the matrices (1.19) and (1.6) form a basis in a twelve-dimensional
space of linear vector functions in R3.
Form (1.10) possesses polynomial property [9], that is, for each domain Ξ ⊂ R3 with a

Lipschitz boundary and a compact closure we have the implication

𝑢 ∈ 𝐻1(Ξ)3, 𝐸(𝑢, 𝑢; Ξ) = 0 ⇔ 𝑢 ∈ ℛ|Ξ. (1.20)

This property provides a useful information on solvability and properties of solutions of the
considered problems, see survey [10].

1.2. Content of paper. In the paper we study the behavior of spectrum (1.16) as 𝜀→ +0,
𝜌 > 0 and as 𝜌 → +0, 𝜀 > 0, and the corresponding objects are equipped with superscripts 𝜀
and 𝜌, respectively. In Subsection 1.3 we derive a Korn’s inequality, which is asymptotically
sharp with respect to the mentioned parameters.
In Section 2 we construct an asymptotics for eigenpairs {𝜆𝜀𝑚;𝑢𝜀(𝑚)} of problem (1.9) (or (1.2)–

(1.4) in the differential form), while the estimates for the asymptotics errors are provided in
Section 3. These results require an additional description. Namely, for a fixed density 𝜌 > 0 we
consider three cases: 𝛼 > −1, 𝛼 < −1 and 𝛼 = −1. In the first case spectrum (1.16) is obtained
by perturbing the spectrum of the problem in the domain Ω and here Neumann condition (1.3)
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are extended to the entire boundary 𝜕Ω. In the second case positive eigenvalues of problem
(1.9) become

𝜆𝜀6+𝑚 = 𝜀−1−𝛼𝜇𝜀
𝑚,

and the sequence {𝜇0
𝑚}𝑚∈N of the limits of factors 𝜇𝜀

𝑚 is the discrete spectrum of the family
(𝑗 = 1, . . . , 𝐽) of problems on boundary layers near the points 𝑃 1, . . . , 𝑃 𝐽 . The problems
consist of static (without spectral parameter) systems of differential equations in the half-space
R3

− with Winkler-Steklov conditions on the subdomain 𝜛𝑗 ⊂ 𝜕R3
− and the Neumann conditions

on the rest 𝜕R3
− ∖𝜛𝑗 of the plane. A remarkable point is that each Winkler–Steklov condition

on 𝜛𝑗 becomes integro-differential and involves mean values of the eigenfunctions over the sets
𝜛𝑘, 𝑘 = 1, . . . , 𝐽 , joining in this way the problems with superscripts 𝑗 = 1, . . . , 𝐽 into a single
spectral problem. Such far-field interaction of small singular spectral perturbations already
appeared in other problems, see [11], [12] and other publications. In the special case 𝛼 = 1
the discussed interaction of the limiting problems disappears, but the sequence {𝜆0𝑚}𝑚∈N of
thr limits of the eigenvalues Λ𝜀

𝑚 of problems (1.2)–(1.4) becomes the union of the spectra of
𝐽 + 1 problems, namely, of 𝐽 copies of independent problems in the half-space R3

− and of one
problem in the domain Ω.
The estimates for the asymptotic errors in the obtained representations for the eigenpairs

{𝜆𝜀𝑚;𝑢𝜀𝑚} are based on asymptotically shapr Korn’s inequality derived in Subsection 1.3 and also
on Proposition 3.1 about the convergence and classical lemma 3.1 on almost eigenvalues and
eigenvectors. However, Theorems 3.1 and 3.2 concern the most representative but particular
case discussed in Subsection 2.3, but their adaption to other cases, for instance, considered in
Section 1 and Subsection 2.2, as well as for studying partial sums of infinite asymptotic series
(cf. Subsection 4.1) is easy and rather traditional. Anyway, the justification of the asymptotics
for 𝛼 < −1 or 𝛼 > −1 can be extracted from publications [13, Ch. 4] and [12].
In the final forth section we provide an accompanying information. First we discuss various

generalizations like piece-wise smooth boundary, infinite series and so forth. Then we make
an asymptotic analysis of the spectrum of problem (1.2)–(1.4) for an infinitesimal density of
the body Ω, that is, as 𝜌 → +0. Moreover, we study a limiting case 𝜌 = 0, when the spectral
parameter is absent in system (1.2). A feature of such problem is that in some situations its
spectrum fills entire complex plane C since the elements of some non-trivial subspace ℛ0 ⊂ ℛ
satisfy relations (1.2)–(1.4) for each 𝜆 ∈ C. Let us provide several such situations.

10. Suppose that Υ = {𝑥 ∈ Γ : 𝑥3 = 0} is a non-empty domain in the plane and 𝒫 ⊂ Υ, that
is, 𝜔𝜀 ⊂ Υ. Then ℛ0 = {𝑑(𝑥)𝑐 | 𝑐3 = 𝑐4 = 𝑐5 = 0} and dimℛ0 = 3.

20. If a piece Υ ⊃ 𝒫 of the surface Γ is located on the sphere {𝑥 : |𝑥| = 𝑅} and 𝜔𝜀 ⊂ Υ,
then ℛ0 = {𝑑(𝑥)𝑐 | 𝑐1 = 𝑐2 = 𝑐3 = 0} and dimℛ0 = 3.

30. Let Ω be a cylinder {𝑥 : 𝑥21 + 𝑥22 < 𝑅2, |𝑥3| < 𝐿}. Then ℛ0 ⊂ {𝑑(𝑥)𝑐 | 𝑐1 = · · · = 𝑐5 = 0},
but in the case 𝒫 ⊂ {𝑥 ∈ 𝜕Ω : |𝑥3| < 𝐿} (the points 𝑃 1, . . . , 𝑃 𝐽 are located on a cylindrical
surface) the dimension dimℛ𝑜 is equal to two since ℛ0 also contains forward displacements
along the axis 𝑥3.

In many sections of the paper we introduce a condition excluding the aforementioned pathol-
ogy: a linear span ℒ of columns (cf. survey [14, Sect. 2]),

𝑑(𝑃 1)𝑛(𝑃 1)⊤, . . . , 𝑑(𝑃 𝐽)𝑛(𝑃 𝐽)⊤ (1.21)

has the dimension six, that is, it coincides with the space R6 and, in particular, 𝐽 ⩾ 6.
Finally, in Subsection 4.3 we discuss the questions on modelling singularly perturbed problem

(1.2)–(1.4). The first way is traditional and consists in constructing an appropriate self-adjoint
extension S𝜀 of a symmetric closed unbounded operator S in the Hilbert space 𝐿2(Ω)3 with
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the differential expression 𝐿(∇𝑥) and the domain

𝒟(S) = {𝑢 ∈ 𝐻2(Ω)3 : 𝑁(𝑥,∇𝑥)𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω, 𝑢(𝑃 𝑗) = 0, 𝑗 = 1 . . . 𝐽}. (1.22)

Unfortunately, the characteristics of the required extension depend on the spectral parameter
and this lessens an application value of the first model. The second way corresponds to a
problem on the space of vector functions with detached asymptotics (singularities 𝑂(|𝑥−𝑃 𝑗|−1)
at the points 𝑃 𝑗, 𝑗 = 1, . . . , 𝐽 are admitted) and posing at these points asymptotic conditions
(algebraic relations for the coefficients of the expansions of the eigenfunctions). As it was
demonstrated in [15], [16] and [17, Ch. 7], both approaches are closely related with the method
of matching asymptotic expansions, see [18], [19], [13, Ch. 2] and other monographs.

1.3. Korn’s inequality. We first suppose 𝜌 ∈ (0, 𝜌*] and 𝜌* > 0. We represent the field
𝑢 ∈ 𝐻1(Ω)3 in the form

𝑢(𝑥) = 𝑑(𝑥)𝑢0 + 𝑢⊥(𝑥),

∫︁
Ω

𝑑(𝑥)⊤𝑢⊥(𝑥) 𝑑𝑥 = 0 ∈ R6, (1.23)

where

𝑢0 = 𝑑−1
Ω

∫︁
Ω

𝑑(𝑥)⊤𝑢(𝑥)𝑑𝑥 ∈ R6, 𝑑Ω =

∫︁
Ω

𝑑(𝑥)⊤𝑑(𝑥)𝑑𝑥. (1.24)

Herewith the Gram (6 × 6)-matrix 𝑑Ω is symmetric and positive definite since the columns
of matrix (1.19) are linearly independent in the Lebesgue space 𝐿2(Ω)3. In view of the last
orthogonality conditions in list (1.23), the following Korn’s inequality holds [7]:

‖𝑢⊥;𝐻1(Ω)‖2 ⩽ 𝐶𝐸(𝑢⊥, 𝑢⊥; Ω) = 𝐶𝐸(𝑢, 𝑢; Ω). (1.25)

Here the factor 𝐶 depends on Ω and 𝐴 but, of course, is independent of 𝜌 and 𝜀. Moreover,

𝑑Ω𝑢
0 =

∫︁
Ω

𝑑(𝑥)⊤(𝑢(𝑥)− 𝑢⊥(𝑥))𝑑𝑥 ⇒ ‖𝑢0;R6‖ ⩽ 𝑐(‖𝑢;𝐿2(Ω)‖2 + ‖𝑢⊥;𝐿2(Ω)‖2),

and hence,

‖𝑑𝑢0;𝐻1(Ω)‖2 ⩽ 𝑐(‖𝑢;𝐿2(Ω)‖2 + 𝐸(𝑢, 𝑢; Ω)).

We finally get:

‖𝑢;𝐻1(Ω)‖2 ⩽ 𝑐𝜌−1‖𝑢;ℋ‖2. (1.26)

Now we consider the case 𝜌 = 0 under an additional condition dimℒ = 6 for the linear span
ℒ of columns (1.21). To formula (1.25), we add the relation

‖𝑟−1
𝑗 𝑢⊥;𝐿

2(Ω)‖2 + 𝜀−1‖𝑢⊥;𝐿2(𝜔𝜀
𝑗 )‖2 ⩽ 𝑐𝑗‖𝑢⊥;𝐻1(Ω)‖2, (1.27)

where 𝑟𝑗 = |𝑥 − 𝑃 𝑗| = |𝑥𝑗| and 𝑗 = 1, . . . , 𝐽 . An estimate for the first weight norm in the left
hand side is ensured by the classical Hardy inequality

+∞∫︁
0

|𝑈(𝑟)|2 𝑑𝑟 ⩽ 4

+∞∫︁
0

⃒⃒⃒⃒
𝑑𝑈

𝑑𝑟
(𝑟)

⃒⃒⃒⃒2
𝑟2𝑑𝑟, 𝑈 ∈ 𝐶∞

𝑐 [0,+∞), (1.28)

applied to the product 𝜒𝑗𝑢⊥; this inequality is to be written in the spherical coordinates (𝑟𝑗, 𝜙
𝑗)

and integrated in the angular variables 𝜙𝑗. Hereinafter 𝜒𝑗 is a smooth cut-off function with
a support in the neighbourhood 𝒱𝑗, equalling to one in the vicinity of the point 𝑃 𝑗, and
supp𝜒𝑗 ∩ supp𝜒𝑘 = ∅ as 𝑗 ̸= 𝑘, see (2.5). The estimate for the second norm on the left hand
side of (1.27) is obtained by means of the dilatation of the coordinates 𝑥 ↦→ 𝜉𝐽 = 𝜀−1𝑥𝐽 and
using a usual trace inequality, see, for instance, [5, Ch. 1].
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We multiply the first inequality in (1.23) from the left by 𝑑(𝑥)⊤𝑛(𝑥)𝑛(𝑥)⊤ and integrate over
𝜔𝜀. Summing up the results over 𝑗 = 1, . . . , 𝐽 , we arrive to a system of algebraic equations

𝑀 𝜀𝑢0 = 𝐻𝜀 :=
𝐽∑︁

𝑗=1

∫︁
𝜔𝜀
𝑗

𝑑(𝑥)⊤𝑛(𝑥)𝑛(𝑥)⊤(𝑢(𝑥)− 𝑢⊥(𝑥)) 𝑑𝑥, (1.29)

where the (6× 6) matrix 𝑀 𝜀 and the column 𝐻𝜀 ∈ R6 satisfy the relations

𝑀 𝜀 =𝑀 𝜀
(1) + · · ·+𝑀 𝜀

(𝐽), ‖𝑀 𝜀
(𝑗) − 𝜀2𝑀0

(𝑗);R
6×6‖ ⩽ 𝑐𝜀3,

𝑀0
(𝑗) = |𝜛𝑗|𝑑(𝑃 𝑗)⊤𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤𝑑(𝑃 𝑗), 𝑗 = 1, . . . , 𝐽,

(1.30)

and

‖𝐻𝜀;R6‖2 ⩽ 𝑐
𝐽∑︁

𝑗=1

|𝜔𝜀
𝑗 | (‖𝑛⊤𝑢;𝐿2(𝜔𝜀

𝑗 )‖2 + ‖𝑢⊥;𝐿2(𝜔𝜀
𝑗 )‖2), (1.31)

while |𝜔𝜀
𝑗 | = 𝑂(𝜀2) is the area of domain (1.1). The matrix 𝑀0

(1) + · · ·+𝑀0
(𝐽) is symmetric and

positive definite due to the restriction dimℒ = 6. Indeed, the symmetricity and positivity of
the matrices 𝑀 𝑗 are obvious. Moreover, in view of the restrictions imposed for columns (1.21)
we have

𝑏⊤𝑀𝑏 = 0 ⇒ 𝑏⊤𝑀(𝑗)𝑏 = 0, 𝑗 = 1, . . . , 𝐽,

⇒ 𝑛(𝑃 𝑗)⊤𝑑(𝑃 𝑗)𝑏 = 0, 𝑗 = 1, . . . , 𝐽, ⇒ 𝑏 = 0 ∈ R6.

Thus, from formulas (1.27)–(1.31) and (1.25) we derive the estimate

‖𝑢0;R6‖2 ⩽ 𝑐𝜀2(‖𝑛⊤𝑢;𝐿2(𝜔𝜀)‖2 + 𝜀‖𝑢⊥;𝐻1(Ω)‖2)
⩽ 𝑐𝜀−1(𝐸(𝑢, 𝑢; Ω) + 𝜀−1‖𝑛⊤𝑢;𝐿2(𝜔𝜀)‖2),

(1.32)

and then the Korn’s inequality

‖𝑢;𝐻1(Ω)‖2 ⩽ 𝐶(‖𝑢⊥;𝐻1(Ω)‖2 + ‖𝑢0;R6‖2) ⩽ 𝐶𝜀−1(𝐸(𝑢, 𝑢; Ω) + 𝜀−1‖𝑛⊤𝑢;𝐿2(𝜔𝜀)‖2), (1.33)
in which the factor 𝐶 is independent of the variable 𝜀 ∈ (0, 𝜀0] for some 𝜀0 > 0.
Relations (1.33) and (1.26) provide estimates for the eigenvalues of problem (1.2)–(1.4),

however, in Section 2 and Subsection 4.2 we shall obtain a more detailed information on their
behavior as 𝜀→ +0 and 𝜌→ +0, respectively.

2. Formal asymptotics

2.1. Preliminaries. In this subsection for various values of the exponent 𝛼 in representa-
tion (1.8) we construct asymptotics for the eigenpairs {𝜆𝜀𝑚, 𝑢𝜀(𝑚)} of problem (1.2)–(1.4). In

Subsections 2.2 and 2.4 the position of sets (1.1) on the boundary 𝜕Ω plays no role, but in
Subsection 2.3 we suppose that the restriction dimℒ = 6 holds for a linear combination of
columns (1.21). Moreover, to simplify the presentation in Subsection 2.4 we suppose that the
parts Γ𝑗 = 𝜕Ω ∩ 𝒱𝑗 are flat (cf. Subsection 4.2). In the construction the leading asymptotic
terms this assumptions plays no essential role, but for nontirival curvatures at points 𝑃 𝑗 the
next-to-leading terms are to be properly interpreted, see Subsection 2.5.

2.2. Simplest case 𝛼 > −1. We suppose the following asymptotic ansätze for the eigenpairs
of problem (1.2)–(1.4):

𝜆𝜀𝑚 = 𝜆0𝑚 + 𝜀2+𝛼𝜆′𝑚 + . . . , (2.1)

𝑢𝜀(𝑚)(𝑥) = 𝑈0
(𝑚)(𝑥) + 𝜀1+𝛼

∑︁
𝑗=1

𝜒𝑗(𝑥)𝑤
𝑗
(𝑚)(𝜉

𝑗) + 𝜀2+𝛼𝑢′(𝑚)(𝑥) + . . . . (2.2)
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Here dots replace higher order asymptotic terms, which are not essential in our analysis,
{𝜆0𝑚, 𝑢0(𝑚)} is the eigenpair of the limiting problem

𝐿(∇𝑥)𝑢
0(𝑥) = 𝜆0𝜌𝑢0(𝑥), 𝑥 ∈ Ω, (2.3)

𝑁(𝑥,∇𝑥)𝑢
0(𝑥) = 0, 𝑥 ∈ 𝜕Ω, (2.4)

while the pair {𝜆′𝑚, 𝑢′(𝑚)} is to be determined together with the terms of the boundary layers

𝑤1
(𝑚), . . . , 𝑤

𝐽
(𝑚) written in terms of the rescaled variables 𝜉𝑗 = 𝜀−1𝑥𝑗. Moreover, the cut-off

functions 𝜒𝑗 ∈ 𝐶∞
𝑐 (𝒱𝑗) are introduced to localize the boundary layers and

𝜒𝑗 = 1 near the point 𝑃 𝑗 and supp𝜒𝑗 ∩ supp𝜒𝑘 = ∅ as 𝑗 ̸= 𝑘. (2.5)

Finally, the factor 𝜀1+𝛼 at the sum over 𝑗 = 1, . . . , 𝐽 in (2.2) is chosen so that the change 𝑥 ↦→ 𝜉𝑗

and the formal passage to 𝜀 = 0, which straighten the boundary Γ and transform the domain
Ω into the half-space R3

− = {𝜉𝑗 = (𝜉𝑗1, 𝜉
𝑗
2, 𝜉

𝑗
3) : 𝜉

𝑗
3 < 0}, after substitution of ansätze (2.2) and

(2.1) into problem (1.2)–(1.4) and collecting coefficients at like powers of the small parameter
𝜀 give the system of differential equations

𝐿𝑗(∇𝜉𝑗)𝑤
𝑗
(𝑚)(𝜉

𝑗) = 0, 𝜉𝑗 ∈ R3
−, (2.6)

subject to the boundary conditions

𝑁 𝑗(∇𝜉𝑗)𝑤
𝑗
(𝑚)(𝜉

𝑗
♮ , 0), 𝜉𝑗♮ := (𝜉𝑗1, 𝜉

𝑗
2) ∈ R2 ∖ 𝜔𝑗, (2.7)

𝑁 𝑗(∇𝜉𝑗𝑤
𝑗
(𝑚)(𝜉

𝑗
♮ , 0) = 𝑔𝑗(𝜉𝑗♮ ) := 𝜆0𝑚𝜌0𝑛(𝑃

𝑗)𝑛(𝑃 𝑗)⊤𝑢0(𝑚)(𝑃
𝑗), 𝜉𝑗♮ ∈ 𝜛𝑗. (2.8)

We stress that the right hand side of boundary condition (2.8) appeared as a result of the
freezing of orthogonal projector (1.7) at the point 𝑃 𝑗, formula (1.8) with the exponent 𝛼 = −1
and taking into consideration definition (1.1) of small sets 𝜔𝜀

𝑗 . At the same time the passage to
local coordinates is accompanied by transformation of differential operators

𝐿𝑗(∇𝜉𝑗) = 𝐷𝑗(−∇𝜉𝑗)
⊤𝐴𝐷𝑗(∇𝜉𝑗), 𝑁 𝑗(∇𝜉𝑗) = 𝐷𝑗(𝑒(3))

⊤𝐴𝐷𝑗(∇𝜉𝑗),

𝐷𝑗(∇𝜉𝑗) = 𝐷((𝜃𝑗)−1∇𝜉𝑗), 𝑒(3) = (0, 0, 1)⊤,
(2.9)

but opposite to the rules of mechanics, we do not change the displacement fields. Owing to
polynomial property (1.20), general results [10, Item 3, Sect. 5] and [17, Chs. 3, 6] show that
problem (2.6)–(2.8) possesses a unique decaying at infinity solution

𝑤𝑗
(𝑚)(𝜉

𝑗) = 𝑋(𝜉𝑗)Φ𝑗(𝜉𝑗)𝑏𝑗 + ̃︀𝑤𝑗(𝜉𝑗), (2.10)

where the remainder ̃︀𝑤 𝑗
(𝑚) ∈ 𝐻1(R3

−)
3 can be estimated as

|∇𝑝
𝜉𝑗
𝑤𝑗

(𝑚)(𝜉
𝑗)| ⩽ 𝑐𝑚𝑝(1 + 𝜌𝑗)

−2−𝑝, 𝜌𝑗 > 𝑅𝜛, 𝑝 ∈ N0 = {0} ∪N,

the radius 𝑅𝜛 is fixed so that 𝜛𝑗 ⊂ B2(𝑅𝜛) = {𝜉𝑗♯ : 𝜌𝑗 < 𝑅𝜛}, while the cut-off function

𝑋 ∈ 𝐶∞(R3) is defined by the formulas

𝑋(𝜉𝑗) = 0 as 𝜌𝑗 ⩽ 𝑅𝜛 and 𝑋(𝜉𝑗) = 1 as 𝜌𝑗 ⩾ 2𝑅𝜛.

Moreover, the (3×3)-matrix Φ𝑗 =
(︀
Φ𝑗

(1),Φ
𝑗
(2),Φ

𝑗
(3)

)︀
is formed by the columns, which are solutions

of the three-dimensional Flamant problem (forces concentrated on the boundary of the half-
space) satisfying the relations

Φ𝑗(𝜉𝑗) = 𝜌−1
𝑗 Φ𝑗(𝜌−1

𝑗 𝜉𝑗), (2.11)

and

−
∫︁

S2−(𝑅𝜛)

𝑁 𝑗
∪(𝜉

𝑗,∇𝜉𝑗Φ
𝑗(𝜉𝑗) 𝑑𝑠𝜉𝑗 = I3, (2.12)
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where the unit (𝑛× 𝑛)-matrix I𝑛 appears as well as the operator

𝑁 𝑗
∪(𝜉

𝑗,∇𝜉𝑗) = 𝐷𝑗(𝜌−1
𝑗 𝜉𝑗)⊤𝐴𝐷𝑗(∇𝜉𝑗)

of boundary conditions on the surface of semi-sphere S2
−(𝑅𝜛) = {𝜉𝑗 : 𝜌𝑗 = 𝑅𝜛, 𝜉

𝑗
3 < 0}. Finally,

the column of coefficients 𝑏𝑗 ∈ R3 is calculated by the formula

𝑏𝑗 =

∫︁
𝜛𝑗

𝑔𝑗(𝜉𝑗♮ )𝑑𝜉
𝑗
♮ = 𝜆0𝑚𝜌0𝑛(𝑃

𝑗)𝑛(𝑃 𝑗)⊤𝑢0(𝑚)(𝑃
𝑗)|𝜛𝑗|, (2.13)

and, as above, |𝜛𝑗| is the area of the domain 𝜛𝑗 ⊂ Π𝑗. Representation (2.13) is derived by
means of relation (2.12) via integration by parts in the semi-ball {𝜉𝑗 ∈ R3 : 𝜌𝑗 < 0} and passing
to the limit as 𝑅 → +∞.
Let us find a smooth corrector in ansatz (2.2). We once again substitute expansions (2.2)

and (2.1) into problem (1.2)–(1.4) and collect the coefficients at 𝜀2+𝛼 written in the coordinates
𝑥 taking into account the identity Φ𝑗(𝜉𝑗) = 𝜀Φ𝑗(𝑥𝑗) implied by (2.11). As a result we arrive at
the problem

𝐿(∇𝑥)𝑢
′
(𝑚)(𝑥)− 𝜆0𝑚𝜌𝑢

′
(𝑚)(𝑥) = 𝜆′𝑚𝜌𝑢

0
(𝑚)(𝑥)− 𝑓 ′(𝑥), 𝑥 ∈ Ω, (2.14)

𝑁(𝑥,∇𝑥)𝑢
′
(𝑚)(𝑥) = −𝑔′(𝑚)(𝑥), 𝑥 ∈ 𝜕Ω, (2.15)

in which (︃
𝑐𝑓 ′

(𝑚)(𝑥)

𝑔′(𝑚)(𝑥)

)︃
=

𝐽∑︁
𝑗=1

(︂
𝑐[𝐿(∇𝑥), 𝜒𝑗(𝑥)]

[𝑁(𝑥,∇𝑥), 𝜒𝑗(𝑥)]

)︂
Φ𝑗(𝑥𝑗)𝑏𝑗, (2.16)

and [P,Q] = PQ− QP is the commutator of the operators P and Q.
In order to determine the pair {𝜆′𝑚, 𝑢′(𝑚)}, we specify the information on the initial pair

{𝜆0𝑚, 𝑢0(𝑚)}, namely, we suppose that 𝜆0𝑚 = 𝜆𝑞 is an eigenvalue of problem (2.3), (2.4) with
multiplicity κ𝑞, that is,

𝜆𝑞−1 < 𝜆𝑞 = · · · = 𝜆𝑞+κ𝑞−1 < 𝜆𝑞+κ𝑞 . (2.17)

We represent the vector function 𝑢0(𝑚) in the form

𝑢0(𝑚)(𝑥) = 𝑎𝑚𝑞 u(𝑞)(𝑥) + · · ·+ 𝑎𝑚𝑞+κ𝑞−1u𝑞+κ𝑞−1(𝑥), (2.18)

where the basis u(𝑞), . . . ,u𝑞+κ𝑞−1 in the root subspace obeys the identities

𝜌(u(𝑚),u(𝑝))Ω = 𝛿𝑚,𝑝, 𝑚, 𝑝 = 𝑞, . . . , 𝑞 + κ𝑞 − 1, (2.19)

while the columns of the coefficients 𝑎𝑚 = (𝑎𝑚𝑞 , . . . , 𝑎
𝑚
𝑞+κ𝑞−1)

⊤ ∈ Rκ𝑞 satisfy the identities

(𝑎𝑝)⊤𝑎𝑚 = 𝛿𝑚,𝑝, 𝑚, 𝑝 = 𝑞, . . . , 𝑞 + κ𝑞 − 1. (2.20)

In such situation problem (2.14), (2.15) has κ𝑞 compatibility conditions, which are satisfied as
follows:

𝜆′𝑚𝑎
𝑚
𝑘 =𝜆′𝑚𝜌(𝑢

0
(𝑚),u(𝑘))Ω

− lim
𝑅→+0

∫︁
Ω(𝑅)

u(𝑘)(𝑥)
⊤(𝑓 ′

(𝑚)(𝑥) + (𝐿(∇𝑥)− 𝜆0𝑚𝜌I3)𝑢′(𝑚)(𝑥)) 𝑑𝑥

=
𝐽∑︁

𝑗=1

lim
𝑅→+0

∫︁
Σ𝑗(𝑅)

(u(𝑘)(𝑥)
⊤𝑁∪(𝑥

𝑗∇𝑥𝑗)Φ𝑗(𝑥𝑗)

− (𝑁 𝑗
∪(𝑥

𝑗,∇𝑥𝑗)u(𝑘)(𝑥))
⊤Φ𝑗(𝑥𝑗)) 𝑑𝑠𝑥𝑏

𝑗

=−
𝐽∑︁

𝑗=1

u(𝑘)(𝑃
𝑗)⊤𝑏𝑗.

(2.21)
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These calculations are to be clarified. We first calculate the scalar product of system (2.14)
with u(𝑘)(𝑥) and, recalling relations (2.19) and (2.20), we apply the Green’s formula in the
domain Ω(𝑅) = {𝑥 ∈ Ω : 𝑟𝑗 = |𝑥𝑗| > 𝑅}. Then the remaining integrals over the spherical
sets Σ𝑗(𝑅) = {𝑥 ∈ Ω : 𝑟𝑗 = 𝑅} of a small radius 𝑅 > 0 are calculated in accordance with
formula (2.12). Here we have taken several facts into consideration. First, the vector-function
𝑓 ′ is smooth since the domain Ω is convex, we have 𝐿𝑗(∇𝑥𝑗)Φ𝑗(𝑥𝑗) = 0 as 𝑥 ∈ Ω ∩ 𝒱𝑗, while
the vector function 𝑔′ is bounded owing to the smoothness of the surfaces Γ ∩ 𝒱𝑗, that is, the
integrals converge. Second, the set Σ𝑗(𝑅) differs from the semi-sphere {𝑥 : 𝑟𝑗 = 𝑅, 𝑥𝑗3 < 0} only
inside a strip of width 𝑂(𝑅2) along the equator, which makes no influence under the passage to
the limit as 𝑅 → +0. Finally, formulas (2.18) and (2.13) allow us to transform relations (2.21)
with indices 𝑘 = 𝑞, . . . , 𝑞 + κ𝑞 − 1 into the system of algebraic equations

𝑀 𝑞𝑎𝑚 = 𝜆′𝑚𝑎
𝑚,

where the entries of symmetric (κ1 × κ𝑞)-matrix 𝑀 𝑞 read as

𝑀 𝑞
𝑘𝑝 = −𝜆0𝑚𝜌0

𝐽∑︁
𝑗=1

|𝜛𝑗|u(𝑘)(𝑃
𝑗)⊤𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤u(𝑝)(𝑃

𝑗)⊤. (2.22)

This negative matrix possesses eigenvalues

𝜆′𝑞 ⩽ 𝜆′𝑞+1 ⩽ . . . ⩽ 𝜆′𝑞+κ𝑞−1 ⩽ 0, (2.23)

which together with corresponding eigenvectors 𝑎𝑞, . . . , 𝑎𝑞+κ𝑞−1 ∈ Rκ𝑞 obeying orthogonality
and normalization conditions (2.19) and with the smooth correctors 𝑢′(𝑞), . . . , 𝑢

′
(𝑞+κ𝑞−1) found

from already solvable problems (2.14), (2.15) specify detached terms of asymptotic ansätze (2.1)
and (2.2). However, the mentioned correctors are defined up to linear combinations of form
(2.18), the coefficients 𝑎𝑚′ of which can be calculated at the next steps of asymptotic procedure
(cf. Subsection 4.1).
Let us formulate estimates for errors in asymptotic representations (2.1) for the eigenvalues,

which are implied by general results [13, Ch. 4, 9, 10].

Theorem 2.1. Let 𝛼 > −1 and 𝜆𝑞 be an eigenvalue of problem (2.3), (2.4) in the domain
Ω with multipicity κ𝑞, see relation (2.17), and 𝑞 > 6. Then there exist positive 𝜀𝑞 and 𝑐𝑞 such
that the eigenvalues 𝜆𝜀𝑞, . . . , 𝜆

𝜀
𝑞+κ𝑞−1 of problem (1.2)–(1.4) satisfy the inequality

|𝜆𝜀𝑚 − 𝜆𝑞 − 𝜀2−𝛼𝜆′𝑚| ⩽ 𝑐𝑞𝜀
3−𝛼 as 𝜀 ∈ (0, 𝜀𝑞], (2.24)

where the eigenvalues (2.23) of the matrix 𝑀 𝑞 with entries (2.22) are involved. The first six
eigenvalues 𝜆𝜀1, . . . , 𝜆

𝜀
6 are zero.

We observe that the number and position of sets (1.1) on the surface Γ play no role. The
iteration processes developed in monograph [13] allow one to construct infinite asymptotic series
for the eigenpairs {𝜆𝜀𝑚, 𝑢𝜀(𝑚)}.

2.3. Interaction of boundary layers as 𝛼 < −1. According to general results [12], for
such exponent 𝛼 in formula (1.8) asymptotic ansätze change essentially:

𝜆𝜀6+𝑚 = 𝜀−1−𝛼𝜇𝑚 + . . . , (2.25)

𝑢𝜀(6+𝑚)(𝑥) = 𝑑(𝑥)𝑐0(𝑚) +
𝐽∑︁

𝑗=1

𝜒𝑗(𝑥)𝑤
𝑗
(𝑚)(𝜉

𝑗) + 𝜀𝑢′(𝑚)(𝑥) + . . . . (2.26)

Here the number 𝜇𝑚, the column 𝑐0 ∈ R6 and the vector functions 𝑤1
(𝑚), . . . , 𝑤

𝐽
(𝑚) satisfy

problems in the half-space, which consist of the differential equations (2.6), boundary conditions
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(2.7) and

𝑁 𝑗(∇𝜉𝑗)𝑤
𝑗
(𝑚)(𝜉

𝑗
♮ , 0) = 𝜇𝑚𝜌0𝑛(𝑃

𝑗)𝑛(𝑃 𝑗)⊤
(︀
𝑤𝑗

(𝑚)(𝜉
𝑗
♮ ; 0) + 𝑑(𝑃 𝑗)𝑐0(𝑚)

)︀
, 𝜉𝑗♮ ∈ 𝜛𝑗. (2.27)

We stress that the right hand side of boundary condition (2.27) includes a constant term
𝑑(𝑃 𝑗)𝑐0(𝑚) generated by the first term in ansätze (2.26).

The solution to problem (2.6), (2.7), (2.27) admits representation (2.10), in which the column
of coefficients 𝑏𝑗 ∈ R3 looks as

𝑏𝑗 = 𝜇𝑚𝜌0𝑛(𝑃
𝑗)𝑛(𝑃 𝑗)⊤

(︂∫︁
𝜛𝑗

𝑤𝑗
(𝑚)(𝜉

𝑗
♮ , 0) 𝑑𝜉

𝑗
♮ + 𝑑(𝑃 𝑗)𝐶0|𝜛𝑗|

)︂
, (2.28)

cf. formula (2.13). Since for 𝛼 < −1 the factor 𝜀−1−𝛼 at 𝜇𝑚 in ansatz (2.25) is small, we arrive
at a problem for the smooth corrector, which is a stationary system of equations

𝐿(∇𝑥)𝑢
′
(𝑚)(𝑥) = −𝑓 ′

(𝑚)(𝑥), 𝑥 ∈ Ω, (2.29)

and we also get boundary conditions (2.15). The right hand sides 𝑓 ′
(𝑚) and 𝑔

′
(𝑚) are calculated

by formula (2.16). However, the problem itself, being free of the spectral parameter, has six
solvability conditions∫︁

Ω

𝑑(𝑥)⊤𝑓 ′
(𝑚)(𝑥) 𝑑𝑥+

∫︁
𝜕Ω

𝑑(𝑥)⊤𝑔′(𝑚)(𝑥) 𝑑𝑠𝑥 = 0 ∈ R6. (2.30)

Reproducing, with obvious modification, calculations (2.21), we find that according to (2.28)
relation (2.30) becomes an algebraic system

𝑀𝑐0 = −
𝐽∑︁

𝑘=1

|𝜛𝑘|𝑑(𝑃 𝑘)⊤𝑛(𝑃 𝑘)𝑛(𝑃 𝑘)⊤𝑤 𝑗
(𝑚), (2.31)

where

𝑀 =
𝐽∑︁

𝑗=1

|𝜛𝑗|𝑑(𝑃 𝑗)⊤𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤𝑑(𝑃 𝑗) ∈ R6×6, 𝑤 𝑗 =
1

|𝜛𝑗|

∫︁
𝜛𝑗

𝑤𝑗(𝜉𝑗♮ , 0)𝑑𝜉
𝑗
♮ ∈ R

3. (2.32)

The restriction dimℒ = 6 imposed for the linear span of columns (1.21) ensures the positive
definiteness of this symmetric (6× 6)-matrix 𝑀 and hence, having solved the system of linear
algebraic equations (2.31) and substituting the result into (2.27), we obtain boundary conditions

𝑁 𝑗(∇𝑗
𝜉)𝑤

𝑗
(𝑚)(𝜉

𝑗
♮ , 0) = 𝜇𝑚𝜌0𝑛(𝑃

𝑗)𝑛(𝑃 𝑗)⊤
(︂
𝑤𝑗

(𝑚)(𝜉
𝑗
♮ , 0)

− 𝑑(𝑃 𝑗)𝑀−1

𝐽∑︁
𝑘=1

|𝜛𝑘|𝑑(𝑃 𝑘)⊤𝑛(𝑃 𝑘)𝑛(𝑃 𝑘)⊤𝑤𝑘
(𝑚)

)︂
, 𝜉𝑗♮ ∈ 𝜛𝑗, 𝑗 = 1, . . . , 𝐽,

(2.33)

completing the set of problems (2.6), (2.7).
The presence of all means 𝑤𝑘

(𝑚) of the vector functions 𝑤𝑘
(𝑚), . . . , 𝑤

𝐽
(𝑚) on the right hand

side of (2.33) joins problems (2.6), (2.7), (2.33) into a single spectral problem, the variational
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formulation of which becomes the integral identity

𝐽∑︁
𝑗=1

𝐸(𝑤𝑗, 𝜓𝑗;R3
−) = 𝜇𝜌0

𝐽∑︁
𝑗=1

(︂
(𝑛(𝑃 𝑗)⊤𝑤𝑗, 𝑛(𝑃 𝑗)⊤𝜓𝑗)𝜛𝑗

−
(︁
𝑑(𝑃 𝑗)⊤𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)𝜓

𝑗
)︁⊤

·𝑀−1

𝐽∑︁
𝑘=1

𝑑(𝑃 𝑘)⊤𝑛(𝑃 𝑘)𝑛(𝑃 𝑘)⊤𝑤𝑗

)︂
,

−→
𝜓 =

(︀
𝜓1, . . . , 𝜓𝐽

)︀
∈ ℰ
(︀
R3

−
)︀𝐽
.

(2.34)

At the same time, ℰ(R3
−) is the space obtained by completing the linear space 𝐶∞

𝑐 (R3
−)

3

(infinitely differentiable compactly supported functions) with respect to the energy norm
𝐸(𝑤𝑗, 𝑤𝑗;R3

−)
1/2. We stress that the Korn’s inequality [7]

‖∇𝜉𝑗𝑤
𝑗;𝐿2(R3

−)‖2 ⩽ 𝑐𝐴𝐸
(︀
𝑤𝑗, 𝑤𝑗;R3

−
)︀
, 𝑤𝑗 ∈ 𝐶∞

𝑐 (R3
−)

3,

and a corollary of one-dimensional Hardy inequality (1.28)

‖𝜌−1
𝑗 𝑤𝑗;𝐿2(R3

−)‖2 ⩽ 𝑐‖∇𝜉𝑗𝑤
𝑗;𝐿2(R3

−)‖2, 𝑤𝑗 ∈ 𝐶∞
𝑐 (R3

−)
3, (2.35)

show that the left hand side of (2.34) is a scalar product in the space ℰ(R3
−)

𝐽 , which consists of
the vectors 𝑤 ∈ 𝐻1

𝑙𝑜𝑐(R
3
−)

3×𝐽 possessing finite energy norms and the weight norm from the left
hand side of (2.35). Owing to the Cauchy-Bunyakowsky-Schwartz inequality, both algebraic
and integral, the factor 𝐵(𝑤,𝜓) at 𝜇𝜌0 in the right hand side of (2.34) satisfies the relation
𝐵(𝑤,𝑤) ⩾ 0. It remains to mention that the rigid displacements from the linear space (1.18)
annulling the left hand side of (2.34) are not in the space ℰ(R3

−) since the integrals over R3
−

diverge in the norms from (2.35).

Theorem 2.2. Under the condition dimℒ = 6 imposed for columns (1.21) problem (2.34)
possesses a discrete spectrum, which is a monotone positive unbounded sequence

0 < 𝜇1 ⩽ 𝜇2 ⩽ . . . ⩽ 𝜇𝑚 ⩽ · · · → +∞. (2.36)

The associated eigenvectors 𝑤(1), 𝑤(2), . . . , 𝑤(𝑚), · · · ∈ ℰ(R3
−)

𝐽 can be chosen satisfying orthogo-
nality and normalization conditions

𝐵(𝑤(𝑚), 𝑤(𝑝)) = 𝛿𝑚,𝑝, 𝑚, 𝑝 ∈ N.

The next statement was established in paper [12].

Theorem 2.3. Under the conditions 𝛼 < −1 and dimℒ = 6, for each 𝑚 ∈ N there exist
quantities 𝜀𝑚 > 0 and 𝑐𝑚 > 0, for which positive eigenvalues of problem (1.2)–(1.4) satisfy the
inequalities

|𝜆𝜀6+𝑚 − 𝜀−1−𝛼𝜇𝑚| ⩽ 𝑐𝑚𝜀
−𝛼 as 𝜀 ∈ (0, 𝜀𝑚],

where 𝜇𝑚 are the terms of sequence (2.36) of the eigenvalues of problem (2.7).

The restriction imposed on columns (1.21) played an essential role in the presented asymp-
totic analysis: once this restriction is omitted, the ansätze change dramatically, see works [12]
and [20]. Once the leading terms of the asymptotic are constructed, by the procedures from
monograph [13] one can produce infinite series for eigenpairs of problem (1.2)–(1.4). The con-
structions for correctors in ansätze (2.25) and (2.26) can be extracted from Subsection 2.2,
however, under a simplifying assumption on flatness of the pieces Γ𝑗 = Γ∩𝒱𝑗 of the boundary
𝜕Ω of the domain Ω (cf. Subsection 4.1).
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2.4. Overlapping of spectra in limiting problems as 𝛼 = −1. Previous asymptotic
ansätze require essential changes. First of all, the asymptotics expansions are to be in the
powers of the parameter

√
𝜀. Thus, we seek eigenfunctions of problem (1.2)–(1.4) in the form

𝑢𝜀(𝑚)(𝑥) =𝑢
0
(𝑚)(𝑥) +

√
𝜀𝑢′(𝑚)(𝑥) + 𝜀𝑢′′(𝑚)(𝑥)

+ 𝜀−1/2

𝐽∑︁
𝑗=1

𝜒𝑗(𝑥)
(︁
𝑤𝑗

(𝑚)(𝜉
𝑗) +

√
𝜀𝑤𝑗′

(𝑚)(𝜉
𝑗) + 𝜀𝑤𝑗′′

(𝑚)(𝜉
𝑗)
)︁
+ . . . .

(2.37)

Here the 𝐻1(Ω)-norms of the leading terms 𝑢0(𝑚) and 𝜀
−1/2𝜒𝑗𝑤

𝑗
(𝑚) become of the same order as

𝜀→ +0. The leading terms of the asymptotic ansatz for the eigenvalue

𝜆𝜀𝑚 = 𝜇0
𝑚 +

√
𝜀𝜇′

𝑚 + 𝜀𝜇′′
𝑚 + . . . (2.38)

are the terms of the common sequence

0 = 𝜇0
1 = · · · = 𝜇0

6 < 𝜇0
7 ⩽ 𝜇0

8 ⩽ . . . ⩽ 𝜇0
𝑚 ⩽ · · · → +∞ (2.39)

of the eigenvalues of problem (2.3), (2.4) in the bounded domain Ω and a family of independent
problems in the half-space R3

− consisting of differential equations (2.6) as well as of boundary
conditions (2.7) and

𝑁 𝑗(∇𝜉𝑗)w
𝑗
(𝑚)(𝜉

𝑗
♮ ) = 𝜇𝑗𝜌0𝑛(𝑃

𝑗)𝑛(𝑃 𝑗)⊤w𝑗
(𝑚)(𝜉

𝑗
♮ , 0), 𝜉𝑗♮ ∈ 𝜛𝑗. (2.40)

In comparison with Subsection 2.3 boundary condition (2.40) involves no additional constant
term because of the factor 𝜀−1/2 at the boundary layer.
As in Theorem 2.2, problem (2.6), (2.7), (2.40) possesses a discrete spectrum ℘𝑗, which forms

the sequence

0 < 𝜇𝑗
1 ⩽ 𝜇𝑗

2 ⩽ . . . ⩽ 𝜇𝑗
𝑚 ⩽ · · · → +∞, (2.41)

and the associated eigenfunctions w𝑗
(1),w

𝑗
(2), . . . ,w

𝑗
(𝑚), · · · ∈ ℰ(R3

−) can be chosen obeying the
orthogonality and normalization conditions

𝜌0(w
𝑗
𝑚,w

𝑗
𝑝)𝜛𝑗

= 𝛿𝑚,𝑝 𝑚, 𝑝 ∈ N. (2.42)

We recall that the eigenfunctions (2.3), (2.4) associated with its eigenvalues

0 = 𝜆1 = · · · = 𝜆6 < 𝜆7 ⩽ 𝜆8 ⩽ . . . ⩽ 𝜆𝑚 ⩽ · · · → +∞ (2.43)

satisfy relations (2.19). We denote spectrum (2.43) by ℘0.
We are going to show how to determine the correctors in ansätze (2.38) and (2.37). In

the general situation the formulas are too cumbersome and this is why we analyse only a few
representative cases.

1∘. Problem in Ω. Let 𝜇0
𝑚 = 𝜆𝑞 ∈ ℘0 be a simple eigenvalue, but

𝜇0
𝑚 ̸∈ ℘𝑗, 𝑗 = 1, . . . , 𝐽. (2.44)

Then 𝑢0(𝑚) = u(𝑞) is an associated eigenfunction of problem (2.3), (2.4) normalized by formula

(2.19) and

𝜇′
𝑚 = 0, 𝑢′(𝑚) = 0, 𝑤𝑗

(𝑚) = 0, 𝑗 = 1, . . . , 𝐽.

Moreover, 𝑤𝑗
(𝑚) is solution (2.10) of problem (2.6)–(2.8), in which 𝜆0𝑚 = 𝜆𝑞, and hence, in view

of the supposed unique solvability of the problem (see condition (2.44)) formula (2.13) becomes

𝑏𝑗 = 𝜆𝑞𝜌0𝑛(𝑃
𝑗)𝑛(𝑃 𝑗)⊤u(𝑞)(𝑃

𝑗)|𝜛𝑗|, 𝑗 = 1, . . . , 𝐽.
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As a result, the second correctors 𝑢′′(𝑚) and 𝜇′′
𝑚 are found by problem (2.14), (2.15) with right

hand side (2.16). Finally, by means of simplified calculation (2.21) we find that

𝜇′′
𝑚 = −𝜆𝑞𝜌0

𝐽∑︁
𝑗=1

|𝜛𝑗|u(𝑞)(𝑃
𝑗)⊤𝑛((𝑃 𝑗)𝑛(𝑃 𝑗)⊤u(𝑞)(𝑃

𝑗) ⩽ 0.

2∘. Problems in half-space. Let 𝜇0
𝑚 = 𝜇𝑗

𝑚𝑔 ∈ ℘𝑗 be simple eigenvalues as 𝑗 = 1, . . . , 𝐾, but

𝜇0
𝑚 ̸∈ ℘0 and 𝜇0

𝑚 ̸∈ ℘𝑗 as 𝑗 = 1 +𝐾, . . . , 𝐽 . Then

𝑤𝑗
(𝑚) = 𝑎𝑚𝑗 w

𝑗
(𝑚(𝑗)), 𝑗 = 1, . . . , 𝐾, (2.45)

where the eigenfunctions w𝑗
(𝑚(𝑗)) of problems (2.6), (2.7), (2.27) and the columns 𝑎𝑚 =

(𝑎𝑚1 , . . . , 𝑎
𝑚
𝑘 )

⊤ obey orthonormality conditions (2.42) and (2.20), respectively. Moreover,

𝑤𝑗
(𝑚) = 0, 𝑗 = 1 +𝐾, . . . , 𝐽, 𝑢0(𝑚) = 0, 𝜇′

𝑚 = 0,

and 𝑢′(𝑚) is a solution of problem (2.14), (2.15), in which 𝜆0𝑚 = 𝜇0
𝑚, 𝜆

′
𝑚 = 0 and right hand

sides (2.16) involve the coefficients

𝑏𝑗(𝑚) = m𝑗𝑛(𝑃
𝑗)𝑎𝑚𝑗 , m𝑗 = 𝜇0

𝑚𝜌0𝑛(𝑃
𝑗)⊤|𝜛𝑗|w𝑗

(𝑚(𝑗)), 𝑗 = 1, . . . , 𝐾,

𝑏𝑗(𝑚) = 0, 𝑗 = 1 +𝐾, . . . , 𝐽.
(2.46)

Owing to the assumption 𝜇0
𝑚 ̸∈ ℘0 the formed problem in the domain Ω is uniquely solvable

and its solution is represented as

𝑢′(𝑚)(𝑥) =
𝐾∑︁
𝑘=1

̂︀𝐺𝑘(𝑥)𝑏𝑘, (2.47)

where ̂︀𝐺𝑗 is the regular part of the Green’s tensor 𝐺𝑗 (matrix functions of size 3 × 3) with
a singularity at the point 𝑃 𝑗, that is, the solution of homogeneous (𝑓 ′

(𝑚) = 0 and 𝑔′(𝑚) = 0)

problem (2.14), (2.15) in the domain Ω, which admits the representation

𝐺𝑗(𝑥) = 𝜒𝑗(𝑥)Φ
𝑗(𝑥𝑗) + ̂︀𝐺𝑗(𝑥). (2.48)

Substituting the matrices 𝐺𝑗 and 𝐺𝑘 into the Green’s formula on the domain Ω(𝑅) and passing

to the limit as 𝑅 → +0 (cf. calculation (2.21)), we see that ̂︀𝐺𝑗(𝑃 𝑘) = ̂︀𝐺𝑘(𝑃 𝑗) and hence, the
(𝐾 ×𝐾)-matrix

G =
(︀
G𝑗𝑘

)︀𝐾
𝑗,𝑘=1

= (𝑛(𝑃 𝑗)⊤ ̂︀𝐺𝑘(𝑃 𝑗)𝑛(𝑃 𝑘))𝐾𝑗,𝑘=1 (2.49)

is symmetric.
Thus, by formulas (2.47) and (2.46) we obtain that

𝑛(𝑃 𝑗)⊤𝑢′(𝑚)(𝑃
𝑗) =

𝑘∑︁
𝑘=1

m𝑘G𝑗𝑘𝑎
𝑚
𝑘 , (2.50)

and therefore, the number 𝜇′′
𝑚 and the vector function 𝑤𝑗′′

(𝑚(𝑗)) from ansätze (2.38) and (2.37),

respectively, satisfy system of differential equations (2.6), as well as boundary conditions (2.7)
and

𝑁 𝑗(∇𝜉𝑗𝑤
𝑗′′
(𝑚)(𝜉

𝑗
♮ , 0) =𝜌0𝑛(𝑃

𝑗)𝑛(𝑃 𝑗)⊤
(︀
𝜇0

𝑚𝑤
𝑗′′
(𝑚)(𝜉

𝑗
♮ , 0)

+ 𝜇′′
𝑚w

𝑗
(𝑚(𝑗))(𝜉

𝑗
♮ , 0)𝑎

𝑚
𝑗 + 𝜇0

𝑚𝑢′(𝑚)(𝑃
𝑗)
)︀
, 𝜉𝑗♮ ∈ 𝜛𝑗.
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Since 𝜇0
𝑚 is a simple eigenvalue of problems (2.6), (2.7), (2.40) as 𝑗 = 1, . . . , 𝐾, each of the

obtained problems for 𝑤𝑗′′
(𝑚) possesses only one compatibility conditions, and according to nor-

malization (2.42) and formulas (2.50) and (2.46) we can express this condition in the form

𝜇′′
𝑚𝑎

𝑚
𝑗 = 𝜇′′

𝑚𝜌0‖𝑛(𝑃 𝑗)⊤w𝑗
(𝑚(𝑗));𝐿

2(𝜛𝑗)‖2𝑎𝑚𝑗
= −𝜇0

𝑚|𝜛𝑗|
(︀
𝑛(𝑃 𝑗)⊤𝑤𝑗

(𝑚(𝑗))

)︀⊤
𝑛(𝑃 𝑗)⊤𝑢′(𝑚)(𝑃

𝑗)

= −
𝐾∑︁
𝑘=1

m𝑗G𝑗𝑘m𝑘𝑎
𝑚
𝑘 =:

𝐾∑︁
𝑘=1

𝑀𝑗𝑘𝑎
𝑚
𝑘 .

(2.51)

Thus, the eigenvalues of (6 × 6)-matrix 𝑀 with entries defined in (2.51) provide the second
correctors in ansatz (2.38) for the eigenvalues, and the associated eigenvectors 𝑎𝑚 ∈ R𝐾 specify
leading terms (2.45) in ansatz (2.37) for the eigenfunctions of problem (1.2)–(1.4).

3∘. Common eigenvalue of problems in Ω and R3
−. Let 𝜇0

𝑚 be a simple eigenvalue of prob-
lem (2.3), (2.4) in the domain Ω and of problem (2.6), (2.7), (2.40) in the half-space R3

− with
𝑗 = 1, . . . , 𝐾, while the associated eigenfunctions u(𝑚(0)) and w1

(𝑚(1)), . . . ,w
𝑘
(𝑚(𝑘)) are orthonor-

malized in accordance with formulas (2.19) and (2.42).
In ansatz (2.37) we take

𝑢0(𝑚) = 𝑎𝑚0 u(𝑚(0), 𝑤𝑗
(𝑚) = 𝑎𝑚𝑗 w

𝑗
(𝑚(𝑗)), 𝑗 = 1, . . . , 𝐾,

𝐾∑︁
𝑝=0

|𝑎𝑚𝑝 |2 = 1, (2.52)

while the columns 𝑎𝑚 = (𝑎𝑚0 , . . . , 𝑎
𝑚
𝐾)

⊤ obey orthogonality and normalization conditions similar
to (2.20). As a result we find that the corrector 𝑢′(𝑚) is to be sought by the system of differential
equations

𝐿(∇𝑥)𝑢
′
(𝑚)(𝑥)− 𝜇0

𝑚𝜌𝑢(𝑚)(𝑥) = 𝜇′
𝑚𝜌𝑢

0
(𝑚)(𝑥)− 𝑓 ′

(𝑚)(𝑥), 𝑥 ∈ Ω,

with boundary conditions (2.15), and in formula (2.16) for the right hands the summation is
made over 𝑗 = 1, . . . , 𝐾, while the columns of the coefficients are given by formulas (2.46).
Moreover, the correctors of boundary layer type satisfy system of equations (2.6) in the half-
space R3

− and boundary conditions (2.7) and

𝑁 𝑗(∇𝜉𝑗)𝑤
𝑗′
(𝑚)(𝜉

𝑗
♮ , 0) =𝜉0𝑛(𝑃

𝑗)𝑛(𝑃 𝑗)⊤
(︀
𝜇0

𝑚𝑤
𝑗′
(𝑚)(𝜉

𝑗
♮ , 0)

+ 𝜇′
𝑚𝑤

𝑗
(𝑚)(𝜉

𝑗
♮ , 0) + 𝜇0

𝑚𝑢
0
(𝑚)(𝑃

𝑗)
)︀
, 𝜉𝑗♮ ∈ 𝜛𝑗.

Now the compatibility conditions of the formed boundary value problems, in view of relations
(2.52), become a system of algebraic equations for the column 𝑎𝑚:

𝑀𝑎𝑚 = 𝜇′
𝑚𝑎

𝑚 ∈ R1+𝐾 (2.53)

with a symmetric ((1 +𝐾)× (1 +𝐾))-matrix 𝑀 , the first (for 𝑗 = 0) row of which casts into
the form (︀

0,−m1𝑛(𝑃
1)⊤u(𝑚(0))(𝑃

1), . . . ,−m𝑘𝑛(𝑃
𝑘)⊤u(𝑚(0))(𝑃

𝑘)
)︀
,

while other rows with indices 𝑗 = 1, . . . , 𝐾 become(︀
−m𝑗𝑛(𝑃

𝑗)⊤u(𝑚(𝑗))(𝑃
𝑗), 0, . . . , 0

)︀
.

Simple calculations show that such matrix possesses a zero eigenvalue of multiplicity 𝐾−1 and
also extra two eigenvalues read as

𝜇′
𝑚± = ±𝜌0𝜇0

𝑚

(︂ 𝐾∑︁
𝑗=1

|𝜛𝑗|2|𝑛(𝑃 𝑗)⊤w𝑗
(𝑚(𝑗))|

2|𝑛(𝑃 𝑗)⊤u(𝑚(0))(𝑃
𝑗)|2
)︂1/2

.
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Thus, we have calculated the leading terms in ansatz (2.38) for the eigenvalues of problem
(1.2)–(1.4). Eigencolumns of algebraic system (2.53) specify leading terms (2.37) of the ansatz
for the eigenfunctions. The obtained formulas demonstrate that in the considered case the
asymptotics expansions are indeed in the powers of the small parameter

√
𝜀.

2.5. Conclusion. The asymptotic procedures described for three particular situations can
be easily adapted to other situations, in particular, for multiple eigenvalues of problems (2.6),
(2.7), (2.40). The flatness requirements of the pieces Γ1, . . . ,Γ𝐽 was needed only in case 3∘ in
Subsection 2.4, in which we had to construct a couple of terms of smooth type and boundary
layer type. In the cases, when the leading terms of the asymptotics were defined at the first
step, the dilatation of the coordinates

𝑥 ↦→ 𝜉𝑗 = 𝜀−1(𝑠𝑗1, 𝑠
𝑗
2, 𝑛

𝑗)

straightens the boundary, while the variable coefficients of the transformed differential operators
(2.9) appear only in lower asymptotic terms. This issue will be commented on in Subsection 4.1.

3. Justification of asymptotics

3.1. Preliminaries. As it has been mentioned, the justification of asymptotic expansions
for the eigenpairs of problem (1.2)–(1.4) constructed in Subsections 2.1 and 2.2 is ensured by
general results [13, Chs. 4, 10] and [12] (see also [20] for a similar problem of the elasticity
theory). The developed schemes can also adapted to the situation 𝛼 = −1 considered in
Subsection 2.3, but for the completeness of picture, in this section we provide the justification
of the asymptotic construction, however, not completely but only for the leading terms since
the correctors in ansätze (2.38) and (2.39) were constructed in Section 2 only under certain
restrictions.

3.2. Convergence theorem. Let 𝑢𝜀(𝑚) be an eigenfunction of variational problem (1.9) as-
sociated with the eigenvalue

𝜆𝜀𝑚 ⩽ 𝐶𝑚 (3.1)

and normalized in accordance with formula (1.17), where ⟨ , ⟩ is scalar product (1.11), in which
𝜌𝜀 = 𝜀−1𝜌0, and 𝜌 > 0 and 𝜌0 > 0 are fixed numbers. Then by Korn’s inequality [7]

‖𝑢𝜀(𝑚);𝐻
1(Ω)‖2 ⩽ 𝑐

(︀
𝐸(𝑢𝜀(𝑚), 𝑢

𝜀
(𝑚); Ω) + 𝜌‖𝑢𝜀(𝑚);𝐿

2(Ω)‖2
)︀

there exists a positive infinitesimal sequence {𝜀𝑙}𝑙∈N, along which the convergences hold

𝜆𝜀𝑙𝑚 → 𝜆0
𝑚, (3.2)

𝑢𝜀𝑙(𝑚) → u0
(𝑚) weakly in 𝐻1(Ω)3 and strongly in 𝐿2(Ω)3. (3.3)

Relation (3.1) will be confirmed in Remark 3.1. We rewrite the vector function 𝑢𝜀(𝑚) in local

curvilinear coordinates (see Subsection 1.1) and let

𝑤𝑗𝜀
(𝑚)(𝜉

𝑗) = 𝜀1/2𝜒𝑗(𝑥)𝑢
𝜀
(𝑚)(𝑠

𝑗, 𝑛𝑗), (3.4)

where 𝜉𝑗𝑖 = 𝜀−1𝑠𝑗𝑖 , 𝑖 = 1, 2, and 𝜉𝑗3 = 𝜀−1𝑛𝑗. We have

‖𝑤𝜀
(𝑚); ℰ(R3

−)‖2 ⩽ 𝑐𝜀

∫︁
R3

−

(︀
|∇𝜉𝑖(𝜒𝑗𝑢

𝜀
(𝑚))|2 + (1 + 𝜌𝑗)

−2|𝜒𝑗𝑢
𝜀
(𝑚)|2

)︀
𝑑𝜉𝑗

⩽ 𝑐𝜀

∫︁
Ω∩𝒱𝑗

(︀
𝜀2|∇𝑥𝑢

𝜀
(𝑚)(𝑥)|2 + (1 + 𝜀−1𝑟𝑗)

−2|𝑢𝜀(𝑚)(𝑥)|2
)︀
𝜀−3 𝑑𝑥 ⩽ 𝑐‖𝑢𝜀(𝑚);𝐻

1(Ω)‖2.
(3.5)
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We also clarify that while passing from the curvilinear coordinates 𝜉𝑗 to initial Cartesian coor-
dinates 𝑥, we have used the relations

∇𝜉𝑖 = 𝑇 𝜀(𝑥)∇𝑥, 𝑑𝜉𝑖 = 𝜀−3𝑡𝜀(𝑥) 𝑑𝑥,

‖𝑇 𝜀
(𝑥) − 𝜃𝑗;R3×3‖+ |𝑡𝜀(𝑥)− 1| ⩽ 𝑐𝑟𝑗, 𝑥 ∈ Ω ∩ 𝒱𝑗,

(3.6)

while in the latter estimate in (3.5) we have applied Corollary (1.27) of Hardy inequality (1.28).
Thus, along a subsequence (we keep the notation {𝜀ℓ}) the convergence holds

𝑤𝑗𝜀ℓ
(𝑚) → w𝑗0

(𝑚) weakly in ℰ(R3
−) and strongly in 𝐿2(𝜛𝑗)

3. (3.7)

Hereafter for the sake of brevity we omit the subscript ℓ for the symbol 𝜀ℓ.
We substitute a test vector function 𝜓0 ∈ 𝐶∞

𝑐 (Ω ∖ 𝒫)3 into integral identity (1.9). We note
that 𝜓 = 0 on the set 𝜔𝜀 for small 𝜀 > 0 and by relations (3.2) and (3.3) we arrive at the
formula

0 = 𝐸(𝑢𝜀(𝑚), 𝜓; Ω)− 𝜆𝜀𝑚𝜌(𝑢
𝜀
(𝑚), 𝜓)Ω → 𝐸(u0

(𝑚), 𝜓; Ω)− 𝜆0
𝑚𝜌(u

0
(𝑚), 𝜓)Ω = 0.

Since the subspace 𝐶∞
𝑐 (Ω ∖ 𝒫) is dense in 𝐻1(Ω), we obtain the integral identity

𝐸(u0
(𝑚), 𝜓

0; Ω) = 𝜆0
𝑚𝜌(u

0
(𝑚), 𝜓

0)Ω, 𝜓 ∈ 𝐻1(Ω)3, (3.8)

which serves for spectral problem (2.3), (2.4).

As 𝑗 = 1, . . . , 𝐽 , similarly to formula (3.4) for 𝜓𝑗 ∈ 𝐶∞
𝑐 (R

3

−)
3 we let

𝜑𝑗𝜀(𝑥) = 𝜀−1/2𝜓𝑗(𝜉𝑗).

We have

𝜆𝜀𝑚𝜌|(𝑢𝜀(𝑚), 𝜑
𝑗𝜀)Ω| ⩽ 𝐶𝑚‖𝑢𝜀(𝑚);𝐿

2(Ω)‖𝜀3/2‖𝜀−1/2𝜓𝑗;𝐿2(R3
−)‖ ⩽ 𝑐𝑚𝜀

(︀
𝜓𝑗
)︀

and
𝐸(𝑢𝜀(𝑚), 𝜑

𝑗𝜀; Ω) → 𝐸(w𝑗
(𝑚), 𝜓

𝑗;R3
−),

𝜆𝜀𝑚𝜌𝜀(𝑢
𝜀
(𝑚), 𝜑

𝑗𝜀)𝜔𝜀
𝑗
= 𝜆𝜀𝑚𝜀

−1𝜌0(𝜀
−1/2𝑤𝑗𝜀

(𝑚), 𝜀
−1/2𝜓𝑗)𝜔𝜀

𝑗
→ 𝜆0

𝑚𝜌0(w
𝑗
(𝑚), 𝜓

𝑗)𝜛𝑗
.

Therefore, passing to the limit as 𝜀→ +0 in equation (1.9) with the mentioned ingredients, we
get the integral identity

𝐸(w𝑗
(𝑚), 𝜓

𝑗;R3
−) = 𝜆0

𝑚𝜌0(w
𝑗
(𝑚), 𝜓

𝑗)𝜛𝑗
, 𝜓𝑗 ∈ ℰ(R3

−), (3.9)

that is, a variational formulation of problem (2.6), (2.7), (2.40).

Proposition 3.1. If 𝛼 = −1 in formula (1.8), then passage to limit (3.2) gives an eigenvalue
𝜆0

𝑚 of one of problems (3.8) and (3.9), 𝑗 = 1, . . . , 𝐽 , while passages to limit (3.3) and (3.7)
give the vector functions u0

(𝑚) ∈ 𝐻1(Ω)3 and w10
(𝑚), . . .w

𝐽0
(𝑚) ∈ ℰ(R3

−) satisfying the mentioned
problems and obeying the relationship

𝜌‖u0
(𝑚);𝐿

2(Ω)‖2 + 𝜌0

𝐽∑︁
𝑗=1

‖w𝑗0
(𝑚);𝐿

2(𝜛𝑗)‖2 = (1 + 𝜆0
𝑚)

−1. (3.10)

Proof. It remains to confirm relationship (3.10), which in particular means that at least one
of the aforementioned vector functions does not vanish, that is, 𝜆0

𝑚 is indeed an eigenvalue.
According to formulas (1.17) and (1.11), (1.9) we have

1 = ⟨𝑢𝜀(𝑚), 𝑢
𝜀
(𝑚)⟩𝜀 = (𝜆𝜀𝑚 + 1)

(︂
𝜌‖𝑢𝜀(𝑚);𝐿

2(Ω)‖+ 𝜀−1𝜌0

𝐽∑︁
𝑗=1

‖𝑛(𝑃 𝑗)⊤𝑢𝜀;𝐿𝜀((𝜔𝜀
𝑗 )‖2

)︂

→ (𝜆0
𝑚 + 1)

(︂
𝜌‖u0

(𝑚);𝐿
2(Ω)‖2 + 𝜌0

𝐽∑︁
𝑗=1

‖w𝑗0
(𝑚);𝐿

2(𝜛𝑗)‖2
)︂
.
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The proof is complete.

3.3. Almost eigenvalues and eigenvectors. We reformulate problem (1.9) as abstract
equation (1.14). The next statement, known as the lemma on almost eigenvalues and eigenvec-
tors, is implied by the spectral decomposition of the resolvent (see primary source [21] and, for
instance, book [8, Ch. 6]).

Lemma 3.1. Let 𝑈 ∈ ℋ and Λ ∈ R+ be such that

‖𝑈 ;ℋ‖ = 1, ‖𝒦𝑈 − Λ𝑈 ;ℋ‖ =: 𝛿 ∈ (0,Λ). (3.11)

Then the operator 𝒦 possesses an eigenvalue 𝜅𝑛 in the segment [Λ − 𝛿,Λ + 𝛿]. Moreover, for
each 𝛿* ∈ (𝛿,Λ) there exist coefficients 𝐶𝒩 , . . . , 𝐶𝒩+𝒳−1, for which the formulas

‖𝑈 −
𝒩+𝒳−1∑︁
𝑘=𝒩

𝐶𝑘𝑢(𝑘);ℋ‖ ⩽ 2
𝛿

𝛿*
,

𝒩+𝒳−1∑︁
𝑘=𝒩

|𝐶𝑘|2 = 1 (3.12)

hold, where 𝑢(𝒩 ), . . . , 𝑢(𝒩+𝒳−1) is the set of all eigenvectors of the operator 𝒦 associated with
the eigenvalues in the segment [Λ − 𝛿*,Λ + 𝛿*] and obeying orthogonality and normalization
conditions (1.17).

Let 𝜇0
𝑞 > 0 be an eigenvalue in the joint sequence (2.39) of multiplicity κ𝑞, that is,

𝜇0
𝑞−1 < 𝜇0

𝑞 = · · · = 𝜇0
𝑞+κ𝑞−1 < 𝜇0

𝑞+κ𝑞
, (3.13)

and

𝜇0
𝑞 = · · · = 𝜇0

𝑞+κ0
𝑞−1

is an eigenvalue of problem (2.3), (2.4), and κ0
𝑞 ⩾ 0 is its multiplicity (the case 𝜇0

𝑞 ̸∈ ℘0

and κ0
𝑞 = 0 is not excluded). Moreover, 𝜇0

𝑙 = 𝜇
𝑗(ℓ)
𝑚(ℓ) is an eigenvalue of problem (2.6), (2.7),

(2.40) with an index 𝑗(ℓ) ∈ {1, . . . , 𝐽}. The corresponding eigenfunctions u(𝑚) and w
𝑗(ℓ)
𝑚(ℓ)

obey orthogonality and normalization conditions (2.19) and (2.42), respectively. Moreover,
𝑚(ℓ) ̸= 𝑚(𝑘) as 𝑗(ℓ) = 𝑗(𝑘) and ℓ ̸= 𝑘.
Relation (1.15) of spectral parameters hints that as almost eigenvalues of the operator 𝒦𝜀

one should take κ𝑞 copies of the quantity

Λ𝜀
ℓ = (1 + 𝜇0

𝑞)
−1, ℓ = 𝑞, . . . , 𝑞 + κ𝑞 − 1. (3.14)

In accordance with ansatz (2.37) almost eigenvectors

𝑈 𝜀
(ℓ)(𝑥) = ‖𝑊 𝜀

(ℓ);ℋ𝜀‖−1𝑊 𝜀
(ℓ)(𝑥), (3.15)

obeying the first relation in (3.11), involve the vector functions

𝑊 𝜀
(ℓ)(𝑥) = u(ℓ)(𝑥), ℓ = 𝑞, . . . , 𝑞 + κ0

𝑞 − 1, (3.16)

𝑊 𝜀
(ℓ)(𝑥) = 𝜒𝑗(ℓ)(𝑥)𝜀

−1/2w
𝑗(ℓ)
(𝑚(ℓ))(𝜉

𝑗(ℓ)), ℓ = 𝑞 + κ0
𝑞, . . . , 𝑞 + κ𝑞 − 1. (3.17)

Lemma 3.2. Under the aforementioned condtions (3.16) and (3.17) the formulas⃒⃒
⟨𝑊 𝜀

(ℓ),𝑊
𝜀
(𝑘)⟩𝜀 − 𝛿ℓ,𝑘(1 + 𝜇𝑞)

⃒⃒
⩽ 𝑐𝑞𝜀 as 𝜀 ∈ (0, 𝜀𝑞], ℓ, 𝑘 = 𝑞, . . . , 𝑞 + κ𝑞 − 1 (3.18)

hold, where 𝜀𝑞 > 0 and 𝑐𝑞 are some numbers.

Proof. As ℓ, 𝑘 = 𝑞, . . . , 𝑞+κ0
𝑞 − 1, inequality (3.18) is implied by relations (3.8), (2.22) and the

estimate

𝜌𝜀
⃒⃒
(u(ℓ),u(𝑘))𝜔𝜀

⃒⃒
⩽ c(ℓ𝑘)𝜀

−1𝜌0|𝜔𝜀| ⩽ 𝑐𝑞𝜀,

which is obvious for smooth vector functions u(𝑙) and u(𝑘).
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Now let ℓ, 𝑘 = 𝑞+κ0
𝑞, . . . , 𝑞+κ𝑞−1. If 𝑗(ℓ) ̸= 𝑗(𝑘), then the supports of the vector functions

𝑊 𝜀
(ℓ) and𝑊

𝜀
(𝑘) do not intersect and formula (3.18) is true even for 𝑐𝑞 = 0. In the case 𝑗(ℓ) = 𝑗(𝑘),

a transformation similar to calculations (3.5) in view of (3.6) shows that

⟨𝑊 𝜀
(ℓ),𝑊

𝜀
(𝑘)⟩𝜀 =𝐸(w

𝑗(ℓ)
(𝑚(ℓ)),w

𝑗(𝑘)
(𝑚(𝑘));R

3
−) + 𝜌0(w

𝑗(ℓ)
(𝑚(ℓ)),w

𝑗(𝑘)
(𝑚(𝑘)))𝜛𝑗

+𝑂(𝜀)

=(𝜇0
𝑞 + 1)𝜌0

(︀
w

𝑗(ℓ)
(𝑚(ℓ)),w

𝑗(𝑘)
(𝑚(𝑘))

)︀
𝜛𝑗

+𝑂(𝜀)

=(1 + 𝜇0
𝑞)𝛿ℓ,𝑘 +𝑂(𝜀).

Here we have taken into consideration formulas (2.42) and (3.9). Finally, for 𝑙 = 𝑞, . . . , 𝑞+κ0
𝑞−1

and 𝑘 = 𝑞 + κ0
𝑞, . . . , 𝑞 + κ𝑞 − 1 estimate (3.18) can be obtained easily:⃒⃒
⟨𝑊 𝜀

(ℓ),𝑊
𝜀
(𝑘)⟩𝜀

⃒⃒
= (1 + 𝜇0

𝑞)𝜌
(︀
𝑊 𝜀

(ℓ),𝑊
𝜀
(𝑘)

)︀
Ω
+ 𝜀−1𝜌0

(︀
𝑊 𝜀

(ℓ),𝑊
𝜀
(𝑘)

)︀
𝜔𝜀
𝑗(𝑘)

⩽ 𝑐

(︂ ∫︁
Ω∩𝒱𝑗

(1 + 𝜀−1𝑟𝑗)
−1 𝑑𝑥+ 𝜀−1

∫︁
𝜔𝜀
𝑗 (𝑘)

𝑑𝑠𝑥

)︂
⩽ 𝑐𝜀.

The proof is complete.

3.4. Treating of discrepancies. We are going to estimate the quantity 𝛿𝜀ℓ found in accor-
dance with the second formula in (3.11) by almost eigenvalue (3.14) and eigenvector (3.15). We
have

𝛿𝜀ℓ =sup
⃒⃒
⟨𝒦𝜀𝑈 𝜀

(ℓ) − Λ𝜀
ℓ𝑈

𝜀
(ℓ), 𝑉 ⟩𝜀

⃒⃒
=(1 + 𝜇𝑞)

−1‖𝑊 𝜀
(ℓ);ℋ𝜀‖−1 sup

⃒⃒
𝐸(𝑊 𝜀

(𝑙), 𝑉 ; Ω)

− 𝜇𝑞

(︀
𝜌(𝑊 𝜀

(ℓ)), 𝑉
)︀
Ω
+ 𝜀−1𝜌0

(︀
𝑛⊤𝑊 𝜀

(ℓ), 𝑛
⊤𝑉
)︀
𝜔𝜀

⃒⃒
,

(3.19)

where the supremum is calculated over the unit ball in the space ℋ𝜀, that is, ‖𝑉 ;ℋ𝜀‖ ⩽ 1 and
by formulas (1.11), (1.8), 𝛼 = −1, and (1.26), (1.32) the ingredients 𝑉 0 and 𝑉⊥ in representation
(1.23) for the test function 𝑉 admit the estimates

‖𝑉 0;R6‖ ⩽ 𝑐𝜀−1/2 as ‖𝑉⊥;𝐻1(Ω)‖ ⩽ 𝑐.

As ℓ = 𝑞, . . . , 𝑞+κ0
𝑞 − 1, we consider the expression 𝐼𝜀ℓ (𝑉 ) between the last modulus signs in

chain (3.19). Since {𝜇𝑞,u(ℓ)} is an eigenpair of problem (3.8), by means of weighted inequality
(1.27) we derive the estimate⃒⃒

𝐼𝜀ℓ (𝑉 )
⃒⃒
= 𝜀−1𝜌0|(𝑛⊤u(ℓ), 𝑛

⊤(𝑑𝑉 0 + 𝑉⊥))𝜔𝜀|

⩽ 𝑐ℓ𝜀
−1|𝜔𝜀|1/2

(︀
|𝜔𝜀| ‖𝑉 0;R6‖2 + ‖𝑉⊥;𝐿2(𝜔𝜀)‖2

)︀1/2
⩽ 𝐶ℓ

√
𝜀.

Now let ℓ = 𝑞+κ0
𝑞, . . . , 𝑞+κ𝑞 − 1. We make a usual procedure, namely, we pass to rescaled

curvilinear variables with relations (3.6) taken into consideration, use integral identity (3.9) for

the pair {𝜇𝑞,w
𝑗(ℓ)
(𝑚(ℓ))}, remove the cut-off function 𝜒𝑗(ℓ) due to the decay of the eigenfunction

and finally, we calculate

𝜀1/2𝜌
⃒⃒⃒
(𝜒𝑗(ℓ)w

𝑗(ℓ)
(𝑚(ℓ)), 𝑉 )Ω

⃒⃒⃒
⩽𝑐𝜀1/2

⃦⃦
(𝜀+ 𝑟𝑗(ℓ))

−1w
𝑗(ℓ)
(𝑚(ℓ));𝐿

2(Ω ∩ 𝒱𝑗(ℓ))
⃦⃦
‖(𝜀+ 𝑟𝑗(ℓ))𝑉 ;𝐿2(Ω)‖

⩽𝑐ℓ𝜀
1/2𝜀−1/2𝜀3/2

⃦⃦
(1 + 𝜌𝑗(ℓ))

−1w
𝑗(ℓ)
(𝑚(ℓ));𝐿

2(R3
−)
⃦⃦

·
(︀
‖𝑉 0;R6‖+ ‖𝑉⊥;𝐿2(Ω)‖

)︀
⩽𝐶ℓ

√
𝜀.

As a result we obtain the estimate

|𝐼𝜀ℓ (𝑉 )| ⩽ 𝐶ℓ

√
𝜀.
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Moreover, Lemma 3.1 in particular means that ‖𝑊 𝜀
(ℓ);ℋ𝜀‖ ⩾ (1+𝜇𝑞)/2 for small 𝜀 and therefore,

𝛿𝜀ℓ ⩽ 𝑐𝑞
√
𝜀, ℓ = 𝑞, . . . , 𝑞 + κ𝑞 − 1.

Thus, according to Lemma 3.1 we find the eigenvalues 𝜅𝜀𝑛(𝑞), . . . , 𝜅
𝜀
𝑛(𝑞+κ𝑞−1) of the operator 𝒦𝜀,

for which the inequalities

|𝜅𝜀𝑛(ℓ) − (1 + 𝜇𝑞)
−1| ⩽ 𝑐𝑞

√
𝜀, ℓ = 𝑞, . . . , 𝑞 + κ𝑞 − 1, (3.20)

hold true.

3.5. Theorem on asymptotics of eigenvalues. We complete the above calculations by
the following statement.

Theorem 3.1. Let 𝛼 = −1. Positive terms in sequence (1.16) of eigenvalues of problem
(1.2)–(1.4) and sequence (2.39) joining the spectra of problem (2.3), (2.4) in the domain Ω and
of problems (2.6), (2.7), (2.40) in the half-space R3

−, 𝑗 = 1, . . . , 𝐽 , satisfy the relation

|𝜆𝜀𝑚 − 𝜇0
𝑚| ⩽ c𝑚

√
𝜀 as 𝜀 ∈ (0, 𝜀𝑚], (3.21)

where 𝑚 ∈ N, while 𝜀𝑚 and c𝑚 are some positive numbers.

Proof. An immediate goal is to confirm that the indices 𝑛(𝑞), . . . , 𝑛(𝑞−κ𝑞−1) in formula (3.20)
can be treated as fixed. To this end, we use the second part of Lemma 3.1, in which we take
𝛿 = 𝑐𝑞

√
𝜀 and 𝛿* = 𝛿/𝜏 , where 𝜏 ∈ (0, 1). We denote by 𝐶𝜀

(ℓ) ∈ R𝒳 𝜀
𝑞 and 𝑆𝜀

(ℓ) the columns and

sums over 𝑘 = 𝒩 𝜀
𝑞 , . . . ,𝒩 𝜀

𝑞 + 𝒳 𝜀
𝑞 − 1 given by formulas (3.12) for almost eigenvectors (3.15),

ℓ = 𝑞, . . . , 𝑞+κ𝑞 − 1. Owing to these formulas and orthogonality and normalization conditions
(1.17) we find

|(𝐶𝜀
(𝑘))

⊤𝐶𝜀
(ℓ) − 𝛿ℓ,𝑘| =

⃒⃒
⟨𝑆𝜀

(ℓ), 𝑆
𝜀
(𝑘)⟩𝜀 − 𝛿ℓ,𝑘

⃒⃒
⩽
⃒⃒
⟨𝑆𝜀

(ℓ) − 𝑈 𝜀
(ℓ), 𝑆

𝜀
(𝑘)⟩𝜀

⃒⃒
+
⃒⃒
⟨𝑈 𝜀

(ℓ), 𝑆
𝜀
(𝑘) − 𝑈 𝜀

(𝑘)⟩𝜀
⃒⃒
+
⃒⃒
⟨𝑈 𝜀

(ℓ), 𝑈
𝜀
(𝑘)⟩𝜀 − 𝛿ℓ,𝑘

⃒⃒
.
(3.22)

Each of first two terms on the right hand side does not exceed 2𝜏 , while the last term does not
exceed 𝑐𝑞

√
𝜀, see formulas (3.12) and (3.18), and the latter is applied twice: first for ℓ = 𝑘 to find

out the asymptotics of the norm ‖𝑊 𝜀
(ℓ);ℋ𝜀‖ and then for the indices involved in (3.22). Thus,

for small 𝜏 and 𝜀 the columns 𝐶𝜀
(𝑞), . . . , 𝐶

𝜀
(𝑞+κ𝑞−1) are almost orthonormalized in the Euclidean

space R𝒳 𝜀
𝑞 , which is possible only in the case

κ𝑞 ⩽ 𝒳 𝜀
𝑞 .

Thus, having fixed an appropriate quantity 𝜏 and bounding the small parameter 𝜀 ⩽ 𝜀𝑞, in the
segment [︀

(1 + 𝜇0
𝑞)

−1 − 𝑐𝑞𝜏
−1
√
𝜀, (1 + 𝜇0

𝑞)
−1 + 𝑐𝑞𝜏

−1
√
𝜀
]︀

we find eigenvalues 𝜅𝜀𝒩 𝜀
𝑞
, . . . , 𝜅𝜀𝒩 𝜀

𝑞 +κ𝑞−1, which owing to relation (1.16) for the spectral parameters

transform into the terms
𝜆𝜀𝒩 𝜀

𝑞
, . . . , 𝜆𝜀𝒩 𝜀

𝑞 +κ𝑞−1

of sequence (1.16). At the same time,⃒⃒
𝜅𝜀ℓ − (1 + 𝜇0

𝑞)
−1
⃒⃒
⩽ 𝑐𝑞𝜏

−1
√
𝜀 as 𝜀 ∈ (0, 𝜀𝑞]

⇒

{︃
𝑐1 + 𝜆𝜀ℓ ⩽ 1 + 𝜇0

𝑞 + 𝑐𝑞𝜏
−1
√
𝜀(1 + κ0

𝑞)(1 + 𝜆𝜀ℓ)

|𝜆𝜀 − 𝜇0
𝑞| ⩽ 𝑐𝑞𝜏

−1
√
𝜀(1 + 𝜇0

𝑞)(1 + 𝜆𝜀ℓ)
as 𝜀 ∈ (0, 𝜀𝑞]

⇒

{︃
𝑐1 + 𝜆𝜀ℓ ⩽ 2(1 +

√
𝜇0
𝑞) as 𝑐𝑞𝜏

−1
√
𝜀(1 + 𝜇𝑞) ⩽ 1/2

|𝜆𝜀ℓ − 𝜇0
𝑞| ⩽ 𝐶𝑞

√
𝜀 := 2𝑐𝑞𝜏

−1
√
𝜀(1 + 𝜇𝑞)

2
as 𝜀 ∈ (0, 𝜀𝑞],

(3.23)

where 𝜀𝑞 = min{𝜀𝑞, 𝜏 2(2𝑐𝑞(1 + 𝜇0
𝑞))

−2}.
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Remark 3.1. For each κ𝑞-multiple eigenvalue 𝜇0
𝑞 (see formula (3.13)), in its neighbourhood

we have found at least κ𝑞 eigenvalues of problem (1.2)–(1.4) satisfying the last relation in (3.23).
In particular, this implies inequality (3.1) and this proves Proposition 3.1 completely.

It remains to make sure that 𝒩 𝜀
𝑞 = 𝑞. According to what was said in Remark 3.1, we have

𝒩 𝜀
𝑞 ⩾ 𝑞. If 𝒩 𝜀

𝑞 > 𝑞, then there exists an eigenvalue of problem (1.9), for which

𝜆𝜀ℳ𝜀
𝑞
⩽ 𝜇0

𝑞 + 𝑐𝑞
√
𝜀 < (𝜇0

𝑞 + 𝜇0
𝑞+κ𝑞

)/2 < κ0
𝑞+κ𝑞

, ℳ𝜀
𝑞 ⩾ 𝑞 + κ𝑞.

At the same time, the eigenfunction obeys the orthogonality conditions

𝜌(𝑢𝜀(ℳ𝜀
𝑞)
, 𝑢𝜀(𝑚))Ω + 𝜀−1𝜌0(𝑛

⊤𝑢𝜀(ℳ𝜀
𝑞)
, 𝑛⊤𝑢𝜀(𝑚))𝜔𝜀 = 0, 𝑚 = 1, . . . , 𝑞 + κ𝑞 − 1.

Passages to limit (3.2) and (3.3), (3.7) provide the term

𝜇0
ℳ0

𝑞
∈ [0,𝜇0

𝑞+κ𝑞
) (3.24)

of sequence (2.39) and a nontrivial linear combination of eigenfunctions of limiting problems
(2.3), (2.4) and (2.6), (2.7), (2.40), 𝑗 = 1, . . . , 𝐽 , under keeping orthogonality conditions (2.19)
and (2.42). This contradicts the way of forming monotone sequence (2.39): eigenvalue (3.24)
is redundant.
The proof of Theorem 3.1 is complete.

3.6. Conclusion. Several important aspects of the scheme of asymptotics justification were
intentionally left out. The majorant in estimate (3.21) reflects the worst error in asymptotic
formulas for eigenvalues 𝜆𝜀𝑚 as 𝑚 > 6 found in Situation 3∘ in Subsection 3.3. The construction
of correctors in ansätze (2.38) and (2.39) and reproducing of the calculations in this section
allow us to specify Theorem 3.1 both directly in situations 1∘ and 2∘, where the majorant
becomes equal to c′𝑞𝜀, and after specifying the asymptotics, namely,

|𝜆𝜀𝑚 − 𝜇0
𝑚 − 𝜀𝜇′′

𝑚| ⩽ c′′𝑞𝜀
3/2, 𝑚 = 𝑞, . . . , 𝑞 +𝐾 − 1, (3.25)

in situations 1∘ (as 𝐾 = 1) and 2∘, as well as

|𝜆𝜀𝑚 − 𝜇0
𝑚 −

√
𝜀𝜇′

𝑚| ⩽ c′𝑞𝜀, 𝑚 = 𝑞, . . . , 𝑞 +𝐾, (3.26)

in situation 30. Here we adopt the notations from Subsection 3.3 and Theorem 3.1.
As usual, the justification of asymptotic representations for the eigenfunctions is made by

means of Lemmas 3.1 and 3.2, more precisely, by the inequalities from lists (3.12) and (3.18).
Since the correctors in ansatz (2.37) can be found by means of linear combinations of eigen-
functions of the limiting problems, the estimates for the error terms in formulas for 𝑢𝜀(𝑚) are

worse than in formulas (3.21) or (3.25), (3.26) for the eigenvalues 𝜆𝜀𝑚. Moreover, in the case
of the multiple eigenvalue 𝜆0𝑚 the spectrum of the matrix 𝑀 in algebraic systems (2.51) or
(2.53) can also be multiple and hence, there eigenvectors satisfying relations (2.20), are not
determined uniquely and the same is true for the leading terms of ansatz (2.39). As a result,
the statements on the asymptotics for eigenfunctions become too cumbersome and this is why
we restrict ourselves by a particular case of a simple eigenvalue of limiting problems.

Theorem 3.2. In the situation described in Subsection 2.3 (1∘), in particular, as 𝛼 = −1,
for an eigenfunction of problem (1.2)–(1.4) associated with its eigenvalue 𝜆𝜀𝑚 in formula (3.25)
and normalized in accordance with identity (1.17) satisfies the estimate

‖𝑢𝜀(𝑚) − u(𝑞);𝐻
1(Ω)‖ ⩽ 𝑐𝑚

√
𝜀 as 𝜀 ∈ (0, 𝜀𝑚],

where u(𝑞) is an eigenfunction of problem (2.3), (2.4) for its simple eigenvalue 𝜆𝑞 = 𝜇0
𝑚, and

relation (2.19) holds, while 𝜀𝑚 > 0 and 𝑐𝑚 are some numbers.
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4. Versions, generalizations and open questions

4.1. Smoothness of boundary and infinite asymptotic series. Of course, all arguing
and calculations remain true under the assumption that the pieces Γ𝑗 = 𝜕Ω ∩ 𝒱𝑗 are smooth,
while the other part of the boundary of the domain Ω can be only Lipschitz. The flatness of
these pieces simplifies the asymptotic analysis, when one needs at least two terms in the bound-
ary layer (cf. Subsection 2.3 (10),), however, the iteration procedures developed in monograph
[13] give an opportunity to extend this result to the case of non-zero curvatures. Moreover,
the corresponding procedures allows us to construct infinite asymptotic series in the frame-
work of the method of composite asymptotic expansions. However, such iteration processes,
which involve a complicated procedure of redistribution of the discrepancies between limiting
problems, are rather cumbersome and are rarely used in particular problems of mathematical
physics oriented to applications. On the other hand, in some issues it is sufficient to know
the information about the possibility of expanding the eigenvalues and eigenvectors into the
discussed series.
In fact, the points 𝑃 1, . . . , 𝑃 𝐽 can be conical, however, we have to reformulate the restriction

dimℒ = 6 for the linear span of the columns for such points. For instance, for a spindle

Ω = {𝑥 : 𝑥3 ∈ (−1, 1), 𝐻(𝑥3)
−1(𝑥1, 𝑥2) ∈ Θ}, (4.1)

where 𝐻 ∈ 𝐶∞[−1, 1], 𝐻(𝑧) > 0 as 𝑧 ∈ (−1, 1), 𝐻(±1) = 0, ∓𝜕𝑧𝐻(±1) > 0 and Θ is an ellipse
with non-equal axis, while substituting the Winkler-Steklov conditions at two end zones

𝜔𝜀
± = {𝑥 ∈ 𝜕Ω : ±𝑥3 ∈ (1− 𝜀, 1)},

the spectrum of problem (1.2)–(1.4) becomes discrete also in the case 𝜌 = 0. At the same time,
asymptotic ansätze for eigenpairs of problem (1.9) for body (4.1) remain unknown. One more
question, which remained open, is on constructing the asymptotics under the condition that
the spherical surface in Examples 20 and 30 in Subsection 1.3 is replaced by a polygonal surface
and a polygon, respectively.

4.2. Weightless body. We fix a size 𝜀 of domains (1.1) on the surface 𝜕Ω and let the density
𝜌 of the body Ω tend to zero. If a symmetric positive (6× 6)-matrix∫︁

𝜔𝜀

𝑑(𝑥)𝑇𝑛(𝑥)𝑛(𝑥)⊤𝑑(𝑥) 𝑑𝑥 (4.2)

is non-degenerate, then the bilinear form

⟨𝑢𝜌, 𝜓𝜌⟩𝜀,𝜌 = 𝐸(𝑢𝜌, 𝜓𝜌; Ω) + 𝜌𝜀(𝑛
⊤𝑢𝜌, 𝑛⊤𝜓𝜌)𝜔𝜀 (4.3)

can serve as a scalar product in the Sobolev space 𝐻1(Ω)3. Under the mentioned restriction for
matrix (4.2) problem (1.2)–(1.4) turns out to be a regular perturbation of the limiting (𝜌 = 0)
problem, in which the system of equilibrium equations is

𝐿(∇𝑥)𝑢
𝜀𝜌(𝑥) = 0, 𝑥 ∈ Ω, (4.4)

with boundary conditions (1.3) and (1.4), while for the eigenvalues 𝜆𝜀𝜌𝑚 of the original problem
the asymptotic representations

𝜆𝜀𝜌𝑚 = 𝜆𝜀0𝑚 + 𝜌𝜆𝜀′𝑚 +𝑂(𝜌2)

hold, where {𝜆𝜀0𝑚}𝑚∈N is the spectrum of the limiting problem, while the correctors 𝜆′𝑚 can be
easily calculated.
For Examples 10–30 provided in Subsection 1.3 and for many other situations matrix (4.2)

and bilinear form (4.3) lose needed properties, while the spectrum of limiting problem (4.4),
(1.3), (1.4) occupies the entire complex plane: for each 𝜆𝜀0 ∈ C the elements of the nontrivial
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subspace ℛ# in linear space (1.18) of rigid displacement completely satisfy the limiting problem
since 𝑛(𝑥)⊤𝑟#(𝑥) = 0 as 𝑥 ∈ 𝜔𝜀 for 𝑟# = 𝑑𝑎# ∈ ℛ#. At the same time, the problem

𝐸(𝑢𝜀#, 𝜓#; Ω) = 𝜆𝜀#𝜌𝜀(𝑛
⊤𝑢𝜀#, 𝑛⊤𝜓#)𝜔𝜀 , 𝜓# ∈ 𝐻1

#(Ω)
3,

restricted to the subspace 𝐻1
#(Ω)

3 = 𝐻1(Ω)3 ⊖ ℛ# takes a discrete spectrum ℘𝜀
#, in which

a zero eigenvalue is of the multiplicity 6 − dimℛ#. The author does not know a mechanical
interpretation of such restriction.
It is easy to construct an asymptotics as 𝜌→ +0 for an inhomogeneous system of equations

𝐿(∇𝑥)𝑢
𝜀𝜌(𝑥)− 𝜆𝜀0𝜌𝑢𝜀𝜌(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω,

subject to boundary conditions (1.3), (1.4), which involves a parameter 𝜆𝜀0 ∈ C ∖ ℘𝜀
#, namely,

𝑢𝜀𝜌(𝑥) = 𝜌−1𝑑(𝑥)𝑎# + 𝑢𝜀′(𝑥) + . . . ,

where the first term in the right hand side belongs to the subspace ℛ#, while the column 𝑎#

is determined by the compatibility conditions of the problem for 𝑢𝜀′.
The matrix (4.2) is non-degenerate, for instance, under the condition dimℒ = 6 imposed for

columns (1.21). At the same time, the passage to the limit 𝜀 → +0 in problem (1.2)–(1.4) is
possible also for 𝜌 = 0: corresponding limiting problem (2.34) (or (2.6), (2.7), (2.33) in the
differential form) is derived by means of the analysis presented in Subsection 2.2. We mention
a result obtained in Subsection 1.3: the expression

(𝐸(𝑢, 𝑢; Ω) + ‖𝑢0;R6‖2)1/2

with the column 𝑢0 given by the first formula in (1.24) is a norm in the Sobolev space 𝐻1(Ω)3.
Under the discussed restriction dimℒ = 6 the simultaneous passage to the limit as 𝜀 → +0

and 𝜌→ +0 can lead to a problem different from (2.34). For instance, let

𝜌𝜀 = 𝜀−1𝜌0 and 𝜌 = 𝜀𝜌Ω, 𝜌Ω > 0. (4.5)

Ansat (2.26) for the eigenfunction completely remains and since 𝛼 = −1 in definition (1.8),
ansatz (2.25) for the eigenvalue casts into the form

𝜆𝜀6+𝑚 = 𝜇𝑚 + . . . .

According to assumption (4.5), in the right hand side 𝑓 ′
𝑚 in problem (2.29) for the corrector

𝑢′(𝑚) of smooth type an additional term appears:

𝜇𝑚𝜌Ω 𝑑(𝑥)𝑐
0
(𝑚).

Hence, previous calculations in Subsection 2.2 show that the matrix 𝑀 (see formula (2.32)) in
limiting boundary conditions (2.33) becomes

𝑀 = 𝜌Ω𝜌
−1
0

∫︁
Ω

𝑑(𝑥)⊤ 𝑑(𝑥) 𝑑𝑥+
𝐽∑︁

𝑗=1

|𝜛𝑗|𝑑(𝑃 𝑗)⊤𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤ 𝑑(𝑃 𝑗). (4.6)

Matrix (4.6) remains positive definite also once we omit the restriction dimℒ = 6, that is,
Theorem 2.2 is true for problem (2.34) with a new matrix𝑀 for arbitrary number and position
of the sets 𝜔𝜀

1, . . . , 𝜔
𝜀
𝐽 ⊂ 𝜕Ω, on which the Winkler–Steklov conditions are imposed. As in

Subsection 2.2, for 𝐽 > 1 limiting problems (2.6), (2.7), (2.33) are joined in a single spectral
problem. If 𝐽 = 1, then the boundary condition on 𝜛1 for the only problem in the half-space
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R3
− becomes

𝑁1(∇𝜉1)𝑤
1
(𝑚)(𝜉

1
♮ , 0) = 𝜇𝑚𝜌0𝑛(𝑃

1)

(︂
𝑛(𝑃 1)⊤𝑤1

(𝑚)(𝜉
1
♮ , 0)−

− 𝑑(1)

(︂
𝜌Ω
𝜌0

∫︁
Ω

𝑑(𝑥)⊤ 𝑑(𝑥) 𝑑𝑥+ |𝜛1|𝑑⊤(1)𝑑(1)
)︂−1

|𝜛1|𝑑⊤(1)𝑛(𝑃 𝑗)⊤𝑤1
(𝑚)

)︂
, 𝜉1♮ ∈ 𝜛1,

where 𝑑(1) = 𝑛(𝑃 1)⊤ 𝑑(𝑃 1) is a row of length six.

4.3. On modelling singularly perturbed problems. In mechanics and other applied
fields many models obtained by means of partial asymptotic analysis preserve a small parameter.
A very striking example is the shell theory (see monograph [22] and others), the equations in
which, in contrast to the equations in the plate theory (see, for instance, books [23], [3]), involve
the curvatures of the middle surface and a relative thickness of the shell, which is a natural small
parameter. In the case of small singular perturbations the technique of self-adjoint extensions
of differential operators (see [24]–[30], [15], [16] and others) turn out to be effective.
For the considered problem with Winkler–Steklov conditions on small parts of the boundary,

the technique of self-adjoint extensions gains a feature: the extension parameters, in addition
to the size, involve a sought eigenvalue. Let us demonstrate this feature for the exponent 𝛼 = 0
in formula (1.8) and employ the results of asymptotic analysis from Section 2.1.
From ansatz (2.2) we extract the sum

𝑢𝜀(𝑥) = 𝑢0(𝑥) + 𝜀2
(︂
𝑢′(𝑥) +

𝐽∑︁
𝑗=1

𝜒𝑗(𝑥)Φ
𝑗(𝑥𝑗)𝑏𝑗

)︂
(4.7)

with coefficients (2.13) neglecting fast decaying terms in the boundary layer ̃︀𝑤𝑗(𝜉𝑗) (we do not
write the subscript 𝑚). We note that the vector function (4.7), being substituted into the
system of differential equation

𝐿(∇𝑥)u
𝜀(𝑥) = l𝜀𝜌u𝜀(𝑥), 𝑥 ∈ Ω, (4.8)

with the parameter

l𝜀 = 𝜆0 + 𝜀2𝜆′,

from (2.1), satisfies it with an error, 𝐿2(Ω)-norm of which is equal to 𝑂(𝜀4). For a vector
function u𝜀, the boundary conditions

𝑁(𝑥,∇𝑥)u
𝜀(𝑥) = 0, 𝑥 ∈ 𝜕Ω ∖ 𝒫 , (4.9)

hold everywhere except for the points 𝑃 1, . . . , 𝑃 𝐽 , at which it has singularities 𝑂(𝑟−1). A
noticeable smallness of the error allows us to adopt problem (4.8), (4.9) as a model for original
singularly perturbed problem and, as usually, (see primary source [24] and survey [26]), the
Winkler–Steklov conditions on small neighbourhoods of the points 𝑃 1, . . . , 𝑃 𝐽 is imitated by
the Dirac delta-functions with approrpiate coefficients, that is, in the framework of the theory
of distributions we have

𝑁(𝑥,∇𝑥)u
𝜀(𝑥) = l𝜀𝜌0𝜀

2

𝐽∑︁
𝑗=1

|𝜛𝑗|𝛿(𝑠𝑗)𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤̂︀u𝜀(𝑃 𝑗), 𝑥 ∈ 𝜕Ω. (4.10)

Here the coefficient at the Dirac function 𝛿(𝑠𝑗) with a singularity at the point 𝑃 𝑗 ∈ 𝜕Ω is found
by formula (2.13) with admissible replacements 𝜆0 ↦→ l𝜀 and 𝑢0(𝑃 𝑗) ↦→ ̂︀u𝜀(𝑃 𝑗), namely,

b𝑗𝜀 = l𝜀𝜌0𝜀
2|𝜛𝑗|𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤̂︀u𝜀(𝑃 𝑗), (4.11)
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where ̂︀u𝜀 ∈ 𝐻2(Ω) is a regular part of the vector function

u𝜀(𝑥) = ̂︀u 𝜀(𝑥) +
𝐽∑︁

𝑗=1

𝜒𝑗(𝑥)Φ
𝑗(𝑥𝑗)b𝑗𝜀. (4.12)

The right hand side of identity (4.10) involves unknowns l𝜀 and u𝜀, that is, it should be
interpreted as a spectral boundary condition. However, its rigorous formulation requires the
operator A introduced in Subsection 1.2.
The next statement is a simple corollary of Kondratiev theory [31] (cf. arguging in work

[27]).

Proposition 4.1. The adjoint operator S* for the operator S with domain (1.22) preserves
the differential expression 𝐿(∇𝑥) but gains the domain

D(S*) =

{︂
U = U0 +

𝐽∑︁
𝑗=1

𝐺𝑗(𝑥)B𝑗
⃒⃒⃒
U0 ∈ 𝐻2(Ω)3,

𝑁(𝑥,∇𝑥)U
0(𝑥) = 0, 𝑥 ∈ 𝜕Ω, B𝑗 ∈ R3, 𝑗 = 1, . . . , 𝐽

}︂
.

(4.13)

Here 𝐺𝑗 is Green matrix (2.48) with a singularity at the point 𝑃 𝑗.

Since{︀
U ∈ D(S*) : B1 = . . .B𝐽 = 0

}︀
= 𝐻2

𝑁(Ω)
3 := {𝑢 ∈ 𝐻2(Ω)3 : 𝑁(𝑥,∇𝑥)𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω}

and the Fredholm mapping

𝐻2
𝑁(Ω)

3 ∋ 𝑢 ↦→ 𝐿(∇𝑥)𝑢 ∈ 𝐿2(Ω)3

possesses a six-dimensinal kernel and co-kernel (cf. compatibility conditions (2.30) in problem
(2.29) and polynomial property (1.18)), the defect index of the considered operator S is equal
to 3𝐽 : 3𝐽 , and hence it admits a self-adjoint extension. As in papers [15], [16], [29], [30] and
others, for modelling we need one of the extensions among the entire family of all possible ones.
In order to make a proper choice, we compare the expansion

U(𝑥) = ̃︀U(𝑥) + 𝐽∑︁
𝑗=1

𝜒𝑗(𝑥)

(︂
Φ𝑗(𝑥𝑗)B𝑗 +

𝐽∑︁
𝑘=1

̃︀𝐺 𝑘(𝑃 𝑗)B𝑘 + U0(𝑃 𝑗)

)︂
for an element of space (4.13) and the chosen expansion

u𝜀(𝑥) = ̃︀u 𝜀(𝑥) +
𝐽∑︁

𝑗=1

𝜒𝑗(𝑥)
(︀
Φ𝑗(𝑥𝑗)b𝑗𝜀 + ̂︀u 𝜀(𝑃 𝑗)

)︀
.

Here the errors ̃︀U and ̃︀u 𝜀 belong to the subspace

𝐻2
∙ (Ω)

3 :=
{︀̃︀𝑢 ∈ 𝐻2(Ω)3 : ̃︀𝑢(𝑃 1) = · · · = ̃︀𝑢(𝑃 𝐽) = 0

}︀
.

As a result we obtain the relations

B𝑗 = b𝑗𝜀, U0(𝑃 𝑗) +
𝐽∑︁

𝑘=1

̃︀𝐺 𝑘(𝑃 𝑗)B𝑘 = ̂︀u 𝜀(𝑃 𝑗), 𝑗 = 1, . . . , 𝐽,

which in view of formulas (4.11) and (2.49) imply the relations

𝑛(𝑃 𝑗)B𝑗 = l𝜀𝜌0𝜀
2|𝜔𝑗|

(︂
𝑛(𝑃 𝑗)⊤U0(𝑃 𝑗) +

𝐽∑︁
𝑘=1

G𝑗𝑘𝑛(𝑃
𝑘)B𝑘

)︂
,(︀

I3 − 𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤
)︀
B𝑗 = 0, 𝑗 = 1, . . . , 𝐽.

(4.14)
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Theorem 4.1. For each l𝜀 ∈ R+ and small 𝜀 > 0 the restriction S(l𝜀) of the operator S*

to the subspace

𝒟(S(l𝜀)) = {U𝜀 ∈ D(S*) : relations (4.14) are satisfied }

is a self-adjoint operator.

Proof. For the elements U(𝑖), 𝑖 = 1, 2, of space (4.13) with ingredientsB(𝑖) and U0
(𝑖) a generalized

Green’s formula holds:(︀
𝐿(∇𝑥)U(1),U(2)

)︀
Ω
−
(︀
U(1), 𝐿(∇𝑥)U(2)

)︀
Ω
=

𝐽∑︁
𝑗=1

(︁
(B𝑗

(2))
⊤U0

(1)(𝑃
𝑗)− (B𝑗

(1))
⊤U0

(2)(𝑃
𝑗)
)︁
, (4.15)

which is deduce by means of (2.21). It is easy to see that owing to relations (4.14) the right
hand side of identity (4.15) vanishes for the vector functions U(1),U(2) ∈ 𝒟(S(l𝜀)). It remains
to note that for a small 𝜀 relations (4.14) impose exactly 3𝐽 conditions for the coefficients
B𝑗,U0(𝑃 𝑗) ∈ R3, 𝑗 = 1, . . . , 𝐽 , and hence, S(l𝜀) is a self-adjoint extension of the operator S
since its defect index is equal to 3𝐽 : 3𝐽 .

Unfortunately, the domain of the self-adjoint extension S(l𝜀) depends on the spectral pa-
rameter, that is, the spectral problem

S(l𝜀)U𝜀 = l𝜀U𝜀 (4.16)

in fact deals with an operator pencil and this is an obstacle for a mechanical interpretation of
equation (4.16) and for creating numerical schemes for solving it.
We propose another model, which uses a Hilbert space of vector functions with a detached

asymptotics

D = 𝐻2
∙ (Ω)

3 ×R3×𝐽 ×R3×𝐽 (4.17)

equipped with the norm

‖u𝜀;D‖ =
(︀
‖̃︀u𝜀;𝐻2(Ω)‖2 + ‖a𝜀;R3×𝐽‖2 + ‖b𝜀;R3×𝐽‖2

)︀1/2
,

which involves the remainder ̃︀𝑢 𝜀 and the columns a𝜀 = (a𝜀1, . . . , a𝜀𝐽)⊤, b𝜀 = (b𝜀1, . . . , b𝜀𝐽)⊤ of
the following representation for an element in space (4.17):

U𝜀(𝑥) = ̃︀U𝜀(𝑥) +
𝐽∑︁

𝑗=1

𝜒𝑗(𝑥)(Φ
𝑗(𝑥𝑗)b𝜀𝑗 + a𝜀𝑗).

We complete the system of differential equations

𝐿(∇𝑥)u
𝜀(𝑥) = l𝜀u𝜀(𝑥), 𝑥 ∈ Ω, (4.18)

with boundary conditions

𝑁(𝑥,∇𝑥)u
𝜀(𝑥) = 0, 𝑥 ∈ 𝜕Ω ∖ 𝒫 , (4.19)

and asymptotic conditions at the points 𝑃 1, . . . , 𝑃 𝐽

b3𝑗 = l𝜀𝜌0𝜀
2|𝜛𝑗|𝑛(𝑃 𝑗)𝑛(𝑃 𝑗)⊤a𝜀𝑗 ∈ R3 (4.20)

coming from formulas (4.11) and (4.12).
The operator of problem (4.18)–(4.20) is realized as the mapping

D ∋ u𝜀 ↦→ (𝐿u𝜀, 𝑁u𝜀, b𝜀)− l𝜀(u𝜀, 0, 𝜀2𝑇a𝜀) ∈ R := 𝐿2(Ω)3 × {0|𝜕Ω}3 ×R3×𝐽 ×R3×𝐽 , (4.21)

where

𝑇 = 𝜌0 diag
{︀
|𝜛1|𝑛(𝑃 1)𝑛(𝑃 1)⊤, . . . , |𝜛𝐽 |𝑛(𝑃 𝐽)𝑛(𝑃 𝐽)⊤

}︀
.
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Theorem 4.2. The spectrum of problem (4.18)–(4.20) is purely discrete. The terms of the
corresponding sequence of eigenvalues

0 = l𝜀1 = · · · = l𝜀6 < l𝜀7 ⩽ l𝜀8 ⩽ . . . ⩽ l𝜀𝑚 ⩽ · · · → +∞

and the terms of sequence (1.16) of eigenvalues of problem (1.2)–(1.4) satisfy the relation

|𝜆𝜀𝑚 − l𝜀𝑚| ⩽ c𝑚𝜀
3 as 𝜀 ∈ (0, e𝑚], (4.22)

where 𝑚 ⩾ 7, while c𝑚 and e𝑚 > 0 are some numbers.

Proof. In view of the compactness of the embedding D ⊂ R (we do not take into consideration
the zero component, which is the third left one in (4.21)), the statement on the discreteness is
obvious. Relation (4.22) is implied by Theorem 2.3 and estimate (2.24) as 𝛼 = 0.

A mechanical interpretation of asymptotic conditions (4.20) is simple: a body Ω is connected
by stiff springs to rigid profiles (see monograph [4] and cf. paper [20]). The question on creating
numerical schemes for solving problem (1.2)–(1.4) remained completely open.
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aufgaben in singulär gestörten Gebieten. 1 & 2. Akademie-Verlag, Berlin (1991). [V. Maz’ya, S.
Nazarov, B. Plamenevskij. Asymptotic theory of elliptic boundary value problems in singularly

perturbed domains. Vol. 1 & 2. Birkhäuser Verlag, Basel (2000).]
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