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INEQUALITIES FOR MEROMORPHIC FUNCTIONS

WITH PRESCRIBED POLES

M.Y. MIR, W.M. SHAH, S.L. WALI

Abstract. The extremal problems for functions of complex variables, as well as approaches
for obtaining classical inequalities on the base of various methods of the geometric function
theory, are known for various norms and for many classes of functions such as rational
functions with various constraints and for various domains in the complex plane. It is
important to mention that different types of Bernstein-type inequalities appeared in the
literature in more generalized forms in which the underlying polynomial was replaced by a
more general class of functions. One such generalization is the passage from polynomials to
rational functions. In this paper, we prove some inequalities for meromorphic functions with
prescribed poles and restricted zeros. These results not only generalize some Bernstein-type
inequalities for rational functions, but also improve and generalize some known polynomial
inequalities. These inequalities have their own importance in the approximation theory.
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1. Introduction

Let 𝒫𝑛 denote the class of all complex polynomials 𝑃 (𝑧) :=
𝑛∑︁

𝑗=0

𝑐𝑗𝑧
𝑗 of degree at most 𝑛.

Assume that 𝐷−
𝑘 represents the set of all points which lie inside 𝑇𝑘 := {𝑧 : |𝑧| = 𝑘} and 𝐷+

𝑘 is
the set of the points which lie outside 𝑇𝑘. Concerning the estimate of |𝑃 ′(𝑧)| in terms of |𝑃 (𝑧)|
for 𝑧 ∈ 𝑇1, Bernstein [1] proved the following that if 𝑃 ∈ 𝒫𝑛, then

max
𝑧∈𝑇1

|𝑃 ′(𝑧)| ⩽ 𝑛max
𝑧∈𝑇1

|𝑃 (𝑧)|.

The result is sharp and the equality holds for the polynomials of the form 𝑃 (𝑧) = 𝑎𝑧𝑛, 𝑎 ̸= 0.
This inequality can be sharpened under additional conditions on the zeros of 𝑃 (𝑧). In fact, if
𝑃 (𝑧) ̸= 0 in 𝐷−

1 , then

max
𝑧∈𝑇1

|𝑃 ′(𝑧)| ⩽ 𝑛

2
max
𝑧∈𝑇1

|𝑃 (𝑧)|, (1.1)

whereas if 𝑃 (𝑧) ̸= 0 in 𝐷+
1 , then (1.1) can be replaced by

max
𝑧∈𝑇1

|𝑃 ′(𝑧)| ⩾ 𝑛

2
max
𝑧∈𝑇1

|𝑃 (𝑧)|. (1.2)

Both these inequalities are sharp and equality in each case holds for the polynomials of the
form 𝑃 (𝑧) = 𝑎𝑧𝑛 + 𝑏, where |𝑎| = |𝑏|.

M.Y. Mir, W.M. Shah, S.L. Wali. Inequalities for meromorphic functions with prescribed
poles.
© Mir M.Y., Shah W.M., Wali S.L. 2023.
The first author is highly thankful to the funding agency DST-INSPIRE for their financial support, IF:

190129.
Submitted January 10, 2023.

127

https://doi.org/10.13108/2023-16-1-127


128 M.Y. MIR, W.M. SHAH, S.L. WALI

Inequality (1.1) was conjectured by Erdös and latter it was verified by Lax [2], whereas
inequality (1.2) is due to Turán [3]. Both these inequalities were generalized by Malik [4] as
follows: if 𝑃 (𝑧) is a polynomial of degree 𝑛, which does not vanish in 𝐷−

𝑘 , where 𝑘 ⩾ 1, then

max
|𝑧|=1

|𝑃 ′(𝑧)| ⩽ 𝑛

1 + 𝑘
max
|𝑧|=1

|𝑃 (𝑧)| (1.3)

and if does not vanish in 𝐷+
𝑘 , 𝑘 ⩽ 1, then

max
𝑧∈𝑇1

|𝑃 ′(𝑧)| ⩾ 𝑛

1 + 𝑘
max
𝑧∈𝑇1

|𝑃 (𝑧)|. (1.4)

These inequalities were refined and generalized by various authors (for the references see [5], [6],
[7]) for the operators besides the ordinary derivative and in some cases underlying polynomials
were replaced by a more general class of functions.

For a polynomial 𝑃 (𝑧) of degree at most 𝑛, the polar derivative with respect to a point 𝛼 ∈ C,
denoted by 𝐷𝛼𝑃 (𝑧), is defined as

𝐷𝛼𝑃 (𝑧) := 𝑛𝑃 (𝑧) + (𝛼− 𝑧)𝑃 ′(𝑧).

Here 𝐷𝛼𝑃 (𝑧) is a polynomial of degree at most 𝑛− 1 and it generalizes the ordinary derivative
in the sense that

lim
|𝛼|→∞

𝐷𝛼𝑃 (𝑧)

𝛼− 𝑧
= 𝑃 ′(𝑧).

Aziz [8] extended inequality (1.1) to the polar derivative of a polynomial and proved that If
𝑃 (𝑧) is a polynomial of degree 𝑛, which does not vanish in 𝐷−

1 , then for every real or complex
number 𝛼 with |𝛼| ⩾ 1 and for 𝑧 ∈ 𝑇1 ∪𝐷−

1

max
𝑧∈𝑇1

|𝐷𝛼𝑃 (𝑧)| ⩽ 𝑛

2
(|𝛼𝑧𝑛−1|+ 1)max

𝑧∈𝑇1

|𝑃 (𝑧)|.

In the same paper Aziz proved that if 𝑃 (𝑧) is a polynomial of degree 𝑛, which does not vanish
in 𝐷−

𝑘 , 𝑘 ⩾ 1, then for every real or complex number 𝛼 with |𝛼| ⩾ 1,

max
𝑧∈𝑇1

|𝐷𝛼𝑃 (𝑧)| ⩽ 𝑛

(︃
𝑘 + |𝛼|
1 + 𝑘

)︃
max
𝑧∈𝑇1

|𝑃 (𝑧)|. (1.5)

Shah [9] extended inequality (1.2) to the polar derivative and under the same assumption
observed for every 𝛼 ∈ C, with |𝛼| ⩾ 1 that

|𝑧𝐷𝛼𝑃 (𝑧)| ⩾ 𝑛

2
(|𝛼| − 1)|𝑃 (𝑧)|, for 𝑧 ∈ 𝑇1.

These results were further extended and generalized in various ways by various authors (for
references see [10], [11] ).

R. P. Bose proposed to obtain Bernstein-type inequalities for the rational functions instead of
polynomials and accordingly over the past few decades, many inequalities for rational functions
were established and also used in rational approximation theory. In particular, during the last
few decades Bernstein-type inequalities for polynomials were extended to a class of rational
functions ℛ𝑛, where

ℛ𝑛 = ℛ𝑛(𝛼1, . . . , 𝛼𝑛) :=

{︃
𝑃 (𝑧)

𝑤(𝑧)
: 𝑃 ∈ 𝒫𝑛, 𝑤(𝑧) =

𝑛∏︁
𝑗=1

(𝑧 − 𝛼𝑗)

}︃
with poles 𝛼1, 𝛼2, . . . , 𝛼𝑛 and with finite limit at infinity. We observe that the Blaschke product
𝐵 ∈ ℛ𝑛, where

𝐵(𝑧) :=
𝑛∏︁

𝑗=1

(︃
1− 𝛼𝑗𝑧

𝑧 − 𝛼𝑗

)︃
=

𝑤*(𝑧)

𝑤(𝑧)
,
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with

𝑤*(𝑧) = 𝑧𝑛𝑤
(︀1
𝑧

)︀
=

𝑛∏︁
𝑗=1

(1− 𝛼𝑗𝑧)

and satisfying |𝐵(𝑧)| = 1 for 𝑧 ∈ 𝑇1. Through out this paper we assume that all poles
𝛼1, 𝛼2, . . . , 𝛼𝑛 lie in 𝐷+

1 .
Li, Mohapatra and Rodriguez [12] obtained Bernstein-type inequalities for rational functions

𝑟 ∈ ℛ𝑛 with prescribed poles 𝛼1, 𝛼2, . . . , 𝛼𝑛 replacing 𝑧𝑛 by 𝐵(𝑧). In particular, they proved
that if all the zeros of 𝑟 ∈ ℛ𝑛 lie in 𝑇1 ∪𝐷+

1 , then for 𝑧 ∈ 𝑇1

|𝑟′(𝑧)| ⩽ 1

2
|𝐵′(𝑧)||𝑟(𝑧)|. (1.6)

The result is sharp and equality holds for the rational function

𝑟(𝑧) = 𝑎𝐵(𝑧) + 𝑏, |𝑎| = |𝑏| = 1.

In the same paper they proved that if all the zeros of a rational function 𝑟 ∈ ℛ𝑛 lie in 𝑇1 ∪𝐷−
1 ,

then for 𝑧 ∈ 𝑇1

|𝑟′(𝑧)| ⩾ 1

2
|𝐵′(𝑧)||𝑟(𝑧)|.

The result is sharp and equality holds for the rational function

𝑟(𝑧) = 𝑎𝐵(𝑧) + 𝑏 with |𝑎| = |𝑏| = 1.

These results were further improved and generalized in various ways from time to time, see
[13], [14], [5]. In this paper we prove some results which generalize the known inequalities for
rational functions and thereby deduce generalizations of the known estimates for the maximum
modulus of the polar derivative as well as the derivative of a polynomial on the disk.

2. Main results

We first prove the following comparison inequality, which gives a rational analogue of a result
due to Dewan et al. [15].

Theorem 2.1. If 𝑟 ∈ ℛ𝑛 has all zeros in 𝑇𝑘 ∪𝐷−
𝑘 , 𝑘 ⩽ 1, then for every 𝛽 with |𝛽| ⩽ 1, and

for 𝑧 ∈ 𝑇1, we have⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒

⩾

⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒ inf𝑧∈𝑇𝑘

|𝑟(𝑧)|.

Here 𝑚 ⩽ 𝑛 denotes the number of zeros of 𝑟(𝑧).

Remark 2.1. For 𝑘 = 1 and 𝑚 = 𝑛, Theorem 2.1 reduces to a result due to Hans, et al.
[16, Thm. 1].

If in Theorem 2.1 we assume that 𝑟(𝑧) has a pole of order 𝑛 at 𝑧 = 𝛼, |𝛼| ⩾ 1, then we can
write

𝑟(𝑧) =
𝑃 (𝑧)

(𝑧 − 𝛼)𝑛
,

so that

𝑟′(𝑧) =
−𝐷𝛼𝑃 (𝑧)

(𝑧 − 𝛼)𝑛+1
.
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Also we have in this case

𝐵(𝑧) =
𝑛∏︁
1

(︃
1− 𝛼𝑧

𝑧 − 𝛼

)︃
=

(︃
1− 𝛼𝑧

𝑧 − 𝛼

)︃𝑛

.

This gives

𝐵′(𝑧) =
𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1
.

Using these facts, we immediately get from Theorem 2.1 for 𝑧 ∈ 𝑇1⃒⃒⃒⃒
⃒−𝑧𝐷𝛼𝑃 (𝑧)

(𝑧 − 𝛼)𝑛+1
+

𝛽

2

(︃
2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
+

⃒⃒⃒⃒
⃒𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1

⃒⃒⃒⃒
⃒
)︃

𝑃 (𝑧)

(𝑧 − 𝛼)𝑛

⃒⃒⃒⃒
⃒

⩾

⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂⃒⃒⃒⃒
⃒𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1

⃒⃒⃒⃒
⃒+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒min
𝑧∈𝑇𝑘

|𝑃 (𝑧)|
|𝑧 − 𝛼|𝑛

.

This gives ⃒⃒⃒⃒
⃒−𝑧𝐷𝛼𝑃 (𝑧)

𝑧 − 𝛼
+

𝛽

2

(︃
2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
+

⃒⃒⃒⃒
⃒𝑛(|𝛼|2 − 1)

(𝑧 − 𝛼)2

⃒⃒⃒⃒
⃒
)︃
𝑃 (𝑧)

⃒⃒⃒⃒
⃒

⩾

⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂⃒⃒⃒⃒
⃒𝑛(|𝛼|2 − 1)

(𝑧 − 𝛼)2

⃒⃒⃒⃒
⃒+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒|𝑧 − 𝛼|𝑛min

𝑧∈𝑇𝑘

|𝑃 (𝑧)|
|𝑧 − 𝛼|𝑛

.

Therefore from Theorem 2.1, we have the following corollary.

Corollary 2.1. If all zeros of a polynomial 𝑃 (𝑧) lie in 𝑇𝑘∪𝐷−
𝑘 , then for every 𝛼 with |𝛼| ⩾ 1

and 𝛽 with |𝛽| ⩽ 1, we have for 𝑧 ∈ 𝑇1⃒⃒⃒⃒
⃒−𝑧𝐷𝛼𝑃 (𝑧)

𝑧 − 𝛼
+

𝛽

2

(︃
2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
+

⃒⃒⃒⃒
⃒𝑛(|𝛼|2 − 1)

(𝑧 − 𝛼)2

⃒⃒⃒⃒
⃒
)︃
𝑃 (𝑧)

⃒⃒⃒⃒
⃒

⩾

⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂⃒⃒⃒⃒
⃒𝑛(|𝛼|2 − 1)

(𝑧 − 𝛼)2

⃒⃒⃒⃒
⃒+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒|𝑧 − 𝛼|𝑛min

𝑧∈𝑇𝑘

|𝑃 (𝑧)|
|𝑧 − 𝛼|𝑛

.

If in Corollary 2.1 we let |𝛼| → ∞, then we have the following statement.

Corollary 2.2. If all zeros of a polynomial 𝑃 (𝑧) lie in 𝑇𝑘∪𝐷−
𝑘 , then for 𝛽 ∈ C with |𝛽| ⩽ 1,

we have for 𝑧 ∈ 𝑇1 ⃒⃒⃒⃒
⃒𝑧𝑃 ′(𝑧) +

𝑚𝛽

1 + 𝑘
𝑃 (𝑧)

⃒⃒⃒⃒
⃒ ⩾

⃒⃒⃒⃒
⃒𝑛+

𝑚𝛽

1 + 𝑘

⃒⃒⃒⃒
⃒min
𝑧∈𝑇𝑘

|𝑃 (𝑧)|.

By taking 𝑚 = 𝑛, 𝑘 = 1 in Corollary 2.2, we get a result due to Dewan et al. [15].
We next prove the following generalization of a result due to Li [13].

Theorem 2.2. Let 𝑟, 𝑠 ∈ ℛ𝑛 and assume that all zeros of 𝑠(𝑧) lie in 𝑇𝑘 ∪𝐷−
𝑘 , 𝑘 ⩽ 1. If

|𝑟(𝑧)| ⩽ |𝑠(𝑧)|, for 𝑧 ∈ 𝑇1, (2.1)

then for every real or complex number 𝛽 with |𝛽| ⩽ 1 and for 𝑧 ∈ 𝑇1⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒𝑧𝑠′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑠(𝑧)

⃒⃒⃒⃒
⃒,
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where 𝑚 ⩽ 𝑛 are the zeros of 𝑠(𝑧).

Remark 2.2. A result recently proved by Mir [14, Thm. 3] follows from Theorem 2.1 once
we take 𝑚 = 𝑛. Also for 𝑘 = 1 and 𝑚 = 𝑛, Theorem 2.2 reduces to a result due to Hans, et
al.[16, Thm. 2].

If 𝑠(𝑧) = 𝐵(𝑧)‖𝑟‖, where ‖𝑟‖ := sup
𝑧∈𝑇1

|𝑟(𝑧)|, then from Theorem 2.2 we get the following

corollary.

Corollary 2.3. Let 𝑟 ∈ ℛ𝑛, then for every real or complex 𝛽 with |𝛽| ⩽ 1⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒ sup𝑧∈𝑇1

|𝑟(𝑧)|.

We also prove the following theorem.

Theorem 2.3. If 𝑟 ∈ ℛ𝑛, then for 𝛽 ∈ C with |𝛽| ⩽ 1,⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒𝑧𝑟*′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟*(𝑧)

⃒⃒⃒⃒
⃒

⩽

(︃⃒⃒⃒⃒
⃒
(︃
1 +

𝛽

2

)︃
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
𝛽

2

⃒⃒⃒⃒(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃)︃
sup
𝑧∈𝑇1

|𝑟(𝑧)|,

(2.2)

for 𝑧 ∈ 𝑇1, where 𝑟*(𝑧) = 𝐵(𝑧)𝑟
(︀1
𝑧

)︀
.

Remark 2.3. For 𝑘 = 1 and 𝑚 = 𝑛, Theorem 2.3 reduces to a result due to Hans, et al.[16,
Thm. 3].

We consider 𝑟 ∈ ℛ𝑛 having all its zeros in 𝑇𝑘 ∪ 𝐷+
𝑘 , 𝑘 ⩽ 1 and let 𝑚′ = inf

𝑧∈𝑇𝑘

|𝑟(𝑧)|, then
𝑚′ ⩽ |𝑟(𝑧)| for all 𝑧 ∈ 𝑇𝑘. By Rouche’s theorem for some complex 𝛿 with |𝛿| < 1 all the zeros
of 𝑅(𝑧) = 𝑟(𝑧)− 𝛿𝑚′ lie in 𝑇𝑘 ∪𝐷+

𝑘 and therefore all the zeros of

𝑆(𝑧) = 𝐵(𝑧)𝑅
(︀1
𝑧

)︀
= 𝑟*(𝑧)− 𝛿𝑚′𝐵(𝑧)

lie in 𝑇𝑘 ∪𝐷−
𝑘 . Therefore from Theorem 2.2 we get⃒⃒⃒⃒

⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
(𝑟(𝑧)− 𝛿𝑚′)

⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒𝑧(𝑟*′(𝑧)− 𝛿𝐵′(𝑧)𝑚′) +

𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
(𝑟*(𝑧)− 𝛿𝐵(𝑧)𝑚′)

⃒⃒⃒⃒
⃒.
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This in particular gives for 𝑧 ∈ 𝑇1⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)− 𝛽

2
𝛿𝑚′

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒𝑧𝑟*′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟*(𝑧)− 𝛿𝑧𝐵′(𝑧)𝑚′

− 𝛽

2
𝛿𝐵(𝑧)𝑚′

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃⃒⃒⃒⃒
⃒.

Now dividing both sides by 𝐵(𝑧) and using the fact that for 𝑧 ∈ 𝑇1

|𝐵(𝑧)| = 1,
𝑧𝐵′(𝑧)

𝐵(𝑧)
= |𝐵′(𝑧)|,

we get⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)− 𝛽

2
𝛿𝑚′

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒𝑧𝑟*′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟*(𝑧)−

(︂
|𝐵′(𝑧)|

(︂
1 +

𝛽

2

)︂
+

𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑚′𝛿

⃒⃒⃒⃒
⃒.

Choosing suitably the argument of 𝛿 in right hand side of above inequality and letting |𝛿| → 1,
we get⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒𝑧𝑟*′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟*(𝑧)

⃒⃒⃒⃒
⃒

−

(︃⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒− |𝛽|

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃)︃
𝑚′.

(2.3)

Now combining (2.2) and (2.3), we have the following corollary.

Corollary 2.4. Let 𝑟 ∈ ℛ𝑛 has all zeros in 𝑇𝑘 ∪𝐷+
𝑘 , 𝑘 ⩽ 1, then for 𝛽 ∈ C with |𝛽| ⩽ 1, we

have for 𝑧 ∈ 𝑇1⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒

⩽
1

2

(︃⃒⃒⃒⃒
⃒
(︃
1 +

𝛽

2

)︃
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒𝛽2
⃒⃒⃒⃒
⃒
(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃)︃
‖𝑟‖

− 1

2

(︃⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒− |𝛽|

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃)︃
𝑚′.

By taking 𝑚 = 𝑛, 𝑘 = 1 and 𝛽 = 0, Corollary 2.4 reduces to a result due to Aziz and Shah
[19, Thm. 3].

If we assume that 𝑟(𝑧) has a pole of order 𝑛 at 𝑧 = 𝛼, |𝛼| ⩾ 1, then

𝑟(𝑧) =
𝑃 (𝑧)

(𝑧 − 𝛼)𝑛
,
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so that

𝑟′(𝑧) =
−𝐷𝛼𝑃 (𝑧)

(𝑧 − 𝛼)𝑛+1
.

Using the same procedure as in Corollary 2.1, we get from Corollary 2.4 for 𝑧 ∈ 𝑇1 the following
statement.

Corollary 2.5. Let 𝑃 ∈ 𝒫𝑛 has all zeros in 𝑇𝑘 ∪𝐷+
𝑘 , 𝑘 ⩽ 1, then for any 𝛼 with |𝛼| ⩾ 1 and

𝛽 with |𝛽| ⩽ 1, we have⃒⃒⃒⃒
⃒−𝑧𝐷𝛼𝑃 (𝑧)

(𝑧 − 𝛼)𝑛+1
+

𝛽

2

(︃
2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
+

⃒⃒⃒⃒
⃒𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1

⃒⃒⃒⃒
⃒
)︃

𝑃 (𝑧)

(𝑧 − 𝛼)𝑛

⃒⃒⃒⃒
⃒

⩽
1

2

(︃⃒⃒⃒⃒
⃒
(︃
1 +

𝛽

2

)︃⃒⃒⃒⃒
⃒𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1

⃒⃒⃒⃒
⃒+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒𝛽2
⃒⃒⃒⃒
⃒
(︃⃒⃒⃒⃒
⃒𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1

⃒⃒⃒⃒
⃒+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃)︃
max
𝑧∈𝑇1

⃒⃒⃒⃒
⃒ 𝑃 (𝑧)

(𝑧 − 𝛼)𝑛

⃒⃒⃒⃒
⃒

− 1

2

(︃⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂⃒⃒⃒⃒
⃒𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1

⃒⃒⃒⃒
⃒+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒

− |𝛽|
2

(︃⃒⃒⃒⃒
⃒𝑛(1− 𝛼𝑧)𝑛−1(|𝛼|2 − 1)

(𝑧 − 𝛼)𝑛+1

⃒⃒⃒⃒
⃒+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃)︃
min
𝑧∈𝑇𝑘

⃒⃒⃒⃒
⃒ 𝑃 (𝑧)

(𝑧 − 𝛼)𝑛

⃒⃒⃒⃒
⃒.

In Corollary 2.5, if we make |𝛼| → ∞ and on simplification, we get the following corollary.

Corollary 2.6. Let 𝑃 ∈ 𝒫𝑛 has all zeros in 𝑇𝑘 ∪𝐷+
𝑘 , 𝑘 ⩽ 1, then for 𝛽 ∈ C with |𝛽| ⩽ 1 and

for 𝑧 ∈ 𝑇1 the following inequality holds:⃒⃒⃒⃒
⃒𝑧𝑃 ′(𝑧) +

𝑚𝛽

1 + 𝑘
𝑃 (𝑧)

⃒⃒⃒⃒
⃒ ⩽ 1

2

(︃(︂
𝑛+

1

2
(𝑚𝛽 + 𝑛|𝛽|)

)︂
max
𝑧∈𝑇1

|𝑃 (𝑧)|

−
(︂
𝑛+

1

2
(𝑚𝛽 − 𝑛|𝛽|)

)︂
min
𝑧∈𝑇𝑘

|𝑃 (𝑧)|

)︃
.

By taking 𝛽 = 0,𝑚 = 𝑛 and 𝑘 = 1, Corollary 2.6 reduces to a result due to Aziz and Dawood
[17, Thm. 2] .

3. Lemmas

For the proof of these results we need the following lemmas. The first lemma is due to Li,
Mohapatra and Rodgriguez [12].

Lemma 3.1. Let 𝐴 and 𝐵 ̸= 0 be two complex numbers, then |𝐴| ⩾ |𝐵| if and only if
𝐴 ̸= 𝑣𝐵 for any complex number 𝑣 with |𝑣| < 1 .

The next lemma which we also require is due to Aziz and Shah [18].

Lemma 3.2. Suppose 𝑟 ∈ ℛ𝑛 be such that all the zeros of 𝑟(𝑧) lie in 𝑇𝑘 ∪𝐷−
𝑘 , 𝑘 ⩽ 1, then

for 𝑧 ∈ 𝑇1,

|𝑟′(𝑧)| ⩾ 1

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
|𝑟(𝑧)|, (3.1)

where 𝑚 is the number of zeros of 𝑟, with 𝑚 ⩽ 𝑛.
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4. Proofs of Theorems

Proof of Theorem 2.1. If 𝑟(𝑧) has any zero on 𝑇𝑘, then inf
𝑧∈𝑇𝑘

|𝑟(𝑧)| = 0 and the statement be-

comes trivial. Now we assume that 𝑟(𝑧) has all zeros in 𝐷−
𝑘 . If 𝑚′ = inf

𝑧∈𝑇𝑘

|𝑟(𝑧)|, then 𝑚′ > 0

and |𝑟(𝑧)| ⩾ 𝑚′ or 𝑧 ∈ 𝑇𝑘. Also |𝐵(𝑧)| ⩽ 1 for 𝑧 ∈ 𝑇1 (see [5, p.40]), therefore |𝐵(𝑧)| ⩽ 1 for
𝑧 ∈ 𝑇𝑘, 𝑘 ⩽ 1. Hence, for each complex 𝛿 with |𝛿| < 1, by the Rouché theorem we see that

𝐹 (𝑧) = 𝑟(𝑧)− 𝛿𝑚′𝐵(𝑧)

has all zeros in 𝐷−
𝑘 . Applying Lemma 3.2 to the rational function 𝐹 ∈ ℛ𝑛, we get

|𝑧𝐹 ′(𝑧)| ⩾ 1

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
|𝐹 (𝑧)|.

Since 𝐹 (𝑧) = 𝑟(𝑧)−𝛿𝑚′𝐵(𝑧) ̸= 0 in 𝑇𝑘∪𝐷+
𝑘 , therefore for each complex number 𝛽 such |𝛽| ⩽ 1

by Lemma 3.1 we get:

𝑇 (𝑧) :=𝑧
(︀
𝑟′(𝑧)− 𝛿𝑚′𝐵′(𝑧)

)︀
+

𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
(𝑟(𝑧)− 𝛿𝑚′𝐵(𝑧))

=𝑧𝑟′(𝑧) +
𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

− 𝛿

{︃
𝑧𝐵′(𝑧) +

𝛽

2
𝐵(𝑧)

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃}︃
𝑚′ ̸= 0

in 𝑇𝑘 ∪𝐷+
𝑘 . In particular, for |𝛿| < 1 we obtain⃒⃒⃒⃒

⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒ ⩾

⃒⃒⃒⃒
⃒
(︂
1 +

𝛽

2

)︂
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒ inf𝑧∈𝑇𝑘

|𝑟(𝑧)|.

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Since 𝑠(𝑧) has all its zeros in 𝑇𝑘 ∪ 𝐷−
𝑘 , 𝑘 ⩽ 1 and |𝑟(𝑧)| < |𝑠(𝑧)| for

𝑧 ∈ 𝑇1, by Rouché theorem for |𝜆| < 1 we see that 𝜆𝑟(𝑧) + 𝑠(𝑧) has the same number of zeros
in 𝑇𝑘 ∪𝐷−

𝑘 as 𝑠(𝑧). Hence, applying Lemma 3.2, for 𝑧 ∈ 𝑇1 we get

|𝑧(𝜆𝑟′(𝑧) + 𝑠′(𝑧))| ⩾ 1

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
|(𝜆𝑟(𝑧) + 𝑠(𝑧))|.

Since (𝜆𝑟(𝑧) + 𝑠(𝑧)) has no zero in 𝑇𝑘 ∪𝐷+
𝑘 , by using Lemma 3.1 for every real or complex 𝛽

with |𝛽| ⩽ 1 we get

𝑧(𝜆𝑟′(𝑧) + 𝑠′(𝑧)) +
𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
(𝜆𝑟(𝑧) + 𝑠(𝑧)) ̸= 0.

This implies that

𝜆

(︃
𝑧𝑟′(𝑧) +

𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

)︃

̸= −

(︃
𝑧𝑠′(𝑧) +

𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑠(𝑧)

)︃
.
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In particular, for each𝜆 with |𝜆| < 1 and for 𝑧 ∈ 𝑇1 we get⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒ ⩽

⃒⃒⃒⃒
⃒𝑧𝑠′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑠(𝑧)

⃒⃒⃒⃒
⃒.

This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. Let 𝑀 = sup
𝑧∈𝑇1

|𝑟(𝑧)|, then |𝑟(𝑧)| ⩽ 𝑀 for 𝑧 ∈ 𝑇1. Therefore, for |𝛾| > 1,

the function

𝐻(𝑧) = 𝑟(𝑧)− 𝛾𝑀

has no zero in 𝐷−
𝑘 . Hence, the function

𝐺(𝑧) = 𝐵(𝑧)𝐻
(︀1
𝑧

)︀
= 𝑟*(𝑧)− 𝛾𝐵(𝑧)𝑀

has all its zeros in 𝑇𝑘 ∪𝐷−
𝑘 . Applying Theorem 2.2 to the rational function 𝐺(𝑧) which has 𝑚

zeros and 𝑛 poles, we get⃒⃒⃒⃒
⃒𝑧𝐻 ′(𝑧) +

𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝐻(𝑧)

⃒⃒⃒⃒
⃒ ⩽

⃒⃒⃒⃒
⃒𝑧𝐺′(𝑧) +

𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝐺(𝑧)

⃒⃒⃒⃒
⃒.

This gives⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2
𝑟(𝑧)|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

𝛽

2
𝑟(𝑧)− 𝛾

𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑀

⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒𝑧𝑟*(𝑧) + 𝛽

2
𝑟*(𝑧)|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

𝛽

2
𝑟*(𝑧)

⩽

⃒⃒⃒⃒
⃒− 𝛾

(︃
𝑧𝐵′(𝑧) +

𝛽

2

(︃
|𝐵′(𝑧)|𝐵(𝑧) +

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
𝐵(𝑧)

)︃
𝑀

⃒⃒⃒⃒
⃒.

(4.1)

Now choosing suitably the argument of 𝛾, which is possible by Corollary 2.3, from inequality
(4.1) by using triangle inequality in the left hand side we find⃒⃒⃒⃒

⃒𝑧𝑟′(𝑧) + 𝛽

2
𝑟(𝑧)|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

𝛽

2
𝑟(𝑧)

⃒⃒⃒⃒
⃒− |𝛾|

⃒⃒⃒⃒
𝛽

2

⃒⃒⃒⃒⃒⃒⃒⃒
⃒|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒𝑀

⩽

⃒⃒⃒⃒
⃒𝑧𝐵′(𝑧) +

𝛽

2

(︃
𝑧𝐵′(𝑧) +

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
𝐵(𝑧)

)︃⃒⃒⃒⃒
⃒𝑀

− |𝛾|

⃒⃒⃒⃒
⃒𝑧𝑟*′(𝑧) + 𝛽

2
|𝐵′(𝑧)|𝑟*(𝑧) + 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
𝑟*(𝑧)

⃒⃒⃒⃒
⃒.

Letting |𝛾| → 1, we get⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2
𝑟(𝑧)|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

𝛽

2
𝑟(𝑧)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒𝑧𝑟*′(𝑧) + 𝛽

2
|𝐵′(𝑧)|𝑟*(𝑧) + 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘
𝑟*(𝑧)

⃒⃒⃒⃒
⃒

⩽

(︃⃒⃒⃒⃒
𝛽

2

⃒⃒⃒⃒⃒⃒⃒⃒
⃒|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒|𝐵′(𝑧)|+ 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃⃒⃒⃒⃒
⃒
)︃
𝑀,
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for 𝑧 ∈ 𝑇1. This allows to conclude that, for 𝑧 ∈ 𝑇1,⃒⃒⃒⃒
⃒𝑧𝑟′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟(𝑧)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒𝑧𝑟*′(𝑧) + 𝛽

2

(︃
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

)︃
𝑟*(𝑧)

⃒⃒⃒⃒
⃒

⩽

(︃⃒⃒⃒⃒
𝛽

2

⃒⃒⃒⃒⃒⃒⃒⃒
|𝐵′(𝑧)|+ 2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒
+

⃒⃒⃒⃒(︂
1 +

𝛽

2

)︂
|𝐵′(𝑧)|+ 𝛽

2

2𝑚− 𝑛(1 + 𝑘)

1 + 𝑘

⃒⃒⃒⃒)︃
𝑀.

This completes the proof of Theorem 2.3.
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