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INTEGRAL HARDY INEQUALITIES, THEIR

GENERALIZATIONS AND RELATED INEQUALITIES

F.G. AVKHADIEV

Abstract. Hardy inequalities have numerous applications in mathematical physics and
spectral theory of unbounded operators. In this paper we describe direct generalizations
of integral Hardy inequalities, their improvements and analogues. We systemize the rela-
tions between various interpretations of these inequalities and describe new one-dimensional
integral inequalities. We show that these known and new inequalities are valid also for
complex-valued functions.

We consider in details integral inequalities of Hardy, Rellich and Birman type for functions
defined on bounded intervals. In particular, we provide the proofs for the generalizations
and improvements of Birman integral inequalities for higher derivatives. We briefly discuss
multidimensional analogues involving integrals of the powers of the modulus of the gradient
of a function or of a polyharmonic operator.
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1. Introduction

As it is known, Hardy inequalities are employed in justifying embedding theorems in Sobolev spaces.
Apparently, these applications played a key role in the popularization of one-dimensional Hardy integral
inequalities. We note that in the monograph by S.L. Sobolev[1] involves a separate section “Hardy
inequality”. In this section, several versions of these inequalities and some generalizations are proved
when the weight functions have the form 𝑡−𝜆| ln 𝑡|𝑝.

The appearance of different versions of Hardy inequality and related inequalities is due to a large
number of various applications. In this article, Section 2 is devoted to the basic versions of Hardy
inequality, where, in particular, we provide a justification for extending these inequalities to the case
of complex-valued functions.

Our main Section 3 presents inequalities for higher derivatives, and Section 4 gives improvements
of the inequalities in bounded intervals. We consistently describe the connections between different
interpretations of Hardy integral inequality and inequalities of the Hardy, Rellich and Birman type for
functions defined on infinite and bounded intervals. Thus, we systematize the connections between
different interpretations of Hardy, Rellich and Birman integral inequalities. Among new results ob-
tained in the article, we highlight Theorems 3.2 and 4.2 devoted to generalizations and improvements
of Rellich and Birman integral inequalities involving the absolute values of a complex-valued function
𝑓 : 𝑋 → C and of its derivative 𝑓 (𝑘) of order 𝑘 ⩾ 2; the set 𝑋 is 𝑋 = (0,∞) in Theorem 3.2 and
𝑋 = (0, 𝑐), 𝑐 ∈ (0,∞), is in Theorem 4.2.

In last Section 5 we briefly discuss the passage from one-dimensional integral inequalities to inequal-
ities for complex-valued functions defined in domains of Euclidean space of dimension 𝑛 ⩾ 2. In this
case, we consider spatial analogues of inequalities for functions 𝑢 : Ω → C, when the integrals over the
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domain Ω ⊂ R𝑛 contain the modulus of this function and the modules of the gradient ∇𝑢(𝑥) or the

polyharmonic operator ∆𝑘/2𝑢(𝑥).
The author is grateful to I.Kh. Musin and B.N. Khabibullin, since an additional motivation for

writing this article was their questions and comments during a discussion of the author’s talk at
the International Ufa Scientific conferences “Complex analysis and geometry” in November 2021 and
“Theory of functions, operator theory and quantum information theory” in October 2022.

2. On basic versions of Hardy inequality

An original Hardy inequality can be formulated as follows, see [2, Thms. 327, 328, 330]:

Theorem 2.1. Assume that 𝑝 ∈ [1,∞), 𝑠 ∈ (−∞, 1) ∪ (1,∞) and we are given a function 𝑓 :

(0,∞) → [0,∞) obeying the condition 𝑓/𝑡𝑠/𝑝−1 ∈ 𝐿𝑝(0,∞).
We define a function 𝐹 : (0,∞) → [0,∞) by the identities

𝐹 (𝑡) =

𝑡∫︁
0

𝑓(𝜏)𝑑𝜏 in the case 𝑠 > 1, 𝐹 (𝑡) =

∞∫︁
𝑡

𝑓(𝜏)𝑑𝜏 in the case 𝑠 < 1.

Then the following statements hold: if 𝑝 = 1, then the identity

∞∫︁
0

𝑓(𝑡)

𝑡𝑠−1
𝑑𝑡 = |𝑠− 1|

∞∫︁
0

𝐹 (𝑡)

𝑡𝑠
𝑑𝑡

is valid, while if 𝑝 > 1, then

∞∫︁
0

𝑓𝑝(𝑡)

𝑡𝑠−𝑝
𝑑𝑡 >

(︂
|𝑠− 1|

𝑝

)︂𝑝
∞∫︁
0

𝐹 𝑝(𝑡)

𝑡𝑠
𝑑𝑡, (2.1)

except for the case when 𝑓 ≡ 0. The constant (|𝑠− 1|/𝑝)𝑝 in this inequality is the best possible, that is,
it is maximal among all possible ones.

The next theorem can be regarded as a version of Hardy theorem since it is both a corollary and a
generalization of Theorem 2.1.

Theorem 2.2. 1) Let 1 ⩽ 𝑝 < ∞, 1 < 𝑠 < ∞. Assume that a function 𝑔 : [0,∞) → R is absolutely

continuous on each bounded segment [0, 𝑎] and satisfies the conditions 𝑔(0) = 0, 𝑔′/𝑡𝑠/𝑝−1 ∈ 𝐿𝑝(0,∞).
Then

∞∫︁
0

|𝑔′(𝑡)|𝑝

𝑡𝑠−𝑝
𝑑𝑡 ⩾

(︂
𝑠− 1

𝑝

)︂𝑝
∞∫︁
0

|𝑔(𝑡)|𝑝

𝑡𝑠
𝑑𝑡. (2.2)

If 𝑝 > 1 and 𝑔 ̸≡ 0, then this inequality is strict and the constant ((𝑠 − 1)/𝑝)𝑝 is sharp, that is, it is
best possible.

2) Let 1 ⩽ 𝑝 < ∞, −∞ < 𝜎 < 1. Suppose that the function 𝑔 : (0,∞] → R is absolutely continuous
on each ray [𝑎,∞], 𝑎 > 0, and obeys the conditions

𝑔(∞) = 0 and 𝑔′/𝜏𝜎/𝑝−1 ∈ 𝐿𝑝(0,∞).

Then
∞∫︁
0

|𝑔′(𝜏)|𝑝

𝜏𝜎−𝑝
𝑑𝜏 ⩾

(︂
|𝜎 − 1|

𝑝

)︂𝑝
∞∫︁
0

|𝑔(𝜏)|𝑝

𝜏𝜎
𝑑𝜏. (2.3)

If 𝑝 > 1 and 𝑔 ̸≡ 0, then this inequality is strict but the constant (|𝜎 − 1|/𝑝)𝑝 is sharp, that is, it is
maximal among all possible ones.

It is clear that this theorem generalize and strengthens Theorem 2.1. We stress that Theorem 2.2
involves no conditions related with monotonicity of sign-definiteness of considered functions 𝑔 and 𝑔′.

On the other hand, Theorem 2.2 is a corollary of Theorem 2.1 from the point of view of inequalities.
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Indeed, let 1 < 𝑠 < ∞. We define functions 𝑓 and 𝐹 by the identities

𝑓(𝑡) = |𝑔′(𝑡)|, 𝐹 (𝑡) =

𝑡∫︁
0

|𝑔′(𝜏)|𝑑𝜏.

Since
𝑡∫︁

0

|𝑔′(𝜏)|𝑑𝜏 ⩾ |𝑔(𝑡)|,

then 𝐹 (𝑡) ⩾ |𝑔(𝑡)| as 𝑡 ⩾ 0 and inequality (2.2) follows from inequality (2.1) as 𝑝 > 1, while for 𝑝 = 1
it is implied by the identity corresponding to the case 𝑝 = 1 in Theorem 2.1.

Inequality (2.3) is obtained from (2.2) by the change of the variable 𝜏 = 1/𝑡 and of the parameter
𝜎 = 2− 𝑠. Thus, Theorem 2.2 is a corollary of Theorem 2.1 applied to the functions

𝐹 (𝑡) =

𝑡∫︁
0

|𝑔′(𝜏)|𝑑𝜏 𝑠 > 1, 𝐹 (𝑡) =

∞∫︁
𝑡

|𝑔′(𝜏)| 𝑑𝜏 𝜎 < 1,

𝑓(𝑡) = |𝑔′(𝑡)| 𝑠 > 1, 𝜎 < 1.

It is obvious that such formulas for defining the functions 𝐹 : (0,∞) → [0,∞) and 𝑓 : (0,∞) → [0,∞)
can be used also in the case, when the function 𝑔 is complex-valued. This is why the following version
of Hardy theorem holds true.

Theorem 2.3. Suppose that 𝑝 ∈ [1,∞), 𝑠 ∈ R ∖ {1}, a continuous function 𝑔 : (0,∞) → C is

differentiable almost everywhere, |𝑔′|/𝑡𝑠/𝑝−1 ∈ 𝐿𝑝(0,∞) and the following conditions are satisfied:
1) if 𝑠 > 1, then 𝑔(0) := lim

𝑡→0
𝑔(𝑡) = 0 and the identity

𝑔(𝑡) =

𝑡∫︁
0

𝑔′(𝜏)𝑑𝜏

holds, where 0 ⩽ 𝑡 < ∞;
2) if 𝑠 < 1, then

𝑔(∞) := lim
𝑡→∞

𝑔(𝑡) = 0

and the identity

𝑔(𝑡) =

𝑡∫︁
∞

𝑔′(𝜏)𝑑𝜏

holds, where 0 < 𝑡 ⩽ ∞.
Then the inequality holds:

∞∫︁
0

|𝑔′(𝑡)|𝑝

𝑡𝑠−𝑝
𝑑𝑡 ⩾

(︂
|𝑠− 1|

𝑝

)︂𝑝
∞∫︁
0

|𝑔(𝑡)|𝑝

𝑡𝑠
𝑑𝑡. (2.4)

If 𝑝 > 1 and 𝑔 ̸≡ 0, then this inequality is strict but the constant (|𝑠 − 1|/𝑝)𝑝 is sharp, that is, it is
maximal among all possible ones.

Let 𝑘 be a natural number. As usually, by the symbol 𝐶𝑘(Ω) we denote the space of continuous
and 𝑘 times continuously differentiable functions 𝑔 : Ω → C, where Ω is a non-empty open set. By the
symbol 𝐶𝑘

0 (Ω) we denote a subfamily consisting of the functions 𝑔 ∈ 𝐶𝑘(Ω), the compact supports of
which are located in Ω.

Corollary 2.1. For each 𝑝 ∈ [1,∞) and each 𝑠 ∈ R ∖ {1} the following inequality holds:

∞∫︁
0

|𝑔′(𝑡)|𝑝

𝑡𝑠−𝑝
𝑑𝑡 ⩾

(︂
|𝑠− 1|

𝑝

)︂𝑝
∞∫︁
0

|𝑔(𝑡)|𝑝

𝑡𝑠
𝑑𝑡 (2.5)
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for all 𝑔 ∈ 𝐶1
0 (0,∞) with a sharp constant (|𝑠− 1|/𝑝)𝑝. For a function 𝑔 ̸≡ 0 the inequality is strict

for all 𝑝 ∈ [1,∞) and 𝑠 ∈ R ∖ {1}.

In many applications of Theorem 2.3 one needs its reduced versions related with usage of only one
of boundary conditions 𝑔(0) := lim

𝑡→0
𝑔(𝑡) = 0 and 𝑔(∞) := lim

𝑡→∞
𝑔(𝑡) = 0. These reduces versions are

formally some generlizations of Theorem 2.3 in the case 𝑠 > 1 or 𝑠 < 1, but in fact they are its
corollaries. Let us formulate two such corollaries.

Applying inequality (2.4) to the function defined by the identities 𝑓(𝑡) = 𝑔(𝑡), 0 ⩽ 𝑡 ⩽ 𝑡0 and
𝑓(𝑡) = 𝑔(𝑡0) = 𝑐𝑜𝑛𝑠𝑡, 𝑡0 < 𝑡 < ∞, and taking into consideration the arguing by Hardy employed in
the proof of the sharpness of the constants, we obtain the following statement.

Corollary 2.2. Suppose that 𝑡0 ∈ (0,∞), 𝑝 ∈ [1,∞), 𝑠 ∈ (1,∞), the function 𝑓 : [0, 𝑡0] → C is

absolutely continuous, 𝑓(0) = 0 and |𝑓 ′|/𝑡𝑠/𝑝−1 ∈ 𝐿𝑝(0, 𝑡0). Then the inequality holds:

𝑡0∫︁
0

|𝑓 ′(𝑡)|𝑝

𝑡𝑠−𝑝
𝑑𝑡 ⩾

(︂
𝑠− 1

𝑝

)︂𝑝
𝑡0∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝑠
𝑑𝑡. (2.6)

If 𝑝 > 1 and 𝑓 ̸≡ 0, then the inequality is strict and the constant ((𝑠− 1)/𝑝)𝑝 is sharp.

The next statement can be proved in the same way as Corollary 2.2. The difference is that we apply
inequality (2.4) to a function defined by the identities 𝑓(𝑡) = 𝑔(𝑡), 𝑡0 ⩽ 𝑡 ⩽ ∞ and 𝑓(𝑡) = 𝑔(𝑡0) = 𝑐𝑜𝑛𝑠𝑡,
0 < 𝑡 < 𝑡0.

Corollary 2.3. Assume that 𝑡0 ∈ (0,∞), 𝑝 ∈ [1,∞), 𝑠 ∈ (−∞, 1), the function 𝑓 : [𝑡0,∞] → C is

absolutely continuous, 𝑓(∞) = 0 and |𝑓 ′|/𝑡𝑠/𝑝−1 ∈ 𝐿𝑝(𝑡0,∞). Then the inequality

∞∫︁
𝑡0

|𝑓 ′(𝑡)|𝑝

𝑡𝑠−𝑝
𝑑𝑡 ⩾

(︂
|𝑠− 1|

𝑝

)︂𝑝
∞∫︁

𝑡0

|𝑓(𝑡)|𝑝

𝑡𝑠
𝑑𝑡 (2.7)

holds. If 𝑝 > 1 and 𝑓 ̸≡ 0, then the inequality is strict and the constant ((𝑠− 1)/𝑝)𝑝 is sharp.

The following corollary is true as well.

Corollary 2.4. Assume that −∞ < 𝑎 < 𝑏 < ∞. For each 𝑝 ∈ [1,∞) and each 𝑠 ∈ R ∖ {1} the
following inequality

𝑏∫︁
𝑎

(𝑏− 𝜏)𝑝+𝑠−2

(𝜏 − 𝑎)𝑠−𝑝
|𝑓 ′(𝜏)|𝑝 𝑑𝜏 ⩾ (𝑏− 𝑎)𝑝

(︂
|𝑠− 1|

𝑝

)︂𝑝
𝑏∫︁

𝑎

(𝑏− 𝜏)𝑠−2

(𝜏 − 𝑎)𝑠
|𝑓(𝜏)|𝑝 𝑑𝜏 ∀𝑓 ∈ 𝐶1

0 (𝑎, 𝑏) (2.8)

holds with a sharp constant (𝑏 − 𝑎)𝑝 (|𝑠− 1|/𝑝)𝑝. For a function 𝑓 ̸≡ 0 the inequality is strict for all
𝑝 ∈ [1,∞) and 𝑠 ∈ R ∖ {1}.

Inequality (2.8) is implied by inequality (2.5) under the change of the variable 𝑡 = (𝜏 − 𝑎)/(𝑏 − 𝜏)
and the function 𝑔(𝑡) ≡ 𝑓(𝜏).

The following corollary holds.

Corollary 2.5. Assume that −∞ < 𝑎 < 𝑏 < ∞, 𝜌(𝜏) := min{𝜏 − 𝑎, 𝑏 − 𝜏}, where 𝜏 ∈ (𝑎, 𝑏). For
each 𝑝 ∈ [1,∞) and each 𝑠 ∈ (1,∞) the inequality

𝑏∫︁
𝑎

|𝑓 ′(𝜏)|𝑝

𝜌𝑠−𝑝(𝜏)
𝑑𝜏 ⩾

(︂
𝑠− 1

𝑝

)︂𝑝
𝑏∫︁

𝑎

|𝑓(𝜏)|𝑝

𝜌𝑠(𝜏)
𝑑𝜏 (2.9)

holds for all 𝑓 ∈ 𝐶1
0 (𝑎, 𝑏) with a sharp constant ((𝑠− 1)/𝑝)𝑝. For a function 𝑓 ̸≡ 0 the inequality is

strict for all 𝑝 ∈ [1,∞) and 𝑠 ∈ (1,∞).
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Proof. Applying inequality (2.6) for 𝑡0 = (𝑏− 𝑎)/2 and making linear changes of the variables of form
𝜏 = 𝑡+ 𝑎 and 𝜏 = 𝑏− 𝑡, we obtain the inequalities

(𝑎+𝑏)/2∫︁
𝑎

|𝑓 ′(𝜏)|𝑝

(𝜏 − 𝑎)𝑠−𝑝
𝑑𝜏 ⩾

(︂
𝑠− 1

𝑝

)︂𝑝
(𝑎+𝑏)/2∫︁
𝑎

|𝑓(𝜏)|𝑝

(𝜏 − 𝑎)𝑠
𝑑𝜏 ∀𝑓 ∈ 𝐶1

0 (𝑎, 𝑏),

𝑏∫︁
(𝑎+𝑏)/2

|𝑓 ′(𝜏)|𝑝

(𝑏− 𝜏)𝑠−𝑝
𝑑𝜏 ⩾

(︂
𝑠− 1

𝑝

)︂𝑝
𝑏∫︁

(𝑎+𝑏)/2

|𝑓(𝜏)|𝑝

(𝑏− 𝜏)𝑠
𝑑𝜏 ∀𝑓 ∈ 𝐶1

0 (𝑎, 𝑏).

The sum of these inequalities gives desired inequality (2.9). The proof is complete.

We note that the quantity 𝜌(𝜏) = min{𝜏 −𝑎, 𝑏− 𝜏} is equal to the distance from the point 𝜏 ∈ (𝑎, 𝑏)
to the boundary of the interval (𝑎, 𝑏).

3. Inequalities for higher derivatives

Applying successively 𝑘 times inequality (2.5) with the parameters 𝑝 = 2 and 𝑠 = 2(𝑘 − 𝑗) to the

functions 𝑔 = 𝑓 (𝑗) with 𝑠 = 𝑘 − 1, . . . , 0, we obtain the following statement belonging to Hardy as
𝑘 = 1, to Rellich [3] as 𝑘 = 2 and to Birman [4] as 𝑘 ⩾ 3.

Theorem 3.1. Let 𝑘 be a natural number. The following inequality with a sharp constant holds:
∞∫︁
0

|𝑓 (𝑘)(𝑡)|2𝑑𝑡 ⩾
(︂
(2𝑘 − 1)!!

2𝑘

)︂2
∞∫︁
0

|𝑓(𝑡)|2

𝑡2𝑘
𝑑𝑡 ∀𝑓 ∈ 𝐶𝑘

0 (0,∞). (3.1)

If 𝑓 ̸≡ 0, then the inequality is strict.

A detailed proof of inequality (3.1) was provided in a book by I.M. Glazman [5]. The proof of
inequality (3.1) can be found in several papers, in particular, in paper by M.P. Owen [6] and in paper
by F. Gesztesy, L.L. Littlejohn, I. Michael, R. Wellman [7]. In these works the sharpness of the constant(︀
(2𝑘 − 1)!!/2𝑘

)︀2
was shown for each 𝑘 ⩾ 1.

The Hardy theorem involves one special value of the parameter. Namely, for 𝑠 = 𝜎 = 1 the inequality
becomes meaningless since the corresponding constant vanishes. We denote 𝑆*

𝑝(1) = {1}. For the case
𝑘 ∈ N ∖ {1} we shall need the set 𝑆*

𝑝(𝑘) :=
⋃︀𝑘

𝑗=1{1 + (𝑗 − 1)𝑝} consisting of 𝑘 special points.
The following direct analogue of the Hardy inequality holds true, which coincides with Theorem 2.3

as 𝑘 = 1 and including Rellich and Birman inequalities (3.1) as a particular case.

Theorem 3.2. Let 𝑝 ∈ [1,∞), 𝑘 ∈ N and 𝜎 ∈ R ∖ 𝑆*
𝑝(𝑘), where 𝑆*

𝑝(𝑘) :=
⋃︀𝑘

𝑗=1{1 + (𝑗 − 1)𝑝}.
Suppose that 𝑓 ∈ 𝐶𝑘−1(0,∞) is a complex-valued function such that the derivative 𝑓 (𝑘−1) of order 𝑘−1

is differentiable almost everywhere and 𝑡𝑘−𝜎/𝑝|𝑓 (𝑘)| ∈ 𝐿𝑝(0,∞).

Let 𝑗 ∈ (N ∪ {0}) ∩ [0, 𝑘 − 1]. Suppose that 𝑓 (0) := 𝑓 and the following conditions are satisfied:

1) if 𝜎 > 1 + (𝑘 − 1)𝑝, then 𝑓 (𝑗)(0) := lim
𝑡→0

𝑓 (𝑗)(𝑡) = 0 for all integer numbers 𝑗 ∈ [0, 𝑘 − 1] and the

identity holds:

𝑓 (𝑘−1)(𝑡) =

𝑡∫︁
0

𝑓 (𝑘)(𝜏)𝑑𝜏, 0 ⩽ 𝑡 < ∞;

2) if 𝜎 < 1, then 𝑓 (𝑗)(∞) := lim
𝑡→∞

𝑓 (𝑗)(𝑡) = 0 for all integer numbers 𝑗 ∈ [0, 𝑘 − 1] and the identity

holds:

𝑓 (𝑘−1)(𝑡) =

𝑡∫︁
∞

𝑓 (𝑘)(𝜏)𝑑𝜏, 0 < 𝑡 ⩽ ∞;

3) if 1+(𝑚−1)𝑝 < 𝜎 < 1+𝑚𝑝, where 𝑚 ∈ [1, 𝑘−1] is a natural number, then 𝑓 (𝑗)(0) := lim
𝑡→0

𝑓 (𝑗)(𝑡) =

0 for all integer numbers 𝑗 ∈ [0,𝑚 − 1], and also 𝑓 (𝑗)(∞) := lim
𝑡→∞

𝑓 (𝑗)(𝑡) = 0 for all natural numbers
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𝑗 ∈ [𝑚, 𝑘 − 1] and the identity

𝑓 (𝑘−1)(𝑡) =

𝑡∫︁
∞

𝑓 (𝑘)(𝜏)𝑑𝜏, 0 < 𝑡 ⩽ ∞,

holds.
Then the inequality

∞∫︁
0

⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒𝑝
𝑡𝜎−𝑘𝑝

𝑑𝑡 ⩾ 𝐶𝑝(𝑘, 𝜎)

∞∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝜎
𝑑𝑡 (3.2)

holds, where

𝐶𝑝(𝑘, 𝜎) :=
𝑘∏︁

𝑗=1

|(𝜎 − 1)/𝑝− 𝑗 + 1|𝑝 .

The constant 𝐶𝑝(𝑘, 𝜎) is the best possible. If 𝑝 > 1 and 𝑓 ̸≡ 0, then inequality (3.2) is sharp.

Proof. We suppose that 𝑘 ⩾ 2 since as 𝑘 = 1, the theorem coincides with the Hardy theorem, more
precisely, with it version formulated as Theorem 2.3. Applying Theorem 2.3 with 𝑠 = 𝜎 − 𝑗𝑝 to the
function 𝑔 = 𝑓 (𝑗), we obtain:

∞∫︁
0

⃒⃒
𝑓 (𝑗+1)(𝑡)

⃒⃒𝑝
𝑡𝜎−(𝑗+1)𝑝

𝑑𝑡 ⩾
|𝜎 − 𝑝𝑗 − 1|𝑝

𝑝𝑝

∞∫︁
0

⃒⃒
𝑓 (𝑗)(𝑡)

⃒⃒𝑝
𝑡𝜎−𝑗𝑝

𝑑𝑡, 𝑗 = 𝑘 − 1, . . . , 1, 0. (3.3)

We stress that in Hardy inequality (3.3) by Theorem 2.3 we need only one boundary condition: the

function 𝑔 = 𝑓 (𝑗) should vanish either at the point 𝑡 = 0 (if 𝑠 = 𝜎 − 𝑗𝑝 > 1) or at the point 𝑡 = ∞
(if 𝑠 = 𝜎 − 𝑗𝑝 < 1). These conditions are satisfied due to Conditions 1), 2), 3) in the formulation
of Theorem 3.2. Moreover, while justifying Hardy inequality (3.3), we need to confirm the condition

𝑡𝑗−𝜎/𝑝|𝑓 (𝑗)| ∈ 𝐿𝑝(0,∞) for all natural numbers 𝑗 ∈ [1, 𝑘]. The condition 𝑡𝑘−𝜎/𝑝|𝑓 (𝑘)| ∈ 𝐿𝑝(0,∞) is
contained in the assumptions of Theorem 3.2. This is why the inequality

∞∫︁
0

⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒𝑝
𝑡𝜎−𝑘𝑝

𝑑𝑡 ⩾
|𝜎 − (𝑘 − 1)𝑝− 1|𝑝

𝑝𝑝

∞∫︁
0

⃒⃒
𝑓 (𝑘−1)(𝑡)

⃒⃒𝑝
𝑡𝜎−(𝑘−1)𝑝

𝑑𝑡

holds true. This implies 𝑡𝑘−1−𝜎/𝑝|𝑓 (𝑘−1)| ∈ 𝐿𝑝(0,∞). But then the inequality

∞∫︁
0

⃒⃒
𝑓 (𝑘−1)(𝑡)

⃒⃒𝑝
𝑡𝜎−(𝑘−1)𝑝

𝑑𝑡 ⩾
|𝜎 − (𝑘 − 2)𝑝− 1|𝑝

𝑝𝑝

∞∫︁
0

⃒⃒
𝑓 (𝑘−2)(𝑡)

⃒⃒𝑝
𝑡𝜎−(𝑘−2)𝑝

𝑑𝑡

holds and this implies that 𝑡𝑘−2−𝜎/𝑝|𝑓 (𝑘−2)| ∈ 𝐿𝑝(0,∞).

Subsequently reducing the order of the derivative in this arguing, we see that 𝑡𝑗−𝜎/𝑝|𝑓 (𝑗)| ∈ 𝐿𝑝(0,∞)
for each natural number 𝑗 ∈ [1, 𝑘] and this is the desired statement.

Applying subsequently inequalities (3.3) to the cases 𝑗 = 𝑘 − 1, 𝑗 = 𝑘 − 2, . . . , 𝑗 = 0, we get

∞∫︁
0

|𝑓 (𝑘)(𝑡)|𝑝

𝑡𝜎−𝑘𝑝
𝑑𝑡 ⩾

|𝜎 − 𝑝(𝑘 − 1)− 1|𝑝

𝑝𝑝

∞∫︁
0

|𝑓 (𝑘−1)(𝑡)|𝑝

𝑡𝜎−(𝑘−1)𝑝
𝑑𝑡

⩾
|𝜎 − 𝑝(𝑘 − 1)− 1|𝑝

𝑝𝑝
|𝜎 − 𝑝(𝑘 − 2)− 1|𝑝

𝑝𝑝

∞∫︁
0

|𝑓 (𝑘−2)(𝑡)|𝑝

𝑡𝜎−(𝑘−2)𝑝
𝑑𝑡 ⩾ . . .

⩾

⎛⎝𝑝−𝑘
𝑘∏︁

𝑗=1

|𝜎 − 1− 𝑝(𝑗 − 1)|

⎞⎠𝑝 ∞∫︁
0

|𝑓 (0)(𝑡)|𝑝

𝑡𝜎
𝑑𝑡.

As a result we obtain required inequality (3.2).
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We note that as 𝑝 = 2 and 𝜎 = 2𝑘, in Theorem 3.2 we have the Hardy, Rellich and Birman constants
since

𝐶2(𝑘, 2𝑘) =

⎛⎝2−𝑘
𝑘∏︁

𝑗=1

(2𝑘 + 1− 2𝑗)

⎞⎠2

=

(︂
(2𝑘 − 1)!!

2𝑘

)︂2

.

It is obvious that as 𝑘 ⩾ 2, the proof of inequality (3.2) does not allow us to state the sharpness of the
constant 𝐶𝑝(𝑘, 𝜎). This is why it remains to prove the sharpness of the constant in the general case as
𝑘 ⩾ 2.

Suppose that the constant 𝐶𝑝(𝑘, 𝜎) in Theorem 3.2 is not best possible. Then for some set {𝑝, 𝑘, 𝜎}
of fixed parameters 𝑝 ∈ [1,∞), 𝑘 ∈ N ∖ {1}, 𝜎 ∈ R ∖ 𝑆*

𝑝(𝑘) there exists 𝜀0 > 0 such that for each
function 𝑓 : (0,∞) → C obeying the conditions of Theorem 3.2 the inequality

∞∫︁
0

⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒𝑝
𝑡𝜎−𝑘𝑝

𝑑𝑡 ⩾ (𝜀0 + 𝐶𝑝(𝑘, 𝜎))

∞∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝜎
𝑑𝑡 (3.4)

holds true.
Let 𝜀 ∈ (0, 1). We consider a function 𝑓𝜀 ∈ 𝐶(0,∞) ∩ 𝐶∞((0,∞) ∖ {1}) defined by the identities

𝑓𝜀(𝑡) = 𝑡(𝜎−1+𝜀)/𝑝, 0 < 𝑡 ⩽ 1, 𝑓𝜀(𝑡) = 𝑡(𝜎−1−𝜀)/𝑝, 1 < 𝑡 < ∞.

We construct a function 𝑔𝜀 ∈ 𝐶𝑘(0,∞) by letting

𝑔𝜀(𝑡) = 𝑓𝜀(𝑡), 𝑡 ∈ (0, 1/2) ∪ (2,∞); 𝑔𝜀(𝑡) = 𝐻(𝑡), 𝑡 ∈ [1/2, 2],

where 𝐻(𝑡) is the Hermite interpolation polynomial for the function 𝑓𝜀 constructed by two nodes
𝑡0 = 1/2 and 𝑡1 = 2 of multiplicity 𝑘 + 1 and therefore, 2𝑘 + 2 conditions hold:

𝐻(𝑗)(𝑡𝜈) = 𝑓 (𝑗)
𝜀 (𝑡𝜈), 𝑗 = 0, 1, . . . , 𝑘; 𝜈 = 0, 1.

It is known, see, for instance, [8], that the degree of the polynomial 𝐻(𝑡) does not exceed 2𝑘 + 1 and

𝐻(𝑡) =

1∑︁
𝜈=0

𝑘∑︁
𝑗=0

𝑘−𝑗∑︁
𝑞=0

𝑐𝑘𝑗𝑞𝑓
(𝑗)
𝜀 (𝑡𝜈)

(𝑡− 𝑡𝜈)
𝑗+𝑘(𝑡− 𝑡1−𝜈)

𝑘+1

(𝑡𝜈 − 𝑡1−𝜈)𝑘+𝑞+1
,

where 𝑐𝑘𝑗𝑞 = (−1)𝑞(𝑘 + 𝑞)!/(𝑗!𝑘!𝑞!). It is easy to see

sup
𝜀∈(0,1)

max
𝑡∈[1/2,2]

|𝐻(𝑡)| = 𝑀0 < ∞, sup
𝜀∈(0,1)

max
𝑡∈[1/2,2]

|𝐻(𝑘)(𝑡)| = 𝑀𝑘 < ∞,

since
max
𝑗,𝜈

sup
𝜀∈(0,1)

|𝑓 (𝑗)
𝜀 (𝑡𝜈)| < ∞.

By straightforward calculations we obtain

∞∫︁
0

|𝑔𝜀(𝑡)|𝑝

𝑡𝜎
𝑑𝑡 =

2

2𝜀𝜀
+

2∫︁
1/2

|𝐻(𝑡)|𝑝

𝑡𝜎
𝑑𝑡, (3.5)

∞∫︁
0

|𝑔(𝑘)𝜀 (𝑡)|𝑝

𝑡𝜎−𝑘𝑝
𝑑𝑡 =

𝐶𝑝(𝑘, 𝜎 − 𝜀) + 𝐶𝑝(𝑘, 𝜎 + 𝜀)

2𝜀𝜀
+

2∫︁
1/2

⃒⃒
𝐻(𝑘)(𝑡)

⃒⃒𝑝
𝑡𝜎−𝑘𝑝

𝑑𝑡. (3.6)

We note that

lim
𝜀→0

𝜀

2∫︁
1/2

|𝐻(𝑡)|𝑝

𝑡𝜎
𝑑𝑡 = lim

𝜀→0
𝜀

2∫︁
1/2

|𝐻(𝑘)(𝑡)|𝑝

𝑡𝜎−𝑘𝑝
𝑑𝑡 = 0. (3.7)

The function 𝑔𝜀 ∈ 𝐶𝑘(0,∞) satisfies the boundary conditions described in Items 1, 2 and 3 of
Theorem 3.2. Therefore, for a function 𝑓 = 𝑔𝜀 in accordance with (3.4) we have the inequality

𝜀

2

∞∫︁
0

|𝑔(𝑘)𝜀 (𝑡)|𝑝

𝑡𝜎−𝑘𝑝
𝑑𝑡 ⩾ (𝜀0 + 𝐶𝑝(𝑘, 𝜎))

𝜀

2

∞∫︁
0

|𝑔𝜀(𝑡)|𝑝

𝑡𝜎
𝑑𝑡 (3.8)



10 F.G. AVKHADIEV

obtained from inequality (3.4) for the function 𝑓 = 𝑔𝜀 by multiplying both sides of the inequality by
𝜀/2.

Passing to the limit as 𝜀 → 0 in inequality (3.8) and taking into consideration formulas (3.5), (3.6)
and (3.7), we arrive at the relations

𝐶𝑝(𝑘, 𝜎) = lim
𝜀→0

𝐶𝑝(𝑘, 𝜎 − 𝜀) + 𝐶𝑝(𝑘, 𝜎 + 𝜀)

21+𝜀
⩾ lim

𝜀→0

𝜀0 + 𝐶𝑝(𝑘, 𝜎)

2𝜀
= 𝜀0 + 𝐶𝑝(𝑘, 𝜎)

and this contradicts the positivity of the number 𝜀0.
In view of the boundary conditions the property 𝑓 ̸≡ 0 implies similar properties for the derivatives:

𝑓 ′ ̸≡ 0, . . . , 𝑓 (𝑘−1) ̸≡ 0. This is why as 𝑝 > 1 and 𝑓 ̸≡ 0 inequalities (3.3), and hence, inequality (3.2),
are strict. The proof is complete.

In what follows in the corollaries we consider only the case 𝑘 ⩾ 2. Similar statements for the
case 𝑘 = 1 are also valid and they are formulated in the Introduction as the corollaries of the Hardy
inequality.

A generalization of the Rellich and Birman inequalities is the following corollary.

Corollary 3.1. Assume that 𝑘 ∈ N ∖ {1}, 1 < 𝑝 < ∞, and 𝑓 ∈ 𝐶𝑘−1[0,∞) is a complex-valued

function. If 𝑓 (𝑘−1) is differentiable almost everywhere, 𝑓 (𝑘) ∈ 𝐿𝑝(0,∞), 𝑓 (𝑗)(0) = 0 for all 𝑗 =
0, . . . , 𝑘 − 1 and

𝑓 (𝑘−1)(𝑡) =

𝑡∫︁
0

𝑓 (𝑘)(𝜏)𝑑𝜏, 0 ⩽ 𝑡 < ∞,

then the inequality
∞∫︁
0

⃒⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒⃒𝑝
𝑑𝑡 ⩾

𝑘∏︁
𝑗=1

(𝑗 − 1/𝑝)𝑝
∞∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝑘𝑝
𝑑𝑡

holds true with a sharp constant. In particular, the inequality

∞∫︁
0

⃒⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒⃒𝑝
𝑑𝑡 ⩾

𝑘∏︁
𝑗=1

(𝑗 − 1/𝑝)𝑝
∞∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝑘𝑝
𝑑𝑡

is valid for all 𝑓 ∈ 𝐶𝑘
0 (0,∞).

As 𝑝 = 1, the latter inequality is meaningless since 𝜎 = 𝑘 ∈ 𝑆*
1(𝑘) and the constant vanishes.

Letting 𝑝 = 1 and 𝜎 = 0 or 𝜎 = 𝑘 + 1 in Theorem 3.2, we obtain the following statement.

Corollary 3.2. Let 𝑘 ∈ N ∖ {1}. Then for each complex-valued function 𝑓 ∈ 𝐶𝑘
0 (0,∞) the inequal-

ities
∞∫︁
0

𝑡𝑘
⃒⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒⃒
𝑑𝑡 ⩾ 𝑘!

∞∫︁
0

|𝑓(𝑡)| 𝑑𝑡,
∞∫︁
0

⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒
𝑡

𝑑𝑡 ⩾ 𝑘!

∞∫︁
0

|𝑓(𝑡)|
𝑡𝑘+1

𝑑𝑡

hold. The constant 𝑘! is sharp in both inequalities.

Corollary 3.3. Assume that 𝑘 ∈ N ∖ {1}, 1 ⩽ 𝑝 < ∞, a complex-valued function 𝑓 satisfies

𝑓 ∈ 𝐶𝑘−1(0,∞) and 𝑓 (𝑘−1) is differentiable almost everywhere, 𝑡𝑘𝑓 (𝑘) ∈ 𝐿𝑝(0,∞). If 𝑓 (𝑗)(∞) :=

lim
𝑡→∞

𝑓 (𝑗)(𝑡) = 0 for all 𝑗 = 0, . . . , 𝑘 − 1, 𝑓 (𝑘−1)(𝑡) =
𝑡∫︀

∞
𝑓 (𝑘)(𝜏)𝑑𝜏 , where 0 < 𝑡 ⩽ ∞, then the inequality

∞∫︁
0

𝑡𝑘𝑝
⃒⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒⃒𝑝
𝑑𝑡 ⩾

𝑘−1∏︁
𝑗=0

(𝑗 + 1/𝑝)𝑝
∞∫︁
0

|𝑓(𝑡)|𝑝 𝑑𝑡

holds true. The constant
∏︀𝑘−1

𝑗=0 (𝑗 + 1/𝑝)𝑝 is sharp.

The next two theorems provide generalizations of inequalities (2.6) and (2.7).
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Theorem 3.3. Assume that 𝑘 ∈ N, 0 < 𝑐 < ∞, 1 ⩽ 𝑝 < ∞ and 1 + (𝑘 − 1)𝑝 < 𝜎 < ∞.

Let 𝑓 ∈ 𝐶𝑘−1(0, 𝑐) be a complex-valued function such that the derivative 𝑓 (𝑘−1) of order 𝑘 − 1 is

differentiable almost everywhere and 𝑡𝑘−𝜎/𝑝|𝑓 (𝑘)| ∈ 𝐿𝑝(0, 𝑐). If 𝑓 (𝑗)(0) := lim
𝑡→0

𝑓 (𝑗)(𝑡) = 0 for all integer

numbers 𝑗 ∈ [0, 𝑘 − 1] and the identity

𝑓 (𝑘−1)(𝑡) =

𝑡∫︁
0

𝑓 (𝑘)(𝜏)𝑑𝜏, 0 ⩽ 𝑡 < 𝑐,

holds true, then the inequality

𝑐∫︁
0

⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒𝑝
𝑡𝜎−𝑘𝑝

𝑑𝑡 ⩾ 𝐶𝑝(𝑘, 𝜎)

𝑐∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝜎
𝑑𝑡 (3.9)

is valid, where

𝐶𝑝(𝑘, 𝜎) :=
𝑘∏︁

𝑗=1

|(𝜎 − 1)/𝑝− 𝑗 + 1|𝑝 .

The constant 𝐶𝑝(𝑘, 𝜎) is best possible.

Proof. Let 𝜀 ∈ (0, 𝑐) and 𝑓 ∈ 𝐶𝑘−1(0, 𝑐) be one of the functions obeying the assumptions of the
theorem. By these assumptions, this function and its derivatives up to the order of 𝑘− 1 are extended
by the continuity at the point 𝑡 = 0. We can assume that 𝑓 ∈ 𝐶𝑘−1[0, 𝑐), 𝑓 (𝑗)(0) = 0 for all integer

numbers 𝑗 ∈ [0, 𝑘− 1] and the derivaitve 𝑓 (𝑘−1) of order 𝑘− 1 is absolutely continuous on the segment
[0, 𝑐− 𝜀] for each 𝜀 ∈ (0, 𝑐).

Applying inequality (2.6) to the function 𝑓 (𝑗) as 𝑡0 = 𝑐− 𝜀, 𝑠 = 𝜎 − 𝑗𝑝 and 𝑗 = 𝑘 − 1, 𝑘 − 2, . . . , 0,
we obtain

𝑐−𝜀∫︁
0

|𝑓 (𝑗+1)(𝑡)|𝑝

𝑡𝜎−(𝑗+1)𝑝
𝑑𝑡 ⩾

|𝜎 − 𝑝𝑗 − 1|𝑝

𝑝𝑝

𝑐−𝜀∫︁
0

|𝑓 (𝑗)(𝑡)|𝑝

𝑡𝜎−𝑗𝑝
𝑑𝑡.

Employing the iterations of these inequalities, namely, applying this inequality to the case 𝑗 = 𝑘 − 1
and then successively to the case 𝑗 = 𝑘 − 2, . . . , 𝑗 = 0, we get

𝑐−𝜀∫︁
0

|𝑓 (𝑘)(𝑡)|𝑝

𝑡𝜎−𝑘𝑝
𝑑𝑡 ⩾ 𝐶𝑝(𝑘, 𝜎)

𝑐−𝜀∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝜎
𝑑𝑡.

Letting 𝜀 tend to the zero, we obtain desired inequality (3.9).
It remains to prove the sharpness of the constant. Suppose that the constant 𝐶𝑝(𝑘, 𝜎) in Theorem 3.3

is not best possible. Then for some set {𝑝, 𝑘, 𝜎} of fixed parameters 𝑝 ∈ [1,∞), 𝑘 ∈ N, 𝜎 ∈ (1 + (𝑘 −
1)𝑝, ∞) there exists 𝜀0 > 0 such that for each function 𝑓 : (0, 𝑐) → C obeying the assumptions of
Theorem 3.3 the inequality holds

𝑐∫︁
0

|𝑓 (𝑘)(𝑡)|𝑝

𝑡𝜎−𝑘𝑝
𝑑𝑡 ⩾ (𝜀0 + 𝐶𝑝(𝑘, 𝜎))

𝑐∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝜎
𝑑𝑡.

We apply this inequality to the function 𝑓𝜀(𝑡) = 𝑡(𝜎−1+𝜀)/𝑝, 0 ⩽ 𝑡 ⩽ 𝑐, satisfying the assumptions of
Theorem 3.3 for each 𝜀 ∈ (0, 1). We then obtain:

𝐶𝑝(𝑘, 𝜎 + 𝜀)
𝑐𝜀

𝜀
⩾ (𝜀0 + 𝐶𝑝(𝑘, 𝜎))

𝑐𝜀

𝜀
.

Multiplying both sides by 𝜀 and passing to the limit as 𝜀 → 0, we get 𝐶𝑝(𝑘, 𝜎) ⩾ 𝜀0 + 𝐶𝑝(𝑘, 𝜎).
The obtain contradiction proves the sharpness of the constant 𝐶𝑝(𝑘, 𝜎) in Theorem 3.3. The proof is
complete.
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Theorem 3.4. Assume that 𝑘 ∈ N, 0 < 𝑏 < ∞, 1 ⩽ 𝑝 < ∞ and −∞ < 𝑠 < 1. Let 𝑓 ∈ 𝐶𝑘−1(𝑏,∞)

be a complex-valued function such that the derivative 𝑓 (𝑘−1) of order 𝑘 − 1 is differentiable almost
everywhere and 𝑡𝑘−𝑠/𝑝|𝑓 (𝑘)| ∈ 𝐿𝑝(𝑏,∞). If 𝑓 (𝑗)(∞) := lim

𝑡→∞
𝑓 (𝑗)(𝑡) = 0 for all integer numbers 𝑗 ∈

[0, 𝑘 − 1] and the identity

𝑓 (𝑘−1)(𝑡) =

𝑡∫︁
∞

𝑓 (𝑘)(𝜏)𝑑𝜏

holds, where 𝑏 ⩽ 𝑡 < ∞, then the inequality
∞∫︁
𝑏

⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒𝑝
𝑡𝑠−𝑘𝑝

𝑑𝑡 ⩾ 𝐶𝑝(𝑘, 𝑠)

∞∫︁
𝑏

|𝑓(𝑡)|𝑝

𝑡𝑠
𝑑𝑡 (3.10)

is valid, where

𝐶𝑝(𝑘, 𝑠) :=
𝑘∏︁

𝑗=1

|(𝑠− 1)/𝑝− 𝑗 + 1)|𝑝 .

The constant 𝐶𝑝(𝑘, 𝑠) is best possible.

Proof. The proof follows the lines of the previous proof. The difference is that in justifying the required
inequality of Theorem 3.4 we employ inequality (2.7) for 𝑡0 = 𝑏+ 𝜀, where 𝜀 > 0, while in justification

of the sharpness of the constant we consider the function 𝑓𝜀(𝑡) = 𝑡(𝑠−1−𝜀)/𝑝, 𝑏 < 𝑡 < ∞, satisfying the
assumptions of Theorem 3.4 for each 𝜀 ∈ (0, 1). This completes the proof of Theorem 3.4.

Remark 3.1. As 𝑘 = 1, the statement of Theorems 3.3 and 3.4 for real-valued functions 𝑓 are
well-known, see, for instance, a monograph by S.L. Sobolev [1].

Now we provide a corollary of Theorem 3.3 generalizing and strengthening Rellich-Birman inequality
as 𝑘 ⩾ 2.

Corollary 3.4. Assume that 𝑘 ∈ N, 0 < 𝑐 < ∞, 1 < 𝑝 < ∞. Let 𝑓 ∈ 𝐶𝑘−1(0, 𝑐) be a complex-

valued function such that 𝑓 (𝑘−1) is differentiable almost everywhere and 𝑡𝑘−𝜎/𝑝|𝑓 (𝑘)| ∈ 𝐿𝑝(0, 𝑐).

If 𝑓 (𝑗)(0) := lim
𝑡→0

𝑓 (𝑗)(𝑡) = 0 for all integer numbers 𝑗 ∈ [0, 𝑘 − 1] and 𝑓 (𝑘−1)(𝑡) =
𝑡∫︀
0

𝑓 (𝑘)(𝜏)𝑑𝜏 ,

0 ⩽ 𝑡 < 𝑐, then the inequality
𝑐∫︁

0

⃒⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒⃒𝑝
𝑑𝑡 ⩾

𝑘∏︁
𝑗=1

(𝑗 − 1/𝑝)𝑝
𝑐∫︁

0

|𝑓(𝑡)|𝑝

𝑡𝑘𝑝
𝑑𝑡

is valid. The constant
∏︀𝑘

𝑗=1 (𝑗 − 1/𝑝)𝑝 is best possible.

4. Improvements of Rellich and Birman inequalities in bounded intervals

According to Corollary 2.3, for each 𝑐 ∈ (0,∞) and each absolutely continuous function 𝑓 : [0, 𝑐] → R

such that 𝑓(0) = 0 and 𝑓 ′ ∈ 𝐿2(0, 𝑐) the inequality
𝑐∫︁

0

|𝑓 ′(𝑡)|2𝑑𝑡 ⩾ 1

4

𝑐∫︁
0

|𝑓(𝑡)|2

𝑡2
𝑑𝑡 (4.1)

holds true with a best possible constant 1/4. H. Brezis and M. Marcus [9] employed the absence of
the extremal function, at which the identity in (4.1) is achieved. Namely, they proved that under the
same conditions on the function 𝑓 identity (4.1) can be strengthened, namely, the following inequality

𝑐∫︁
0

|𝑓 ′(𝑡)|2𝑑𝑡 ⩾ 1

4

𝑐∫︁
0

|𝑓(𝑡)|2

𝑡2
𝑑𝑡+

𝜆

𝑐2

𝑐∫︁
0

|𝑓(𝑡)|2𝑑𝑡 (4.2)

holds, where 𝜆 = 1/4. K.-J. Wirths and the author [10] found the best possible value for the constant
𝜆 in Brezis-Marcus inequality (4.2). It is turned out that the best possible value for the constant 𝜆 is
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𝜆2
0, where 𝑧 = 𝜆0 ≈ 0.940 is the first positive root of the equation 𝐽0(𝑧) + 2𝑧𝐽 ′

0(𝑧) = 0 for the zero
order Bessel function.

In accordance with Corollary 2.3, for each 𝑐 ∈ (0,∞), each 𝑠 ∈ (1,∞) and each absolutely continuous

function 𝑓 : [0, 𝑐] → R such that 𝑓(0) = 0 and 𝑓 ′/𝑡𝑠/2−1 ∈ 𝐿2(0, 𝑎) the inequality

𝑐∫︁
0

|𝑓 ′(𝑡)|2

𝑡𝑠−2
𝑑𝑡 ⩾

(𝑠− 1)2

4

𝑐∫︁
0

|𝑓(𝑡)|2

𝑡𝑠
𝑑𝑡 (4.3)

holds with the best possible constant (𝑠−1)2/4. This gives rise to a natural problem: prove that under
the same conditions for the function 𝑓 inequality (4.3) can be strengthened, namely, the following
inequality

𝑐∫︁
0

|𝑓 ′(𝑡)|2

𝑡𝑠−2
𝑑𝑡 ⩾

(𝑠− 1)2

4

𝑐∫︁
0

|𝑓(𝑡)|2

𝑡𝑠
𝑑𝑡+

𝜆

𝑐𝑠

𝑐∫︁
0

|𝑓(𝑡)|2𝑑𝑡 (4.4)

is true with some positive constant 𝜆 > 0. This problem was solved by K.-J. Wirths and the author in
paper [11]. For an exact formulation of the appropriate result involving inequality (4.4) as a particular
case, we need some notation.

Let (𝑝, 𝑞) be a pair of positive numbers. We shall need a function

𝑦 = 𝐹𝜈,𝑝,𝑞(𝑡) = 𝑡𝑝/2𝐽𝜈

(︁
𝜆𝜈(2𝑝/𝑞) 𝑡

𝑞/2
)︁
, 𝑡 ∈ [0, 1],

where

𝐽𝜈(𝑡) =

∞∑︁
𝑚=0

(−1)𝑚 𝑡2𝑚+𝜈

22𝑚+𝜈 𝑚! Γ(𝑚+ 1 + 𝜈)

is the Bessel function of order 𝜈 ⩾ 0, while Γ is the Euler Gamma function and 𝜆𝜈(2𝑝/𝑞) is a Lamb
constant defined as the first positive root of the equation (2𝑝/𝑞)𝐽𝜈(𝑧) + 2𝑧𝐽 ′

𝜈(𝑧) = 0 for fixed 𝜈 ⩾ 0
and 𝑥 = 2𝑝/𝑞 > 0.

The zeroes of the function 𝑥𝐽𝜈(𝑧) + 2𝑧𝐽 ′
𝜈(𝑧) for fixed 𝜈 > 0, 𝑥 > 0 were studied by H. Lamb, see

[12] and [13], while for 𝜈 = 0 they were studied in papers by K.-J. Wirths and the author [10], [11]. In
particular, it was found that 𝜆0(1) = 𝜆0 ≈ 0.940.

By 𝑧 = 𝜆𝜈(𝑥) we denote the first positive root of the equation 𝑥𝐽𝜈(𝑧) + 2𝑧𝐽 ′
𝜈(𝑧) = 0 for fixed 𝑥 > 0

and 𝜈 ∈ [0, 𝑥/2]. It was proved in papers [10] and [11] that the function

𝑧 = 𝜆𝜈 : (0,∞) → (0,∞)

is monotonically increasing, the value 𝑧 = 𝜆𝜈(𝑥) for each 𝑥 ∈ (0, 1] or 𝑥 ∈ [1,∞) can be found as a
solution of the Cauchy problem for the equation

𝑑𝑧

𝑑𝑥
=

2𝑧

𝑥2 − 4𝜈2 + 4𝑧2

with the initial condition 𝑧(1) = 𝜆𝜈(1).
While solving the problems related with the inequalities of Hardy type in convex domains Ω ⊂ R𝑛,

in paper [11] by K.-J. Wirths and the author the following statement was proved, see Lemmas 1, 2 and
Theorem 2 for 𝑝 = 𝑠− 1 in [11].

Theorem 4.1. Let 𝑠 ∈ (1,∞), 𝑞 ∈ (0,∞) and 𝜈 ∈ [0, (𝑠− 1)/𝑞] and

𝑧 = 𝜆𝜈,𝑠,𝑞 := 𝜆𝜈(2(𝑠− 1)/𝑞)

be the Lamb constant defined as the first positive root of the equation

(2(𝑠− 1)/𝑞)𝐽𝜈(𝑧) + 2𝑧𝐽 ′
𝜈(𝑧) = 0

for fixed 𝜈 ⩾ 0 and 𝑥 = 2(𝑠 − 1)/𝑞. If 𝑓 : [0, 1] → R is an absolutely continuous function such that

𝑓(0) = 0 and 𝑓 ′/𝑡𝑠/2−1 ∈ 𝐿2(0, 1), then

1∫︁
0

|𝑓 ′(𝑡)|2

𝑡𝑠−2
𝑑𝑡 ⩾

(𝑠− 1)2 − 𝜈2𝑞2

4

1∫︁
0

|𝑓(𝑡)|2

𝑡𝑠
𝑑𝑡+

𝑞2𝜆2
𝜈,𝑠,𝑞

4

1∫︁
0

|𝑓(𝑡)|2

𝑡𝑠−𝑞
𝑑𝑡. (4.5)
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If 𝜈 > 0, then the identity in (4.5) is achieved if and only if 𝑓(𝑡) = 𝐶 𝐹𝜈,𝑠−1,𝑞(𝑡), where 𝐶 = 𝑐𝑜𝑛𝑠𝑡. If
𝜈 = 0 and 𝑓 ̸≡ 0, then the strict inequality

1∫︁
0

|𝑓 ′(𝑡)|2

𝑡𝑠−2
𝑑𝑡 >

(𝑠− 1)2

4

1∫︁
0

|𝑓(𝑡)|2

𝑡𝑠
𝑑𝑡+

𝑞2𝜆2
0,𝑠,𝑞

4

1∫︁
0

|𝑓(𝑡)|2

𝑡𝑠−𝑞
𝑑𝑡 (4.6)

holds true, where both constants (𝑠− 1)2/4 and 𝑞2𝜆2
0,𝑠,𝑞/4 in inequality (4.6) are sharp, that is, they

are best possible in the following sense: for each 𝜀 > 0 there exist functions 𝑓1𝜀, 𝑓2𝜀, obeying the
assumptions of the theorem and the inequalities

1∫︁
0

|𝑓 ′
1𝜀(𝑡)|2

𝑡𝑠−2
𝑑𝑡 <

(𝑠− 1)2 + 𝜀

4

1∫︁
0

|𝑓1𝜀(𝑡)|2

𝑡𝑠
𝑑𝑡,

1∫︁
0

|𝑓 ′
2𝜀(𝑡)|2

𝑡𝑠−2
𝑑𝑡 <

(𝑠− 1)2

4

1∫︁
0

|𝑓2𝜀(𝑡)|2

𝑡𝑠
𝑑𝑡+

𝑞2𝜆2
0,𝑠,𝑞 + 𝜀

4

1∫︁
0

|𝑓2𝜀(𝑡)|2

𝑡𝑠−𝑞
𝑑𝑡.

Inequality (4.5) also holds for complex-valued functions. Namely, the following corollary is true.

Corollary 4.1. Assume that the numbers 𝑠, 𝑞, 𝜈 and 𝜆𝜈,𝑠,𝑞 are the same as in Theorem 3.1. If

𝑔 : [0, 1] → C is an absolutely continuous function such that 𝑔(0) = 0 and |𝑔′|/𝑡𝑠/2−1 ∈ 𝐿2(0, 1), then

1∫︁
0

|𝑔′(𝑡)|2

𝑡𝑠−2
𝑑𝑡 ⩾

(𝑠− 1)2 − 𝜈2𝑞2

4

1∫︁
0

|𝑔(𝑡)|2

𝑡𝑠
𝑑𝑡+

𝑞2𝜆2
𝜈,𝑠,𝑞

4

1∫︁
0

|𝑔(𝑡)|2

𝑡𝑠−𝑞
𝑑𝑡. (4.7)

Proof. Let 𝑔(𝑡) = 𝑓1(𝑡)+ 𝑖𝑓2(𝑡). It is easy to see that the functions 𝑓1(𝑡) = Re 𝑔(𝑡) and 𝑓2(𝑡) = Im 𝑔(𝑡)
satisfy the assumptions of the theorem. This is why we can write inequality (4.5) for the function 𝑓 = 𝑓1
and for the function 𝑓 = 𝑓2. Summing up the obtained inequalities and taking into consideration the
identities

|𝑔(𝑡)|2 = 𝑓2
1 (𝑡) + 𝑓2

2 (𝑡), |𝑔′(𝑡)|2 = (𝑓 ′
1(𝑡))

2 + (𝑓 ′
2(𝑡))

2,

we arrive at inequality (4.7).

By straightforward calculations using the changes 𝑠 = 2−𝜎, 𝑡 = 1/𝜏 , 𝑔(1/𝜏) = 𝑓(𝜏) in the integrals
in inequality (4.7), we obtain the following corollary.

Corollary 4.2. Let 𝜎 ∈ (−∞, 1), 𝑞 ∈ (0,∞) and 𝜈 ∈ [0, (1− 𝜎)/𝑞]. Let

𝑧 = 𝜆𝜈,𝜎,𝑞 := 𝜆𝜈(2(1− 𝜎)/𝑞)

be the Lamb constant defined as the first positive root of the equation

(2(1− 𝜎)/𝑞)𝐽𝜈(𝑧) + 2𝑧𝐽 ′
𝜈(𝑧) = 0

for fixed 𝜈 ⩾ 0 and 𝑥 = 2(1 − 𝜎)/𝑞. If 𝑓 : [1,∞] → C is an absolutely continuous function such that

𝑓(∞) = 0 and 𝑓 ′/𝜏𝜎/2−1 ∈ 𝐿2(1,∞), then

∞∫︁
1

|𝑓 ′(𝜏)|2

𝜏𝜎−2
𝑑𝜏 ⩾

(1− 𝜎)2 − 𝜈2𝑞2

4

∞∫︁
1

|𝑓(𝜏)|2

𝜏𝜎
𝑑𝜏 +

𝑞2𝜆2
𝜈,𝜎,𝑞

4

∞∫︁
1

|𝑓(𝜏)|2

𝜏𝜎+𝑞
𝑑𝜏.

In particular, letting 𝜏 = 𝜈 = 0 and 𝑞 = 2, we obtain the inequality

∞∫︁
1

𝜏2|𝑓 ′(𝜏)|2𝑑𝜏 ⩾
1

4

∞∫︁
1

|𝑓(𝜏)|2𝑑𝜏 + 𝜆2
0

∞∫︁
1

|𝑓(𝜏)|2

𝜏2
𝑑𝜏,

where both constants1/4 and 𝜆0 = 𝜆0(1) ≈ 0.940 are best possible.

Letting 𝜈 = 0 and 𝑞 = 𝑠, using the changes 𝑡 = 𝜏/𝑐, 𝑔(𝑡) = 𝑓(𝜏/𝑐) in the integrals in inequalities
(4.7), by straightforward calculations we obtain inequality of form (4.4) with sharp constants.
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Corollary 4.3. Let 𝑐 ∈ (0,∞), 𝑠 ∈ (1,∞), 𝑧 = 𝜆0(2− 2/𝑠) be the Lamb constant defined as the
first positive root of the equation

(2− 2/𝑠)𝐽0(𝑧) + 2𝑧𝐽 ′
0(𝑧) = 0

for fixed 𝑠 > 1. If 𝑓 : [0, 𝑐] → C is an absolutely continuous function such that |𝑓 ′|/𝑡𝑠/2−1 ∈ 𝐿2(0, 𝑐)
and 𝑓(0) = 0, then

𝑐∫︁
0

|𝑓 ′(𝑡)|2

𝑡𝑠−2
𝑑𝑡 ⩾

(𝑠− 1)2

4

𝑐∫︁
0

|𝑓(𝑡)|2

𝑡𝑠
𝑑𝜏 +

𝑠2 (𝜆0(2− 2/𝑠))2

4𝑐𝑠

𝑐∫︁
0

|𝑓(𝑡)|2𝑑𝑡. (4.8)

The next theorem gives improvements and generalizations of Hardy-Rellich-Birman inequalities for
bounded intervals.

Theorem 4.2. Let 𝑘 ∈ N, 𝑐 ∈ (0,∞) and 𝑓 ∈ 𝐶𝑘−1[0, 𝑐] be a complex-valued function such that the

derivative 𝑓 (𝑘−1) of order 𝑘 − 1 is differentiable almost everywhere and |𝑓 (𝑘)| ∈ 𝐿2(0, 𝑐). If 𝑓 (𝑗)(0) :=

lim
𝑡→0

𝑓 (𝑗)(𝑡) = 0 for all integer numbers 𝑗 ∈ [0, 𝑘 − 1] and the identity

𝑓 (𝑘−1)(𝑡) =

𝑡∫︁
0

𝑓 (𝑘)(𝜏)𝑑𝜏, 0 ⩽ 𝑡 ⩽ 𝑐

holds, then

𝑐∫︁
0

⃒⃒⃒
𝑓 (𝑘)(𝑡)

⃒⃒⃒2
𝑑𝑡 ⩾

(︂
(2𝑘 − 1)!!

2𝑘

)︂2
𝑐∫︁

0

|𝑓(𝑡)|2

𝑡2𝑘
𝑑𝑡+ 𝜆2

0

𝑘(𝑘 + 1)(2𝑘 + 1)

6 𝑐2𝑘

𝑐∫︁
0

|𝑓(𝑡)|2𝑑𝑡, (4.9)

where 𝜆0 ≈ 0.940 is the Lamb constant.

Proof. If 𝑠 = 2𝑚, 𝑚 ∈ N, then 2− 2/𝑠 ⩾ 1. Therefore,

𝜆0(2− 2/𝑠) ⩾ 𝜆0(1) = 𝜆0 ≈ 0.940

since the function 𝜆𝜈(𝑥) is monotonically increasing.
Let 𝑓0 be a function satisfying the assumptions of the theorem. The proof of inequality (3.10) for

the function 𝑓0 follows the lines of the proof of the main inequality in Theorem 3.2.

Choosing 𝑠 = 2𝑚, 𝑚 ∈ N and applying inequality (4.8) to the derivative 𝑓
(𝑘−𝑚)
0 with 𝑚 = 1, . . . , 𝑘

in view of inequalities 𝜆0(2− 1/𝑚) ⩾ 𝜆0 we get

𝑐∫︁
0

|𝑓 (𝑘−𝑚+1)
0 (𝑡)|2

𝑡2𝑚−2
𝑑𝑡 ⩾

(2𝑚− 1)2

4

𝑐∫︁
0

|𝑓 (𝑘−𝑚)
0 (𝑡)|2

𝑡2𝑚
𝑑𝑡+

𝑚2𝜆2
0

𝑐2𝑚

𝑐∫︁
0

|𝑓0(𝑡)|2𝑑𝑡.

Employing the iterations of these inequalities, namely, applying this inequality to the case 𝑚 = 1, and
then successively to the cases 𝑚 = 2, . . . , 𝑚 = 𝑘, we obtain:

𝑐∫︁
0

⃒⃒⃒
𝑓
(𝑘)
0 (𝑡)

⃒⃒⃒2
𝑑𝑡 ⩾

(︂
(2𝑘 − 1)!!

2𝑘

)︂2
𝑐∫︁

0

|𝑓0(𝑡)|2

𝑡2𝑘
𝑑𝑡+ 𝜆2

0

𝑘∑︁
𝑗=1

𝑗2

𝑐2𝑗

𝑐∫︁
0

|𝑓0(𝑡)|2𝑑𝑡.

Applying this inequality to the function 𝑔 satisfying the assumptions of the theorem as 𝑐 = 1 and
taking into consideration the known identity 12 + 22 + . . .+ 𝑘2 = 𝑘(𝑘 + 1)(2𝑘 + 1)/6, we find that

1∫︁
0

⃒⃒⃒
𝑔(𝑘)(𝜏)

⃒⃒⃒2
𝑑𝜏 ⩾

(︂
(2𝑘 − 1)!!

2𝑘

)︂2
1∫︁

0

|𝑔(𝜏)|2

𝜏2𝑘
𝑑𝜏 + 𝜆2

0

𝑘(𝑘 + 1)(2𝑘 + 1)

6

1∫︁
0

|𝑔(𝜏)|2𝑑𝜏.

By the change of the variable 𝜏 = 𝑡/𝑐 and the function 𝑔(𝜏) = 𝑓(𝑡) we then get inequality (3.10) and
this completes the proof.



16 F.G. AVKHADIEV

Remark 4.1. The constant ((2𝑘 − 1)!!/2𝑘)2 in inequality (3.10) is best possible also in the case when
the second term is absent. Namely, as a corollary of Theorem 3.3 we have the following statement: for
each 𝜀 > 0 there exists a function 𝑓𝜀 satisfying the assumptions of Theorem 4.2 and the inequality

𝑐∫︁
0

⃒⃒⃒
𝑓 (𝑘)
𝜀 (𝑡)

⃒⃒⃒2
𝑑𝑡 <

(︂
(2𝑘 − 1)!!

2𝑘
+ 𝜀

)︂2
𝑐∫︁

0

|𝑓𝜀(𝑡)|2

𝑡2𝑘
𝑑𝑡.

The constant 𝜆2
0𝑘(𝑘 + 1)(2𝑘 + 1)/(6𝑐2𝑘) at the second integral in the right hand side of inequality

(3.10) is best possible only as 𝑘 = 1.

5. Multidimensional analogues

Let us briefly describe a relation between one-dimensional integral inequalities and their multidi-
mensional analogues.

Let 𝑛 ∈ N, 𝑛 ⩾ 2. By |𝑥| =
√︀

𝑥21 + 𝑥22 + . . .+ 𝑥2𝑛 we denote the Euclidean norm of a vector
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛 and 𝑑𝑥 = 𝑑𝑥1𝑑𝑥2 · · · 𝑑𝑥𝑛 is a differential of the volume (area as 𝑛 = 2). We
consider a domain Ω ⊂ R𝑛 and functions 𝑢 : Ω → C. For 𝑢 ∈ 𝐶1(Ω) the norm |∇𝑢(𝑥)| of the Euclidean
gradient

∇𝑢(𝑥) :=

(︂
𝜕𝑢(𝑥)

𝜕𝑥1
,
𝜕𝑢(𝑥)

𝜕𝑥2
, . . . ,

𝜕𝑢(𝑥)

𝜕𝑥𝑛

)︂
∈ C𝑛, 𝑥 ∈ Ω ⊂ R𝑛,

is defined by the identity

|∇𝑢(𝑥)| =

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

⃒⃒⃒⃒
𝜕𝑢(𝑥)

𝜕𝑥𝑗

⃒⃒⃒⃒2
=

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

(︂
Re

𝜕𝑢(𝑥)

𝜕𝑥𝑗

)︂2

+

(︂
Im

𝜕𝑢(𝑥)

𝜕𝑥𝑗

)︂2

.

In an arbitrary domain Ω ⊂ R𝑛, Ω ̸= R𝑛, a direct analogue of the Hardy inequality is the following
one: ∫︁

Ω

|∇𝑢(𝑥)|𝑝

dist𝑠−𝑝(𝑥, 𝜕Ω)
𝑑𝑥 ⩾ 𝐶𝑝(𝑠,Ω)

∫︁
Ω

|𝑢(𝑥)|𝑝

dist𝑠(𝑥, 𝜕Ω)
𝑑𝑥 ∀𝑢 ∈ 𝐶1

0 (Ω), (5.1)

where the constant 𝐶𝑝(𝑠,Ω) ∈ [0,∞) is supposed to be maximal among all possible ones.
In the multidimensional case the role of the parameters 𝑝 ∈ [1,∞), 𝑠 ∈ R is still important, but the

main appearing problems are

1) how to describe geometrically “nice” domains, that is, ones for which 𝐶𝑝(𝑠,Ω) > 0;

2) how to obtain lower and upper bounds for 𝐶𝑝(𝑠,Ω) > 0 depending on the geometric characteristics
of the domain and of the parameters 𝑝, 𝑠.

A series of results on studying inequality (5.1) can be found in recent monographs [14]–[16]. We just
briefly describe some results on special cases of inequality (5.1).

We can provide several domains, in which inequality (5.1) is equivalent to inequality (2.5), that is,
to

∞∫︁
0

|𝑔′(𝑡)|𝑝

𝑡𝑠−𝑝
𝑑𝑡 ⩾

(︂
|𝑠− 1|

𝑝

)︂𝑝
∞∫︁
0

|𝑔(𝑡)|𝑝

𝑡𝑠
𝑑𝑡 ∀𝑔 ∈ 𝐶1

0 (0,∞).

We note that following Theorems 5.1 and 5.2 belong to a folklore of the theory of multidimensional
Hardy inequalities.

Theorem 5.1. Let 𝑛 ∈ N, 𝑛 ⩾ 2. For each 𝑝 ∈ [1,∞) and each 𝜎 ∈ R the following inequality∫︁
R𝑛

|∇𝑢(𝑥)|𝑝

|𝑥|𝜎−𝑝
𝑑𝑥 ⩾

(︂
|𝜎 − 𝑛|

𝑝

)︂𝑝 ∫︁
R𝑛

|𝑢(𝑥)|𝑝

|𝑥|𝜎
𝑑𝑥 (5.2)

holds for all 𝑢 ∈ 𝐶1
0 (R

𝑛 ∖ {0}) with a sharp constant (|𝜎 − 𝑛|/𝑝)𝑝.
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We are going to give a brief proof of the equivalence of inequalities (2.5) and (5.2) for a fixed 𝑛 ⩾ 2.
We take 𝑠 = 𝜎 − 𝑛+ 1 and employ spherical coordinates

𝑥 = 𝑟𝜔 ∈ R𝑛, 𝑟 = |𝑥| > 0, 𝜔 ∈ 𝑆 := {𝑦 ∈ R𝑛 : |𝑦| = 1},
the formula 𝑑𝑥 = 𝑟𝑛−1𝑑𝑟𝑑𝜔 and the inequality |∇𝑢(𝑥)| ⩾ |𝜕𝑢(𝑥)/𝜕𝑟|. Applying inequality (2.5) to a
function 𝑢 ∈ 𝐶1

0 (R
𝑛 ∖ {0}) with a fixed 𝜔 ∈ 𝑆, we obtain the inequality

∞∫︁
0

⃒⃒⃒⃒
𝜕𝑢(𝑟𝜔)

𝜕𝑟

⃒⃒⃒⃒𝑝 𝑑𝑟

𝑟𝑠−𝑝
⩾

(︂
|𝑠− 1|

𝑝

)︂𝑝
∞∫︁
0

|𝑢(𝑟𝜔)|𝑝

𝑟𝑠
𝑑𝑟,

which is equivalent to
∞∫︁
0

⃒⃒⃒⃒
𝜕𝑢(𝑟𝜔)

𝜕𝑟

⃒⃒⃒⃒𝑝 𝑟𝑛−1𝑑𝑟

|𝑥|𝜎−𝑝
⩾

(︂
|𝜎 − 𝑛|

𝑝

)︂𝑝
∞∫︁
0

|𝑢(𝑟𝜔)|𝑝

|𝑥|𝜎
𝑟𝑛−1𝑑𝑟,

where |𝑥| = 𝑟 and 𝜎 = 𝑠+ 𝑛− 1. Multiplying both sides of the latter inequality by 𝑑𝜔 and integrating
over the sphere 𝑆, we arrive at the inequality∫︁

R𝑛

⃒⃒⃒⃒
𝜕𝑢(𝑟𝜔)

𝜕𝑟

⃒⃒⃒⃒𝑝 𝑑𝑥

|𝑥|𝜎−𝑝
⩾

(︂
|𝜎 − 𝑛|

𝑝

)︂𝑝 ∫︁
R𝑛

|𝑢(𝑟𝜔)|𝑝

|𝑥|𝜎
𝑑𝑥,

and this yields (5.2). And vice versa, applying (5.2) to radial function defined by the identity 𝑢(𝑥) ≡
𝑢(|𝑥|) =: 𝑔(|𝑥|), we get inequality (2.5) with 𝑠 = 𝜎 − 𝑛+ 1 and 𝑡 = 𝑟 = |𝑥|.

If 𝜎 = 𝑠+ 𝑛− 1 < 𝑛, then 𝑠 < 1. Inequality (5.2) is valid under the boundary property 𝑢(∞) = 0,
which is implied by the condition 𝑢 ∈ 𝐶1

0 (R
𝑛). In particular, letting 𝑝 = 𝜎, we obtain the following

corollary.

Corollary 5.1. For each 𝑝 ∈ [1, 𝑛) the following inequality holds:∫︁
R𝑛

|∇𝑢(𝑥)|𝑝𝑑𝑥 ⩾

(︂
𝑛− 𝑝

𝑝

)︂𝑝 ∫︁
R𝑛

|𝑢(𝑥)|𝑝

|𝑥|𝑝
𝑑𝑥 ∀𝑢 ∈ 𝐶1

0 (R
𝑛) (5.3)

with a sharp constant ((𝑛− 𝑝)/𝑝)𝑝.

Inequality (5.3) is usually called Leray inequality. It was discovered by J. Leray in 1933 for the case
𝑝 = 2, 𝑛 = 3 in work [17] devoted to studying Navier-Stokes equation. Thus, Leray was first who
considered Hardy type inequality in a spatial domain.

It is easy to show that inequality (2.5) is equivalent to a corresponding inequality in the half-space
H+

𝑛 = {𝑥 ∈ R𝑛 : 𝑥1 > 0}.

Theorem 5.2. For each 𝑝 ∈ [1,∞) and each 𝑠 ∈ R the following inequality holds:∫︁
H+

𝑛

|∇𝑢(𝑥)|𝑝

𝑥𝑠−𝑝
1

𝑑𝑥 ⩾

(︂
|𝑠− 1|

𝑝

)︂𝑝 ∫︁
H+

𝑛

|𝑢(𝑥)|𝑝

𝑥𝑠1
𝑑𝑥 (5.4)

for all 𝑢 ∈ 𝐶1
0 (H+

𝑛 ) with a sharp constant (|𝑠− 1|/𝑝)𝑝.

We are going to describe several nontrivial results on inequality (5.1) in domains Ω ⊂ R𝑛 not
coinciding with R𝑛 ∖ {0} and H+

𝑛 . More precisely, we consider inequality (5.1) in domains Ω ⊂ R𝑛,
when there are no simple formulas for finding the distance dist(𝑥, 𝜕Ω), 𝑥 ∈ Ω.

We first of all mention that given below Theorems 5.3–5.7 were originally formulated and proved
for real-valued functions. But these Theorems 5.3–5.7 are also true for complex-valued functions since
their proofs are based on applying inequalities of form (2.4), which are also valid for complex-valued
functions.

For the case 𝑠 > 1 the most complete results on inequality (5.1) we obtained for convex domains
Ω ⊂ R𝑛. Owing to efforts of a series of mathematicians, namely, by E.B. Davies, T. Matskewich,
P.E. Sobolevskii, H. Brezis, M. Marcus, V.J. Mitzel, I.K. Shafigullin and the author, see paper [18]
and the references therein, the following statement was proved.
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Theorem 5.3. Let 𝑛 ⩾ 2. For each 𝑝 ∈ [1,∞), each 𝑠 ∈ (1,∞) and each convex domain Ω ⊂ R𝑛,
Ω ̸= R𝑛, the inequality holds∫︁

Ω

|∇𝑢(𝑥)|𝑝

dist𝑠−𝑝(𝑥, 𝜕Ω)
𝑑𝑥 ⩾

(︂
𝑠− 1

𝑝

)︂𝑝 ∫︁
Ω

|𝑢(𝑥)|𝑝

dist𝑠(𝑥, 𝜕Ω)
𝑑𝑥

for all 𝑢 ∈ 𝐶1
0 (Ω), where the constant is best possible, that is, 𝐶𝑝(𝑠,Ω) = ((𝑠− 1)/𝑝)𝑝 for each convex

domain Ω ⊂ R𝑛, Ω ̸= R𝑛 for all 𝑝 ∈ [1,∞) and 𝑠 ∈ (1,∞).

Theorem 5.3 is also interesting and amazing owing to the fact that various convex domains have the
same Hardy constant equalling to ((𝑠− 1)/𝑝)𝑝.

In [19] we proved the following theorem.

Theorem 5.4. Let 𝑛 ⩾ 2. For each 𝑝 ∈ [1,∞), each 𝑠 > 𝑛 and each domain Ω ⊂ R𝑛, Ω ̸= R𝑛, the
inequality ∫︁

Ω

|∇𝑢(𝑥)|𝑝

dist𝑠−𝑝(𝑥, 𝜕Ω)
𝑑𝑥 ⩾

(︂
𝑠− 𝑛

𝑝

)︂𝑝 ∫︁
Ω

|𝑢(𝑥)|𝑝

dist𝑠(𝑥, 𝜕Ω)
𝑑𝑥

holds for all 𝑢 ∈ 𝐶1
0 (Ω), where the constant is optimal in the sense that there exist domains, for which

the constant ((𝑠− 𝑛)/𝑝)𝑝 is sharp.

We observe that this theorem involves no additional geometric restrictions for the boundary of the
domain. This is a quite rare situation in embedding theorems of such type.

As 𝑠 ∈ (−∞, 1) “nice” domains are the exteriors of convex compacts. Namely, the following theorem
was proved by R.V. Makarov and the author in paper [20].

Theorem 5.5. Suppose that 𝑛 ⩾ 2, 1 ⩽ 𝑝 < ∞, −∞ < 𝑠 < 𝑛 and a domain Ω ⊂ R𝑛 is such that
R𝑛 ∖ Ω is a non-empty compact set. Then

𝑐𝑝(𝑠,Ω) ⩾ 𝑐𝑝𝑠𝑛 :=
min𝑗=1,2,...,𝑛 |𝑠− 𝑗|𝑝

𝑝𝑝
,

that is, for each complex-valued domain 𝑢 ∈ 𝐶1
0 (Ω) we have∫︁

Ω

|∇𝑢(𝑥)|𝑝

dist𝑠−𝑝(𝑥, 𝜕Ω)
𝑑𝑥 ⩾ 𝑐𝑝𝑠𝑛

∫︁
Ω

|𝑢(𝑥)|𝑝

dist𝑠(𝑥, 𝜕Ω)
𝑑𝑥,

where the constant is optimal in the sense that there exist domains obeying the assumptions of the
theorem and for these domains the constant 𝑐𝑝𝑠𝑛 is sharp.

Multidimensional analogues of Rellich-Birman inequalities are related with polyharmonic operators
of order 𝑘 ⩾ 2.

Let ∆ be the Laplace operator. For smooth functions 𝑢 ∈ 𝐶𝑘(Ω) we consider a polyharmonic
operator defined by the identities, see [21]:

∆𝑘/2𝑢(𝑥) :=

{︃
∆𝑗𝑢(𝑥) if 𝑘 = 2𝑗 is even,

∇∆𝑗𝑢(𝑥) if 𝑘 = 2𝑗 + 1 is odd,

with a formal convention ∆1/2𝑢 := ∇𝑢. It is obvious that in the one-dimensional case ∆𝑘/2𝑓(𝑡) =

𝑓 (𝑘)(𝑡) for a function 𝑓 ∈ 𝐶𝑘(𝑎, 𝑏) of a variable 𝑡 ∈ (𝑎, 𝑏).
The following theorem holds.

Theorem 5.6. Let 𝑛 ⩾ 2, 𝑘 ⩾ 2 and let Ω ⊂ R𝑛 be a convex domain Ω ̸= R𝑛. Then∫︁
Ω

|∆𝑘/2𝑢(𝑥)|2𝑑𝑥 ⩾
((2𝑘 − 1)!!)2

4𝑘

∫︁
Ω

|𝑢(𝑥)|2

dist2𝑘(𝑥, 𝜕Ω)
𝑑𝑥

for all 𝑢 ∈ 𝐶𝑘
0 (Ω). For all 𝑛 ⩾ 2, 𝑘 ⩾ 2 the constant is sharp for each convex domain Ω ⊂ R𝑛, Ω ̸= R𝑛.
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The inequality in Theorem 5.6 was proved by M.P. Owen in paper [6], in which it was pointed out

that the constant 𝐴𝑘(Ω) := ((2𝑘 − 1)!!)2/4𝑘 is optimal since it is sharp for the half-space 𝑥1 > 0. The
sharpness of the constant for each convex domain Ω ⊂ R𝑛, Ω ̸= R𝑛 was proven in papers [22] and [23].

There are also several generalizations of this theorem for the case of non-convex domains. For
instance, the following theorem was proved in paper [24].

Theorem 5.7. Let 𝑘 ⩾ 2 and Ω ⊂ R2 be a domain Ω ̸= R2. Suppose that the constant 𝐴𝑘(Ω) ∈
[0,∞) is sharp, that is, it is the maximal among all possible ones in the inequality∫︁

Ω

|∆𝑘/2𝑢(𝑥)|2𝑑𝑥 ⩾ 𝐴𝑘(Ω)

∫︁
Ω

|𝑢(𝑥)|2

dist2𝑘(𝑥, 𝜕Ω)
𝑑𝑥

for all 𝑢 ∈ 𝐶𝑘
0 (Ω). Then

𝐴𝑘(Ω) ⩾ ((𝑘 − 1)!)2𝐴1(Ω),

and the following statement holds: for each 𝑘 ⩾ 2 the inequality 𝐴𝑘(Ω) > 0 holds if and only if the
domain Ω ⊂ R2 has a uniformly perfect boundary.

We note that in the proofs of Theorem 5.6 and 5.7 an essential role is played by Theorems 5.3, 5.4
and by the following generalized identity by O.A. Ladyzhenskaya [25, Ch. 2, Form. (6.26)] for 𝑚 = 2
and [21, Ch. 2, Form. (2.12)] for the general case:∫︁

Ω

⃒⃒⃒
∆𝑚/2𝑢(𝑥)

⃒⃒⃒2
𝑑𝑥 =

∫︁
Ω

𝑛∑︁
𝑘1=1

𝑛∑︁
𝑘2=1

· · ·
𝑛∑︁

𝑘𝑚=1

(︂
𝜕𝑚𝑢(𝑥)

𝜕𝑥𝑘1𝜕𝑥𝑘2 · · · 𝜕𝑥𝑘𝑚

)︂2

𝑑𝑥

for each function 𝑢 ∈ 𝐶𝑚
0 (Ω).

We provide several corollaries of Theorem 5.7. The boundary of the circle with a punctured center
is not perfect set. This is why the following corollary holds.

Corollary 5.2. If Ω1 ⊂ R2 is the circle |𝑥| < 3 with a punctured center, then 𝐴𝑘(Ω1) = 0.

Removing from the circle a sufficiently “dense” closed set of point, we can construct a domain with
a uniformly perfect boundary. In particular, the next corollary is true.

Corollary 5.3. If Ω2 ⊂ R2 is the circle |𝑥| < 3, from which a classical Cantor set lying on the
segment [0, 1] is removed, then 𝐴𝑘(Ω2) > 0.

We can provide explicit lower bounds for the quantity 𝐴𝑘(Ω2) as well as for the constant 𝐴𝑘(Ω) with
using modulus characteristic with the domain Ω. The simplest partial case is given in the following
statement.

Corollary 5.4. If Ω ⊂ R2 is a simply-connected domain, Ω ̸= R2, then 𝐴𝑘(Ω) ⩾ ((𝑘 − 1)!/4)2.

In conclusion we mention that in recent papers [26] and [27] there was formulated a series of unsolved
problems on multidimensional inequalities of Hardy and Rellich type.
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