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NECESSARY CONDITION OF

FUNDAMENTAL PRINCIPLE

FOR INVARIANT SUBSPACES

ON UNBOUNDED CONVEX DOMAIN

A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

Abstract. In this paper we study the spaces 𝐻(𝐷) of analytic functions in convex domains
of the complex plane as well as subspaces 𝑊 (Λ, 𝐷) of such spaces. A subspace 𝑊 (Λ, 𝐷) is

the closure in the space𝐻(𝐷) of the linear span of the system ℰ(Λ) = {𝑧𝑛 exp(𝜆𝑘𝑧)}∞,𝑛𝑘−1
𝑘=1,𝑛=0,

where Λ is the sequence of different complex numbers 𝜆𝑘 and their multiplicities 𝑛𝑘. This
subspace is invariant with respect to the differentiation operator. The main problem in the
theory of invariant subspaces is to represent all its functions by using the eigenfunctions
and associated functions of the differentiation operator, 𝑧𝑛𝑒𝜆𝑘𝑧. In this paper we study
the problem of the fundamental principle for an invariant subspace 𝑊 (Λ, 𝐷), that is, the
problem of representing all its elements by using a series constructed over the system
ℰ(Λ). We obtain simple geometric conditions, which are necessary for the existence of a
fundamental principle. These conditions are formulated in terms of the length of the arc
of the convex domain and the maximum density of the exponent sequence.
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1. Introduction

Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 be a sequence of different complex numbers 𝜆𝑘 and their multiplicities
𝑛𝑘. We suppose that |𝜆𝑘| does not decrease and |𝜆𝑘| → ∞, 𝑘 → ∞. Let 𝐷 ⊂ C be a convex
domain and 𝐻(𝐷) be the space of functions analytic in the domain 𝐷 with the topology of
uniform convergence on compact sets in 𝐷. By the symbol 𝑊 (Λ, 𝐷) we denote the closure in
the space 𝐻(𝐷) of the linear span of the system

ℰ(Λ) = {𝑧𝑛 exp(𝜆𝑘𝑧)}∞,𝑛𝑘−1
𝑘=1,𝑛=0.

If the system ℰ(Λ) is incomplete in the space 𝐻(𝐷), then 𝑊 (Λ, 𝐷) is a nontrivial (̸= 𝐻(𝐷),
{0}) closed subspace in 𝐻(𝐷). It follows from the definition that it is invariant with respect to
the differentiation operator. At the same time, the system ℰ(Λ) is the set of eigenfunctions and
adjoint functions of the differentiation operator in 𝑊 (Λ, 𝐷), while Λ is its multiple spectrum.
Let 𝑊 ⊂ 𝐻(𝐷) be a nontrivial closed subspace invariant with respect to the differentiation

operator and Λ = {𝜆𝑘, 𝑛𝑘} be its multiple spectrum. This is at most countable set with the
only accumulation point ∞ [1, Ch. II, Sec. 7]. In the case, when the spectrum 𝑊 is finite,
it coincides with the space of solutions of homogeneous linear differential equation of a finite
order with constant coefficients. As a more general example of an invariant subspace, the set
of solutions of the convolution equation 𝜇(𝑔(𝑧 + 𝑤)) ≡ 0 (or of systems of such equations)

A.S. Krivosheev, O.A. Krivosheeva, A necessary condition for the fundamental principle
to hold for invariant subspaces on unbounded convex domain.
© Krivosheev A.S., Krivosheeva O.A. 2023.
Submitted January 6, 2023.
The research of the second author is supported by the contest “Youth Mathematics of Russia”.

69

https://doi.org/10.13108/2023-15-3-69


70 A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

serve, where 𝜇 is a linear continuous functional on the space 𝐻(𝐷). Particular cases of the
convolution equations are linear differential, difference, differential-difference equations with
constant coefficients of finite and infinite orders, as well as some kinds of integral equations.

A main problem in the theory of invariant subspaces is to represent of all its functions by
means of eigenfunctions and adjoint functions of the differentiation operator, 𝑧𝑛𝑒𝜆𝑘𝑧. If 𝑊 is
the space of solutions of linear differential equation of a finite order with constant coefficients,
then it coincides with the linear span of the system ℰ(Λ). This result is known as Leonhard
Euler fundamental principle. Because of this, the problem on representing the functions 𝑔 ∈ 𝑊
by means of the series over the elements of the system ℰ(Λ), that is, by the series

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑎𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧 (1.1)

is known as a fundamental principle problem for an invariant subspace. A first step to rep-
resentation (1.1) is to resolve the problem of the spectral synthesis, that is, to clarify the
conditions, under which the system ℰ(Λ) is complete in the subspace 𝑊 ; in other words, when
𝑊 = 𝑊 (Λ, 𝐷). It is natural to consider the fundamental principle problem only for invariant
subspaces admitting the spectral synthesis, that is, for subspaces of form 𝑊 (Λ, 𝐷).
The study of the fundamental principle problem has a rich history. Partially it was reflected

in work [2]. A complete solution of the fundamental principle problem in the case of a bounded
convex domain 𝐷 was obtained in works [3]–[5]. It was proved that each function 𝑔 ∈ 𝑊 (Λ, 𝐷)
is represented by series (1.1) in the domain 𝐷 if and only if 𝑆Λ = 0 and

𝑛0(Λ(𝜙1, 𝜙2)) ⩽
Υ𝐷(−𝜙2,−𝜙1)

2𝜋
, 𝜙1, 𝜙2 /∈ Φ(Λ), 0 < 𝜙2 − 𝜙1 < 𝜋. (1.2)

Here 𝑆Λ is the condensation index of the sequence Λ introduced in work [2], 𝑛0(Λ) is the
maximal density of Λ, Φ(Λ) is some at most countable set, (𝜙1, 𝜙2) is a sequence consisting of
all pairs 𝜆𝑘, 𝑛𝑘 such that 𝜆𝑘 is located in the angle

Γ(𝜙1, 𝜙2) = {𝑧 = 𝑡𝑒𝑖𝜙 : 𝜙 ∈ (𝜙1, 𝜙2), 𝑡 > 0},

Υ𝐷(𝜙1, 𝜙2) is the length of a part the boundary of the domain 𝐷, which connects the points,
at which the support straight lines

𝐿(−𝜙2, 𝐷) = {𝑧 : Re(𝑧𝑒𝑖𝜙2) = 𝐻(−𝜙2, 𝐷)}, 𝐿(−𝜙1, 𝐷) = {𝑧 : Re(𝑧𝑒𝑖𝜙1) = 𝐻(−𝜙1, 𝐷)}

touch the boundary 𝜕𝐷, and 𝐻(𝜙,𝐷) is the support function of the domain 𝐷.
In work [6] there was obtained a criterion of representation (1.1) in the case 𝐷 = C. Such

representation holds if and only if the inequality 𝑆Λ < ∞ is satisfied. The case, when the
domain 𝐷 is a half-plane was studied in works [7] and [8]. The criterion of the representation
was formulated only in terms of the index 𝑆Λ. In work [9] there was obtained a complete
solution of the fundamental principle in the case when Θ(Λ) contains no internal points of
the set, at which the support function of the domain 𝐷. Here Θ(Λ) is the set of limits of all
converging sequences of form {𝜆𝑘𝑗/|𝜆𝑘𝑗 |}∞𝑗=1. This solution is also formulated in terms of the
index 𝑆Λ.

In the present work we consider arbitrary convex domains𝐷. We prove that inequality (1.2) is
necessary for representation (1.1) for all 𝜙1, 𝜙2 /∈ Φ(Λ) such that the arc {𝑒𝑖𝜙 : 𝜙 ∈ [−𝜙2,−𝜙1]}
is located inside the set, on which the function 𝐻(𝜙,𝐷) is bounded.

2. Construction of special entire function

By symbols 𝐵(𝑧, 𝑟) and 𝑆(𝑧, 𝑟) we denote respectively an open circle and a circumference
centered at a point 𝑧 ∈ C of a radius 𝑟 > 0. Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝑛(𝑟,Λ) denote the number
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of points 𝜆𝑘 counting their multiplicities 𝑛𝑘 in the circle 𝐵(0, 𝑟). We let

𝑚(Λ) = lim
𝑘→∞

𝑛𝑘
|𝜆𝑘|

, 𝑛(Λ) = lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟
,

𝑛0(Λ, 𝛿) = lim
𝑟→∞

𝑛(𝑟,Λ)− 𝑛((1− 𝛿)𝑟,Λ)

𝛿𝑟
, 𝑛0(Λ) = lim

𝛿→0
𝑛0(Λ, 𝛿).

The quantities 𝑛(Λ) and 𝑛0(Λ) are respectively called upper and maximal density of the se-
quence Λ. We say that Λ possesses a density 𝑛(Λ) if there exists the limit

𝑛(Λ) = lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟
.

By Lemma 2.1 in work [10] we have:

𝑛(Λ) ⩽ 𝑛0(Λ, 𝛿) ⩽ 𝑛0(Λ), 𝛿 ∈ (0, 1). (2.1)

If Λ possesses a density, then

𝑛(Λ) = 𝑛(Λ) = 𝑛0(Λ, 𝛿) = 𝑛0(Λ), 𝛿 ∈ (0, 1). (2.2)

Let 𝑓 be an entire function of exponential type in the complex plane, that is,

ln |𝑓(𝑧)| ⩽ 𝐴+𝐵|𝑧|, 𝑧 ∈ C.

The function

ℎ𝑓 (𝜙) = lim
𝑟→+∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟

, 𝜙 ∈ [0, 2𝜋],

is called an indicator of 𝑓 . We observe one property of the indicator [11, Ch. I, Sect. 18,
Thm. 28]: for each 𝜀 > 0 there exists 𝑅(𝜀) > 0 such that

ln |𝑓(𝑟𝑒𝑖𝜙)| ⩽ (ℎ𝑓 (𝜙) + 𝜀)𝑟, 𝜙 ∈ [0, 2𝜋], 𝑟 ⩾ 𝑅(𝜀). (2.3)

The function ℎ𝑓 coincides with the support function

𝐻(𝜙, 𝑇 ) = max
𝑧∈𝑇

Re(𝑧𝑒−𝑖𝜙)

of some convex compact set 𝑇 ⊂ C, which is called an indicator diagram of the function 𝑓 . An
adjoint diagram 𝐾 of the function 𝑓 is a compact set complex conjugate to the compact set 𝑇
[1, Ch. I, Sect. 5, Thm. 5.4]. Thus,

ℎ𝑓 (𝜙) = 𝐻(−𝜙,𝐾), 𝜙 ∈ [0, 2𝜋].

This implies that the function ℎ𝑓 is continuous, and hence, uniformly continuous, on the segment
[0, 2𝜋]. This is why for each 𝜀0 > 0 there exists 𝛿0 ∈ (0, 1) such that

|𝑡ℎ𝑓 (𝜓)− ℎ𝑓 (𝜙)| = |𝑡𝐻(−𝜓,𝐾)−𝐻(−𝜙,𝐾)| ⩽ 𝜀0,

𝜙 ∈ [0, 2𝜋], 𝑡𝑒𝑖𝜓 ∈ 𝐵(𝑒𝑖𝜙, 𝛿0).
(2.4)

One says [11, Ch. III] that 𝑓 has a regular growth if

ℎ𝑓 (𝜙) = lim
𝑟/∈𝐸,𝑟→+∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟𝜌(𝑟)

, 𝜙 ∈ [0, 2𝜋],

where 𝐸 ⊂ (0,+∞) is the set of zero relative measure (𝐸0-set) if

lim
𝑟→+∞

mes(𝐸 ∩ (0, 𝑟))

𝑟
= 0
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(the symbol mes stands for the Lebesgue measure of a set). A classical result by B.Ya. Levin
[11, Ch. II, Thm. 2, Ch. III, Thm. 4] states that 𝑓 has a regular growth if and only if its multiple
zero set Λ𝑓 = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 is called regularly distributed. At the same time, the identity

2𝜋𝑛(Λ𝑓 (𝜙1, 𝜙2)) = ℎ′𝑓 (𝜙2)− ℎ′𝑓 (𝜙1) +

𝜙2∫︁
𝜙1

ℎ𝑓 (𝜙)𝑑𝜙, 𝜙1, 𝜙2 /∈ Φ(Λ𝑓 ), (2.5)

holds, where Φ(Λ) is the set of all 𝜙 such that

inf
𝛼>0

lim
𝑟→∞

𝑛(𝑟,Λ(𝜙− 𝛼, 𝜙+ 𝛼))

𝑟
.

We note that the set Φ(Λ𝑓 ) coincides with the set of numbers 𝜙, for which the derivatives ℎ′𝑓 (𝜙)
does not exist. At the same time, one-sided derivatives of the function ℎ𝑓 exist.
One also says that 𝑓 has a regular growth on the ray 𝐿𝜙 = {𝑟𝑒𝑖𝜙, 𝑟 > 0} if

ℎ𝑓 (𝜙) = lim
𝑟/∈𝐸𝜙,𝑟→+∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟

,

where 𝐸𝜙 is a 𝐸0-set. If 𝑓 has a regular growth on each ray, then the set 𝐸𝜙, generally
depends on 𝜙 ∈ [0, 2𝜋]. However, it turns out that one can find an exceptional 𝐸0-set, which is
appropriate for all 𝜙 ∈ [0, 2𝜋] [11, Ch. III, Sect. 1, Thm. 1]. In other words, the function 𝑓 has
a regular growth if and only if when it has a regular growth on each ray. Another equivalent
definition of a function of a regular growth [12, Lm. 4.1] is also known. The function 𝑓 has a
regular growth on the ray 𝐿𝜙 if and only if there exists a sequence {𝑧𝑚}∞𝑚=1 such that

lim
𝑚→∞

|𝑧𝑚| = ∞, lim
𝑚→∞

𝑧𝑚
|𝑧𝑚|

= 𝑒𝑖𝜙, lim
𝑚→∞

|𝑧𝑚+1|
|𝑧𝑚|

= 1, lim
𝑚→∞

ln |𝑓(𝑧𝑚)|
|𝑧𝑚|

= ℎ𝑓 (𝜙). (2.6)

By the symbol ℎ𝑓 we denote a lower indicator of the function 𝑓 [13]:

ℎ𝑓 (𝜙) = lim
𝛿→0

lim
𝑡→∞

1

𝜋𝛿2

∫︁
𝐵(𝑡𝑒𝑖𝜙,𝑡)

ln |𝑓(𝑧)|
𝑡

𝑑𝑥𝑑𝑦, 𝑧 = 𝑥+ 𝑖𝑦.

Then in view of (2.3) we obtain:

ℎ𝑓 (𝜙) ⩽ ℎ𝑓 (𝜙), 𝜙 ∈ [0, 2𝜋]. (2.7)

If ℎ𝑓 (𝜙) ⩾ 𝑐, then by Lemma 2.7 in work [14] there exists a sequence {𝑧𝑚}∞𝑚=1 such that

lim
𝑚→∞

|𝑧𝑚| = ∞, lim
𝑚→∞

𝑧𝑚
|𝑧𝑚|

= 𝑒𝑖𝜙, lim
𝑚→∞

|𝑧𝑚+1|
|𝑧𝑚|

= 1, lim
𝑚→∞

ln |𝑓(𝑧𝑚)|
|𝑧𝑚|

⩾ 𝑐. (2.8)

Let 𝐷 be a convex domain and Λ = {𝜆𝑘, 𝑛𝑘}. By the symbol 𝐼(𝐷,Λ) we denote the set of
all entire functions 𝑓 of exponential type such that

ℎ𝑓 (𝜙) < 𝐻(𝜙,𝐷), 𝜙 ∈ [0, 2𝜋],

and for each 𝑘 ⩾ 1 the function 𝑓 vanishes at the point 𝜆𝑘 with the multiplicities at least 𝑛𝑘.
In other words, 𝑓/𝑓Λ is an entire function, where

𝑓Λ(𝑧) =
∞∏︁
𝑘=1

(︂
1− 𝑧

𝜆𝑘

)︂𝑛𝑘

𝑒
𝑛𝑘𝑧

𝜆𝑘 .

We note that the function 𝑓Λ is an entire function of first order and probably of an infinite
type, that is, generally speaking, it is not an entire function of exponential type. This is the
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case if and only if 𝑛(Λ) <∞ and

lim
𝑟→∞

⃒⃒⃒⃒
⃒⃒ ∑︁
|𝜆𝑘|<𝑟

𝑛𝑘
𝜆𝑘

⃒⃒⃒⃒
⃒⃒ <∞.

We let

𝐽(𝐷) = {𝑒𝑖𝜙 ∈ 𝑆(0, 1) : 𝐻(𝜙,𝐷) = +∞}.
We observe that the support function 𝐻(𝜙,𝐷) is always lower semi-bounded and is continuous
inside the interval, in which it is bounded. In particular, if 𝐷 is a bounded domain, then
𝐻(𝜙,𝐷) is a continuous function.

If 𝐷 is bounded, then 𝐽(𝐷) = ∅. In the case of an unbounded domain 𝐷 the following
situations are possible:

1) 𝐽(𝐷) = 𝑆(0, 1), that is, 𝐷 = C,
2) 𝐷 is the half-plane

{︀
𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙 < 𝑎

}︀
and 𝐽(𝐷) = 𝑆(0, 1) ∖ {𝑒𝑖𝜙},

3) 𝐷 is the strip
{︀
𝑧 ∈ C : 𝑏 < Re(𝑧𝑒−𝑖𝜙) < 𝑎

}︀
and 𝐽(𝐷) = 𝑆(0, 1) ∖ {𝑒𝑖𝜙, 𝑒𝑖𝜙+𝜋},

4) in other cases 𝐽(𝐷) is an arc of the unit circle, which is supported by an angle of opening
at least 𝜋.
By 𝒦(𝐷) = {𝐾𝑝}∞𝑝=1 we denote a sequence of compact sets in the domain 𝐷, which strictly

exhaust it, that is, (the symbol int stands of the interior of a set)

𝐾𝑝 ⊂ int𝐾𝑝+1, 𝑝 ⩾ 1, 𝐷 =
∞⋃︁
𝑝=1

𝐾𝑝.

Let 𝑀 ⊂ C and 𝜌(𝑧,𝑀) denotes the distance from a point 𝑧 to the set 𝑀 . We let

𝑀 𝛿 =
⋃︁
𝑧∈𝑀

𝐵(𝑧, 𝛿|𝑧|).

Now we formulate a result, which is a part of the result proven in Theorem 5.1 in work [2].
It follows directly from this theorem.

Lemma 2.1. Let 𝐷 be a convex domain and Λ = {𝜆𝑘, 𝑛𝑘}. Assume that 𝑚(Λ) = 0, the
system ℰ(Λ) is incomplete in 𝐻(𝐷) and each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is represented by series
(1.1) for all 𝑧 ∈ 𝐷. Then for each 𝑝 ⩾ 1 and each compact set ℱ ⊂ 𝑆(0, 1) ∖ 𝐽(𝐷) there
exists 𝑓 ∈ 𝐼(𝐷,Λ) such that for each 𝛿 > 0 there exist numbers 𝛽, 𝑇 > 0 obeying the condition:
𝜆𝑘 ∈ (𝑀𝑝)

𝛿 if 𝜌(𝜆𝑘/|𝜆𝑘|,ℱ) < 𝛽 and |𝜆𝑘| > 𝑇 , where

𝑀𝑝 = {𝑧 = 𝑟𝑒𝑖𝜙 : ln |𝑓(𝑧)| ⩾ 𝑟𝐻(−𝜙,𝐾𝑝)}, 𝐾𝑝 ⊂ 𝐾(𝐷),

and 𝜆 is the conjugate of 𝜆.

We employ this result to construct an entire function with needed properties.

Lemma 2.2. Let 𝐷 be a convex domain and Λ = {𝜆𝑘, 𝑛𝑘}. Assume that 𝑚(Λ) = 0, the
system ℰ(Λ) is incomplete in 𝐻(𝐷), and each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is represented by series
(1.1) for all 𝑧 ∈ 𝐷. Then for all 𝜙1 and 𝜙2 such that 0 < 𝜙2 − 𝜙1 < 𝜋 and

{𝑒𝑖𝜙 : 𝜙 ∈ [−𝜙2,−𝜙1]} ⊂ 𝑆(0, 1) ∖ 𝐽(𝐷), (2.9)

there exists a function 𝑢 ∈ 𝐼(C,Λ(𝜙1, 𝜙2)) such that

ℎ𝑢(𝜙) = ℎ𝑢(𝜙), 𝜙 ∈ [0, 2𝜋], ℎ𝑢(𝜙) = 𝐻(−𝜙,𝐷), 𝜙 ∈ [𝜙1, 𝜙2]. (2.10)

Proof. By (2.10) there exists 𝛼 > 0 such that

{𝑒−𝑖𝜙 : 𝜙 ∈ [𝜙1 − 2𝛼, 𝜙2 + 2𝛼]} ⊂ 𝑆(0, 1) ∖ 𝐽(𝐷). (2.11)
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We let

𝐷1 = {𝑧 : Re(𝑧𝑒−𝑖𝜙) < 𝐻(𝜙,𝐷), 𝜙 ∈ [−𝜙2 − 2𝛼,−𝜙1 + 2𝛼]}.
Lessening 𝛼 > 0 if it is needed, we can suppose that 𝜙2−𝜙1+4𝛼 < 𝜋. Then 𝐷1 is an unbounded
convex domain lying in an angle with the sides on the support straight lines 𝐿(−𝜙2 − 2𝛼,𝐷)
and 𝐿(−𝜙1 + 2𝛼,𝐷). At the same time,

𝐻(𝜙,𝐷1) = 𝐻(𝜙,𝐷), 𝜙 ∈ [−𝜙2 − 2𝛼,−𝜙1 + 2𝛼].

Let 𝑧1 ∈ 𝜕𝐷1 ∩ 𝐿(−𝜙1 + 2𝛼,𝐷) and 𝑧2 ∈ 𝜕𝐷1 ∩ 𝐿(−𝜙2 − 2𝛼,𝐷). We have:

Re(𝑧1𝑒
−𝑖𝜙) < 𝐻(𝜙,𝐷1), Re(𝑧2𝑒

−𝑖𝜙) < 𝐻(𝜙,𝐷1), 𝜙 ∈ (−𝜙2 − 2𝛼,−𝜙1 + 2𝛼).

Re(𝑧1𝑒
𝑖(𝜙1−2𝛼)) = 𝐻(2𝛼− 𝜙1, 𝐷1), Re(𝑧2𝑒

𝑖(𝜙2+2𝛼)) = 𝐻(−𝜙2 − 2𝛼,𝐷1).

Let 𝐷2 = 𝐷1 ∩ Π, where Π is a half-plane, the boundary of which contains the segment
𝑇 = [𝑧1, 𝑧2] such that 𝐷2 is a bounded domain. By the above relations we have:

𝐻(𝜙,𝐷2) = 𝐻(𝜑,𝐷), 𝜙 ∈ [−𝜙2 − 2𝛼,−𝜙1 + 2𝛼], (2.12)

𝐻(𝜙,𝐷2) > 𝐻(𝜙, 𝑇 ), 𝜙 ∈ (−𝜙2 − 2𝛼,−𝜙1 + 2𝛼), (2.13)

𝐻(𝜙,𝐷2) = 𝐻(𝜙, 𝑇 ), 𝑒𝑖𝜙 ∈ 𝑆(0, 1) ∖ {𝑒−𝑖𝜗 : 𝜗 ∈ (−𝜙2 − 2𝛼,−𝜙1 + 2𝛼)}. (2.14)

We let

𝜓0(𝑧) = lim
𝑤→𝑧

sup{𝜓(𝑤) : 𝜓 ∈ 𝑆𝐻(C), 𝜓(𝑤) + ln |𝑓Λ(𝑤)| ⩽ 𝑟𝐻(−𝜙,𝐷2), 𝑤 ∈ C},

where 𝑤 = 𝑟𝑒𝑖𝜙 and 𝑆𝐻(C) is the space of subharmonic in the plane functions. The function
𝜓0 also belongs to this space and satisfies the estimate of form

𝜓0(𝑧) ⩽ 𝐶0 + 𝑎0|𝑧|2, 𝑧 ∈ C.
Then by Theorem 5 from work [15] there exists an entire function 𝑢0 such that

| ln |𝑢0(𝑧)| − 𝜓0(𝑧)| ⩽ 𝐵0 ln |𝑧|, 𝑧 ∈ C ∖ 𝐸, (2.15)

where 𝐵0 > 0, and the exceptional set 𝐸 can be covered by the circles 𝐵(𝜉𝑗, 𝑟𝑗), 𝑗 ⩾ 1, such
that

∑︀
𝑟𝑗 = 𝐴 <∞.

Let 𝑢 = 𝑢0𝑓Λ. Then 𝑢 is an entire function. We are going to show that 𝑢 vanishes at the
points 𝜆𝑘 ∈ Λ(𝜙1, 𝜙2) with the multiplicities at least 𝑛𝑘. By (2.15),

| ln |𝑢(𝑧)| − 𝜓0(𝑧)− ln |𝑓Λ(𝑧)|| ⩽ 𝐵0 ln |𝑧|, 𝑧 ∈ C ∖ 𝐸. (2.16)

Since

ln |𝑓Λ(𝑧)| = lim
𝑤→𝑧

ln |𝑓Λ(𝑤)|,

it follows from the definition of 𝜓0 that

𝜓(𝑧) + ln |𝑓Λ(𝑧)| ⩽ 𝑟𝐻(−𝜙,𝐷2), 𝑧 = 𝑟𝑒𝑖𝜙 ∈ C.
Then in view of (2.16) we obtain

ln |𝑢(𝑧)| ⩽ 𝑟𝐻(−𝜙,𝐷2) +𝐵0 ln 𝑟, 𝑧 = 𝑟𝑒𝑖𝜙 ∈ C ∖ 𝐸. (2.17)

Let |𝑤| > 3𝐴. Since the sum of the diameters of the circles 𝐵(𝜉𝑗, 𝑟𝑗), 𝑗 ⩾ 1, is equal to 2𝐴,
then in the circle 𝐵(𝑤, 3𝐴) there exists a circumference, on which (2.17) holds true. Then by
the maximum modulus principle we obtain

ln |𝑢(𝑤)| ⩽ sup
𝑧∈𝐵(𝑤,3𝐴)

(𝑟𝐻(−𝜙,𝐷2) +𝐵0 ln 𝑟).

This and (2.4) imply that for each 𝜀 > 0 there exists 𝑡(𝜀) ⩾ 3𝐴 such that

ln |𝑢(𝑧)| ⩽ 𝑟(𝐻(−𝜙,𝐷2) + 𝜀), |𝑤| ⩾ 𝑡(𝜀).
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This is why the inequality holds: ℎ𝑢(𝜙) ⩽ 𝐻(−𝜙,𝐷2) + 𝜀, 𝜙 ∈ [0, 2𝜋]. Since 𝜀 > 0 is arbitrary,
then

ℎ𝑢(𝜙) ⩽ 𝐻(−𝜙,𝐷2), 𝜙 ∈ [0, 2𝜋]. (2.18)

Thus, 𝑢 ∈ 𝐼(C,Λ(𝜙1, 𝜙2)).
We are going to prove identities (2.10). Suppose that for each number 𝜙0 ∈ [0, 2𝜋] and

𝜀 ∈ (0, 𝜀0) the inequality holds:

ℎ𝑢(𝜙0) < 𝐻(−𝜙0, 𝐷2)− 4𝜀.

Then by Proposition 9.3 from work [16] there exists 𝛿0 ∈ (0, 1/3) and a sequence {𝑡𝑚} such
that 𝑡𝑚 → +∞, 𝑚→ ∞, and

ln |𝑢(𝑡𝑚𝑒𝑖𝜙)|
𝑡𝑚

⩽ 𝐻(−𝜙0, 𝐷2)− 3𝜀, 𝑒𝑖𝜙 ∈ 𝐵(𝑒𝑖𝜙0 , 2𝛿0), 𝑚 ⩾ 1.

Lessening if needed 𝛿0 ∈ (0, 1/3), by (2.4) we obtain:

ln |𝑢(𝑟𝑒𝑖𝜙)| ⩽ 𝑟(𝐻(−𝜙,𝐷2)− 2𝜀), 𝑟𝑒𝑖𝜙 ∈ 𝐵(𝑡𝑚𝑒
𝑖𝜙0 , 2𝛿0𝑡𝑚), 𝑚 ⩾ 1.

Then in accordance with (2.16) we have:

𝜓0(𝑧) + ln |𝑓Λ(𝑧)| ⩽ 𝑟(𝐻(−𝜙,𝐷2)− 2𝜀), 𝑟𝑒𝑖𝜙 ∈ 𝐵(𝑡𝑚𝑒
𝑖𝜙0 , 2𝛿0𝑡𝑚) ∖ 𝐸, 𝑚 ⩾ 1. (2.19)

By (2.11) there exists a compact set 𝐾𝑙 ∈ 𝒦(𝐷) such that

𝐻(−𝜙,𝐾𝑙) ⩾ 𝐻(−𝜙,𝐷)− 𝜀, 𝜙 ∈ [−𝜙2 − 2𝛼,−𝜙1 + 2𝛼]. (2.20)

Let 𝜀1 ∈ (0, 𝜀/20) satisfies the condition

𝐻(−𝜙,𝐾𝑙) ⩽ 𝐻(−𝜙,𝐷)− 20𝜀1, 𝜙 ∈ [0, 2𝜋]. (2.21)

We choose a compact set 𝐾𝑝 ∈ 𝒦(𝐷) such that

𝐻(−𝜙,𝐾𝑝) ⩾ 𝐻(−𝜙,𝐷)− 𝜀1, 𝜙 ∈ [−𝜙2 − 2𝛼,−𝜙1 + 2𝛼]. (2.22)

We let ℱ = {𝑒𝑖𝜙 : 𝜙 ∈ [−𝜙2,−𝜙1]}, and let 𝑓 ∈ 𝐼(𝐷,Λ) be a function from Lemma 2.1.
According to (2.11), there exists 𝛿 ∈ (0, 𝛿0/36) such that

|𝑡𝐻(−𝜓,𝐷)−𝐻(−𝜙,𝐷)|+ 19𝜀1|1− 𝑡| ⩽ 𝜀1,

𝜙 ∈ [−𝜙2 − 2𝛼,−𝜙1 + 2𝛼], 𝑡𝑒𝑖𝜓 ∈ 𝐵(𝑒𝑖𝜙, 36𝛿).
(2.23)

By (2.3) we can suppose that

ln |𝑓(𝑟𝑒𝑖𝜙)| ⩽ (ℎ𝑓 (𝜙) + 𝜀1)𝑟, 𝜙 ∈ [0, 2𝜋], 𝑟 ⩾ 𝑅(𝜀1) ⩾ 1.

Since 𝑓 ∈ 𝐼(𝐷,Λ), then ℎ𝑓 (𝜙) < 𝐻(𝜙,𝐷), 𝜙 ∈ [0, 2𝜋]. This is why

ln |𝑓(𝑟𝑒𝑖𝜙)| ⩽ (𝐻(𝜙,𝐷) + 𝜀1)𝑟, 𝜙 ∈ [0, 2𝜋], 𝑟 ⩾ 𝑅(𝜀1) ⩾ 1. (2.24)

We can also suppose that 𝑒𝑖𝜙 ∈ {𝑒−𝑖𝜗 : 𝜗 ∈ [𝜙1 − 𝛼, 𝜙2 + 𝛼]} for each point 𝑟𝑒𝑖𝜙 ∈ 𝐵(𝑧, 36𝛿|𝑧|)
and each circle 𝐵(𝑧, 𝛿|𝑧|), which contains at least one 𝜆𝑘 ∈ Γ(𝜙1, 𝜙2).

Let 𝜆𝑘 ∈ Γ(𝜙1, 𝜙2) and |𝜆𝑘| > max{𝑇, 2𝑅(𝜀1)}. According to (2.22) and Lemma 2.1 there
exists 𝑤𝑘 = 𝑡𝑒𝑖𝜗 such that

ln |𝑓(𝑤𝑘)| ⩾ 𝑡𝐻(−𝜗,𝐾𝑝) ⩾ 𝑡(𝐻(−𝜗,𝐷)− 𝜀1) (2.25)

and 𝜆𝑘 ∈ 𝐵(𝑤𝑘, 𝛿𝑡). We can suppose that 𝛿𝑡 ⩾ 𝐴. By (2.23) and (2.24) we have:

ln |𝑓(𝑧)| ⩽ 𝑡(𝐻(−𝜗,𝐷) + 2𝜀1), 𝑧 ∈ 𝐵(𝑤𝑘, 36𝛿𝑡).

Then by (2.25) we obtain

ln |𝑓𝑘(𝑧)| ⩽ 3𝜀1𝑡, 𝑧 ∈ 𝐵(𝑤𝑘, 36𝛿𝑡), 𝑓(𝑧) =
𝑓(𝑧)

𝑓(𝑤𝑘)
.



76 A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

Then by the theorem on the lower bound for the absolute value of an analytic function [1, Ch.
I, Thm. 4.2]

ln |𝑓𝑘(𝑧)| ⩾ −18𝜀1𝑡, 𝑧 ∈ 𝐵(𝑤𝑘, 6𝛿𝑡) ∖ 𝐸𝑤,
where 𝐸𝑤 is the union of the circles, the sum of radii of which is equal to 𝛿𝑡. We choose a
circumference 𝑆(𝑤𝑘, 𝛿𝑡(𝑤𝑘)), which does not intersect 𝐸𝑤 ∪ 𝐸 such that 𝑡(𝑤𝑘) ∈ (𝑡, 6𝑡). By
(2.25)

ln |𝑓(𝑧)| ⩾ 𝑡(𝐻(−𝜗,𝐷)− 19𝜀1), 𝑧 ∈ 𝑆(𝑤𝑘, 𝛿𝑡(𝑤𝑘)).

Taking into consideration also (2.23) and (2.21), we obtain:

ln |𝑟𝑓(𝑟𝑒𝑖𝜙)| ⩾ 𝑟(𝐻(−𝜙,𝐷)− 20𝜀1) ⩾ 𝑟𝐻(−𝜙,𝐾𝑙), 𝑟𝑒𝑖𝜙 ∈ 𝑆(𝑤𝑘, 𝛿𝑡(𝑤𝑘)). (2.26)

Let 𝜆𝑘 ∈ Γ(𝜙1, 𝜙2) and |𝜆𝑘| ⩽ max{𝑇, 2𝑅(𝜀1)}. We choose a circle 𝐵(𝜆𝑘, 𝜏𝑘) ⊂ Γ(𝜙1, 𝜙2),
which contains no other points 𝜆𝑗. We let

𝑏 = min
𝜆𝑘

min
𝑟𝑒𝑖𝜙∈𝑆(𝜆𝑘,𝜏𝑘)

(︀
ln |𝑟𝑓(𝑟𝑒𝑖𝜙)| − 𝑟𝐻(−𝜙,𝐾𝑙)

)︀
,

where the first minimum is taken over all mentioned 𝜆𝑘. We consider the set

{𝑧 = 𝑟𝑒𝑖𝜙 : 𝑟 ln |𝑓(𝑧)| < 𝑟𝐻(−𝜙,𝐾𝑙)− |𝑏|}.
Let Ω be the union of all its connected components, each of which contains at least one point
𝜆𝑘 ∈ Γ(𝜙1, 𝜙2). Then the set Ω contains all points 𝜆𝑘 ∈ Γ(𝜙1, 𝜙2), and it is contained in the
union of the circles 𝐵(𝑤𝑘, 𝛿𝑡(𝑤𝑘)) and 𝐵(𝜆𝑗, 𝜏𝑗). It follows from (2.26) and the definition of the
number 𝑏 that Ω ⊂ Γ(𝜙1 − 𝛼, 𝜙2 + 𝛼).

We let

𝜓1(𝑧) = ln |𝑧𝑓(𝑧)|, 𝜓2(𝑧) = 𝜓1(𝑟𝑒
𝑖𝜙) = 𝑟𝐻(−𝜙,𝐾𝑙)− |𝑏|, 𝜓3(𝑧) = 𝑟𝐻(−𝜙, 𝑇 ),

𝜓4(𝑧) =

{︃
𝜓1(𝑧)− ln |𝑓Λ(𝑧)|, 𝑧 ∈ Ω,

max
𝑗=1,2

(𝜓𝑗(𝑧)− ln |𝑓Λ(𝑧)|), 𝑧 ∈ C ∖ Ω.

The functions 𝜓2(𝑧) and 𝜓3(𝑧) are convex on the entire plane. This is why 𝜓2, 𝜓3 ∈ 𝑆𝐻(C).
Since the function 𝑧𝑓(𝑧)/(𝑓Λ(𝑧)) is entire, then the function 𝑓Λ has no zeroes on the set C∖Ω (in
particular, ln |𝑓Λ(𝑧)| is a harmonic function), then it follows directly from the definition of the
function 𝜓4 that it is subharmonic in C ∖ 𝜕Ω. Let 𝑧 ∈ 𝜕Ω. Then by the upper semi-continuity
of the functions 𝜓𝑗(𝑧)− ln |𝑓Λ(𝑧)|, 𝑗 = 1, 2, and the definition of the set Ω the relations

𝜓4(𝑧) = 𝜓1(𝑧)− ln |𝑓Λ(𝑧)| ⩾ lim
𝑤→𝑧

(𝜓1(𝑤)− ln |𝑓Λ(𝑤)|) = lim
𝑤→𝑧

𝜓4(𝑤)

hold, that is, 𝜓(𝑤) is upper semi-continuous at the point 𝑧. Moreover, for sufficiently small
𝜏 > 0,

𝜓4(𝑧) = ln

⃒⃒⃒⃒
𝑧𝑓(𝑧)

𝑓Λ(𝑧)

⃒⃒⃒⃒
⩽

1

𝜋𝛿2

∫︁
𝐵(𝑧,𝜏)

(ln |𝑤𝑓(𝑤)| − ln |𝑓Λ(𝑤)|) 𝑑𝑥𝑑𝑦 ⩽
1

𝜋𝛿2

∫︁
𝐵(𝑧,𝜏)

𝜓4(𝑤) 𝑑𝑥𝑑𝑦.

Thus, 𝜓4 ∈ 𝑆𝐻(C). Since 𝑓 ∈ 𝐼(𝐷,Λ), in view of (2.3) there exists a compact set 𝐾𝑠 ⊂ 𝒦(𝐷),
𝑠 ⩾ 𝑙, and a number 𝑏1 > 0 such that

ln |𝑓(𝑟𝑒𝑖𝜙)| − 𝑏1 ⩽ 𝑟𝐻(−𝜙,𝐾𝑠), 𝑟𝑒𝑖𝜙 ∈ C.
Then in view of the definition of 𝜓4 we obtain:

𝜓4(𝑧)− 𝑏1 + ln |𝑓Λ(𝑧)| ⩽ 𝑟𝐻(−𝜙,𝐾𝑠), 𝑟𝑒𝑖𝜙 ∈ C. (2.27)

We let

𝜓(𝑧) =

{︃
max{𝜓4(𝑧)− 𝑏1, 𝜓3(𝑧)− ln |𝑓Λ(𝑧)|}, 𝑧 ∈ Γ(𝜙1 − 2𝛼, 𝜙2 + 2𝛼),

𝜓3(𝑧)− ln |𝑓Λ(𝑧)|, 𝑧 ∈ C ∖ Γ(𝜙1 − 2𝛼, 𝜙2 + 2𝛼).
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Since 𝐾𝑠 ⊂ 𝒦(𝐷), then by (2.12), (2.14) and (2.27)

𝜓3(𝑧)− ln |𝑓Λ(𝑧)| ⩾ 𝜓4(𝑧)− 𝑏1, 𝑧 ∈ 𝜕Γ(𝜙1 − 2𝛼, 𝜙2 + 2𝛼).

Then, as above, we have: 𝜓 ∈ 𝑆𝐻(C). Moreover, relations (2.27), (2.12)–(2.14) and the
definition of the function 𝜓 imply the inequality

𝜓(𝑧) + ln |𝑓Λ(𝑧)| ⩽ 𝑟𝐻(−𝜙,𝐷2), 𝑧 = 𝑟𝑒𝑖𝜙 ∈ C.
Then in view of (2.19) and the definition of the function 𝜓0 we obtain:

𝜓(𝑧)+ln |𝑓Λ(𝑧)| ⩽ 𝑟(𝐻(−𝜙,𝐷2)−2𝜀), 𝑧 = 𝑟𝑒𝑖𝜙 ∈ 𝐵(𝑡𝑚𝑒
𝑖𝜙0 , 2𝛿0𝑡𝑚)∖𝐸, 𝑚 ⩾ 1. (2.28)

Let the circle 𝐵(𝑡𝑚(𝑗)𝑒
𝑖𝜙0 , 3𝛿0𝑡𝑚(𝑗)/2), 𝑗 ⩾ 1, contains none of the points 𝑤𝑘. This means that

𝐵(𝑡𝑚(𝑗)𝑒
𝑖𝜙0 , 𝛿0𝑡𝑚(𝑗)) ∩ Ω = ∅, 𝑗 ⩾ 𝑗0. (2.29)

We can suppose that 𝛿0𝑡𝑚(𝑗) > 2𝐴. Then there exists a point 𝜈𝑗 ∈ 𝐵(𝑡𝑚(𝑗)𝑒
𝑖𝜙0 , 𝛿0𝑡𝑚(𝑗)) such

that

𝜓(𝜈𝑗) + ln |𝑓Λ(𝜈𝑗)| ⩽ 𝜌𝑗(𝐻(−𝜃𝑗, 𝐷2)− 2𝜀), 𝜈𝑗 = 𝜌𝑗𝑒
𝑖𝜃𝑗 , 𝑗 ⩾ 𝑗0. (2.30)

By (2.29) and the definition of the function 𝜓 we get the inequalities

𝜓(𝜈𝑗) + ln |𝑓Λ(𝜈𝑗)| ⩾ 𝜌𝑗𝐻(−𝜃𝑗, 𝑇 ), 𝜈𝑗 ∈ C ∖ Γ(𝜙1 − 2𝛼, 𝜙2 + 2𝛼),

𝜓(𝜈𝑗) + ln |𝑓Λ(𝜈𝑗)| ⩾ 𝜌𝑗𝐻(−𝜃𝑗, 𝐾𝑙)− |𝑏| − 𝑏1, 𝜈𝑗 ∈ C ∖ Γ(𝜙1 − 2𝛼, 𝜙2 + 2𝛼).

By (2.14), (2.12) and (2.20) two latter inequalities contradict (2.30).
Suppose now that for all 𝑚 ⩾ 𝑚0 the circle 𝐵(𝑡𝑚𝑒

𝑖𝜙0 , 3𝛿0𝑡𝑚/2) contains a point 𝑤𝑘(𝑚). Then

𝑆(𝑤𝑘(𝑚), 𝛿𝑡(𝑤𝑘(𝑚))) ⊂ 𝐵(𝑡𝑚𝑒
𝑖𝜙0 , 2𝛿0𝑡𝑚), 𝑚 ⩾ 𝑚0.

Since the circumference 𝑆(𝑤𝑘(𝑚), 𝛿𝑡(𝑤𝑘(𝑚))) does not intersect the set 𝐸, at each its point both
inequalities (2.26) and (2.28) are satisfied. In view of (2.12) and (2.20) we get a contradiction.

Thus,

ℎ𝑢(𝜙) ⩾ 𝐻(−𝜙,𝐷2), 𝜙 ∈ [0, 2𝜋].

Together with (2.7), (2.12) and (2.18) this gives (2.10). The proof is complete.

3. Fundamental principle

Let 𝐷 be a convex domain and 𝑧1, 𝑧2 the points on its boundary 𝜕𝐷. By 𝑠(𝑧1, 𝑧2, 𝐷) we
denote the length of the arc 𝛾 ⊂ 𝜕𝐷 connecting 𝑧1 and 𝑧2 and the motion from 𝑧1 to 𝑧2 is made
in the positive direction (counterclockwise). For each 𝜙 ∈ R such that 𝑒𝑖𝜙 ∈ 𝑆(0, 1) ∖ 𝐽(𝐷) the
intersection

𝐿(𝜙) = {𝑧 : Re(𝑧𝑒−𝑖𝜙) = 𝐻𝐾(𝑒
𝑖𝜙)} ∩ 𝜕𝐷

(of the support straight line and the boundary of the domain) is either a point 𝑧(𝜙) or a
segment. The set Φ(𝐷) of directions 𝜙, for which 𝐿(𝜙) is a segment, is at most countable set.
We let

𝑆𝐷(𝜙1, 𝜙2) = sup
𝑧1∈𝐿(𝜙1),𝑧2∈𝐿(𝜙2)

𝑠(𝑧1, 𝑧2, 𝐷).

The function 𝑆𝐷(𝜙1, 𝜙2) is non-decreasing in 𝜙2 and is non-increasing in 𝜙1, while the set of
its discontinuity points in both variables coincide with Φ(𝐷). If 𝜙1, 𝜙2 /∈ Φ(𝐷), then

𝑆𝐷(𝜙1, 𝜙2) = 𝑠(𝑧(𝜙1), 𝑧(𝜙2), 𝐷).

Using formula (1.114) from book [11], we obtain:

𝑆𝐷(𝜙1, 𝜙2) = 𝐻 ′(𝜙2, 𝐷)−𝐻 ′(𝜙1, 𝐷) +

𝜙2∫︁
𝜙1

𝐻(𝜙,𝐷)𝑑𝜙, 𝜙1, 𝜙2 /∈ Φ(𝐷). (3.1)
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We note that the set Φ(𝐷) coincides with the set of numbers 𝜙, for which the derivative𝐻 ′(𝜙,𝐷)
does not exist. At the same time, one-sided derivatives of the function 𝐻(𝜙,𝐷) exist.
Let Λ = {𝜆𝑘, 𝑛𝑘}. By the symbol Θ(Λ) we denote the set of limits of all converging sequences

of form
{︀
𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)|

}︀∞
𝑗=1

. It is obvious that Θ(Λ) is a closed subset of the circumference 𝑆(0, 1).

We let

𝑚(Λ, 𝜇) = sup lim
𝑘→∞

𝑛𝑘(𝑗)
|𝜆𝑘(𝑗)|

,

where the supremum is taken over all subsequences {𝜆𝑘(𝑗)} such that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝜇. If
𝜇 /∈ Θ(Λ), we let 𝑚(Λ, 𝜇) = 0. It is easy to see that 𝑚(Λ) = 0 if and only if 𝑚(Λ, 𝜇) = 0,
𝜇 ∈ Θ(Λ).

Theorem 3.1. Let 𝐷 be a convex domain and Λ = {𝜆𝑘, 𝑛𝑘}. Suppose that the system ℰ(Λ)
is incomplete in 𝐻(𝐷) and each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is represented by series (1.1), which
converges uniformly on compact sets in the domain 𝐷. Then for all 𝜙1, 𝜙2 /∈ Φ(Λ𝑓 ) such that
0 < 𝜙2 − 𝜙1 < 𝜋 and

{𝑒𝑖𝜙 : 𝜙 ∈ [−𝜙2,−𝜙1]} ⊂ 𝑆(0, 1) ∖ 𝐽(𝐷),

the inequality

𝑛0(Λ(𝜙1, 𝜙2)) ⩽
1

2𝜋
𝑆𝐷(−𝜙2,−𝜙1) (3.2)

holds.

Proof. If the assumptions of this theorem are satisfied, by Theorem 4.2 from work [7],𝑚(Λ, 𝜇) =
0, 𝜇 ∈ {𝑒𝑖𝜙 : 𝜙 ∈ [−𝜙2,−𝜙1]}. This implies that 𝑚(Λ(𝜙1, 𝜙2)) = 0. By assumption, each
function 𝑔 ∈ 𝑊 (Λ, 𝐷) is represented by series (1.1) for all 𝑧 ∈ 𝐷. In particular, this concerns
all functions 𝑔 ∈ 𝑊 (Λ(𝜙1, 𝜙2), 𝐷). The system ℰ(Λ(𝜙1, 𝜙2)) is incomplete in 𝐻(𝐷), that is, the
system ℰ(Λ). Thus, sequence Λ = Λ(𝜙1, 𝜙2) satisfies all assumptions of Lemma 2.2. According
to this lemma, there exists a function 𝑢 ∈ 𝐼(C,Λ(𝜙1, 𝜙2)) such that (2.10) holds.
By the first identity in (2.10), in view of (2.6)–(2.8) we find that 𝑢 has a regular growth.

Then relation (2.5) holds. By this identity, (3.1) and the second identity in (2.10) we have:

𝑛(Λ𝑢(𝜙1, 𝜙2)) =
1

2𝜋
𝑆𝐷(−𝜙2,−𝜙1).

Together with (2.2) this gives:

𝑛0(Λ𝑢(𝜙1, 𝜙2)) =
1

2𝜋
𝑆𝐷(−𝜙2,−𝜙1).

Since 𝑢 ∈ 𝐼(C,Λ(𝜙1, 𝜙2)), the latter identity leads us to (3.2). The proof is complete.
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