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PERTURBATION OF A SIMPLE WAVE:

FROM SIMULATION TO ASYMPTOTICS

L.A. KALYAKIN

Abstract. We consider a problem on perturbation of a simple (travelling) wave at the
example of a nonlinear partial differential equation that models domain wall dynamics in
the weak ferromagnets. The main attention is focused on the case when, for fixed constants
coefficients, there exist many exact solutions in the form of a simple wave. These solutions
are determined by an ordinary differential equation with boundary conditions at infinity.
The equation depends on the wave velocity as a parameter. Suitable solutions correspond to
the phase trajectory connecting the equilibria. The main problem is that the wave velocity
is not uniquely determined by the coefficients of the initial equations. For an equation with
slowly varying coefficients, the asymptotics of the solution is constructed with respect to
a small parameter. In the considered case, the well-known asymptotic construction turns
out to be ambiguous due to the uncertainty of the perturbed wave velocity. For unique
identification of the velocity, we propose an additional restriction on the structure of the
asymptotic solution. This restriction is a stability of the wave front is formulated on the
base of numerical simulation of the original equation.
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1. Introduction

1.1. Initial data. In this work, a simple wave is treated as a function with a specific de-
pendence on variables: 𝜑(𝑥, 𝑡) = Φ(𝑥 − 𝑣𝑡). As 𝑣 = const, the function Φ(𝑠) of the variable
𝑠 = 𝑥 − 𝑣𝑡 is interpreted as a wave traveling along the 𝑥 axis with a velocity 𝑣. Finding so-
lutions in this form is one of the methods of reducing to ordinary differential equations. The
reductions based on others invariant solutions are not discussed here. For applications, simple
waves are of interest, which on the phase plane (Φ, Φ̇) correspond to trajectories connecting
equilibria. They are related with the description of the dynamic transition from one equilibrium
to another [1], [2]. The exact solutions obtained in this way can be used as approximations for
analysing more complex problems by employing the perturbation theory and asymptotics in a
small parameter as this was demonstrated in a number of publications [3]–[6]. Unfortunately,
the implementation of the ideas used in [4], [5] for parabolic equations faces significant diffi-
culties in the case of hyperbolic equations [6]. Problems arising in constructing asymptotics
and ways for overcoming them are discussed at the example of the magnetodynamics equation
derived in [7]:

𝜕2𝜑

𝜕𝑡2
− 𝑐2

𝜕2𝜑

𝜕𝑥2
+ Ω2 sin𝜑 cos𝜑+ 𝜔2 sin𝜑+ 𝛼

𝜕𝜑

𝜕𝑡
= 0, 𝑡 > 0, 𝑥 ∈ R. (1.1)

The equation has trivial solutions, the equilibria 𝜑 ≡ 0 and 𝜑 ≡ 𝜋. For the magnetodynamics,
the solutions with the following conditions at infinity are of interest [7], [8]:

𝜑(𝑥, 𝑡) → 0 as 𝑥 → −∞, 𝜑(𝑥, 𝑡) → 𝜋 as 𝑥 → +∞. (1.2)
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In the case of constant coefficients we can select such solutions as a simple wave 𝜑 = Φ0(𝑥−𝑣𝑡).
The finding of this wave is reduced to an ordinary differential equation:

[𝑣2 − 𝑐2]
𝑑2Φ0

𝑑𝑠2
+ Ω2 sinΦ0 cosΦ0 + 𝜔2 sinΦ0 − 𝛼 𝑣

𝑑Φ0

𝑑𝑠
= 0, 𝑠 = 𝑥− 𝑣𝑡. (1.3)

This equation involves a parameter 𝑣, a velocity of wave, and the solutions exist for an arbitrary
wave. However, the boundary conditions produces restrictions for 𝑣. The situation is similar to
a spectral problem. Appropriate solutions correspond to phase trajectories, separatrices, which
connect the equilibria Φ0 ≡ 0 and Φ0 ≡ 𝜋.
If 𝜔2 < Ω2, then such separatrix exists for a unique 𝑣 determined by the relation

𝛼
𝑣√

𝑐2 − 𝑣2
Ω = 𝜔2. (1.4)

On the phase plane (Φ, Φ̇) this separatrix connects two saddles with the coordinates (0, 0) and
(𝜋, 0). The corresponding solution is interpreted as a domain wall moving with the velocity
𝑣. For other values of 𝑣, the trajectory from (0, 0) enters other (stable) equilibria, so that
the boundary conditions (1.2) are not satisfied. The corresponding solution is interpreted as
a domain wall moving with the velocity 𝑣. For other values of 𝑣, the trajectory from (0, 0)
approaches other (stable) equilibria and boundary conditions (1.2) are not satisfied.
If 𝜔2 > Ω2, then for each velocity 0 < 𝑣 < 𝑐 the trajectory from the saddle (0, 0) approaches

the equilibrium (𝜋, 0), which turns out to be either a node or a focus. That is, in this case,
there are waves with conditions (1.2) travelling with different velocities.
Although equation (1.3) is not integrable, it has a specific feature discovered by Zvezdin in

[7]. The wave with velocity satisfying (1.4), regardless of the relations between 𝜔2 and Ω2, is
written out in terms of the separatrix solution of the pendulum equation

Φ0(𝑠) = 2 arctan exp(𝑠Λ0), Λ0 = Ω/
√
𝑐2 − 𝑣2. (1.5)

It should be noted that a simple wave is an isolated solution of a partial differential equation.
The problem of stabilization of other solutions to this one in the formulation of the Cauchy
problem was studied for the parabolic equations of Kolmogorov-Petrovskii-Piskunov type [9],
[10]. There are no similar general results for non-integrable hyperbolic equations.

1.2. Formulation of problem. If the coefficients depend on 𝑥 and 𝑡, then in the general
situation there is no simple wave. For an approximate analysis of the problem, either numerical
[11] or asymptotic [3] methods are applied. In the case of slowly varying coefficients one can
construct an asymptotic solution similar to a travelling wave [3]. Exactly this problem is studied
in what follows.
To reveal the essence of the problem and not obscure the presentation of irrelevant details,

the original problem is considered in its simplest form. The coefficients 𝑐(𝜏), Ω(𝜏), 𝛼(𝜏), 𝜔(𝜏)
in equation (1.1) are assumed to be positive functions depending smoothly on the slow variable
𝜏 = 𝜀𝑡. The small parameter 0 < 𝜀 ≪ 1 is involved only in 𝜏 . If the coefficients 𝑐, Ω are constant,
then they are reduced to unity by scaling transformations. In the general case a renormalization
of 𝑥, 𝑡 leads to an equation perturbed by small terms of order 𝒪(𝜀). This approach gives no
advantage in studying the problem and is not used here. In the magnetodynamics, the coefficient
𝜔2 corresponds to the amplitude of the external force, from the direction of which the sign at
the corresponding term in (1.1) depends. Differences in sign at 𝜔2 are not significant due to the
possibility of shifting the dependent variable 𝜑 ⇒ 𝜑+𝜋 which changes the sign. The boundary
value problem additionally requires the change 𝑥 ⇒ −𝑥, which leads to a wave traveling in the
opposite direction.
Differential equation (1.1) is complemented by an initial condition:

𝜑(𝑥, 𝑡)|𝑡=0 = Φ0(𝑥), 𝜕𝑡𝜑(𝑥, 𝑡)|𝑡=0 = −𝑣0Φ
′
0(𝑥), 𝑥 ∈ R. (1.6)
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The initial function is taken as a trace of the simple wave, that is, Φ0(𝑠) as 𝑠 = 𝑥 − 𝑣0𝑡
satisfies equation (1.3) with constant (initial) coefficients and with boundary conditions (1.2).
To identify the functions Φ0(𝑠) as the unique solution of an autonomous equation, it is necessary
to fix the shift in 𝑠, for example, by the condition Φ0(0) = 𝜋/2. Restriction on the initial
parameters at the initial moment

𝛼2𝑣20 − 4(𝜔2 − Ω2)(𝑐2 − 𝑣20) > 0 as 𝜏 = 0 (1.7)

guarantees that for unperturbed equation (1.3) the equilibrium Φ0 = 𝜋 in the case of 𝜔2 > Ω2

corresponds to a stable node.
The initial function, as a solution of differential equation with constant coefficients has the

following asymptotics at the equilibria

Φ0(𝑠) =

{︃
exp(𝜆0

−𝑠)[𝑐
0
− +𝒪

(︀
exp(𝜆0

−𝑠)
)︀
], 𝑠 → −∞,

𝜋 + exp(−𝜆0
+𝑠)[𝑐

0
+ +𝒪

(︀
exp(−𝜆0

+𝑠)
)︀
], 𝑠 → +∞

with constants 𝑐0± ̸= 0. The exponents 𝜆0
± > 0 satisfy corresponding characteristic equations:

(𝑣20 − 𝑐2)(𝜆0
±)

2 ± 𝛼 𝑣0𝜆
0
± + Ω2 ∓ 𝜔2 = 0 as 𝜏 = 0.

The aim of the present work is to construct an asymptotic as 𝜀 → 0 solution for problem (1.1),
(1.2), (1.6), which is applicable on some segment 0 < 𝑡 ⩽ 𝜏0𝜀

−1, (𝜏0 = const > 0), when the
deformation of the equation becomes essential. By an asymptotic solution we mean a function
𝜑𝑎𝑠(𝑥, 𝑡; 𝜀), which, being substituted into equation (1.1), gives a small error as 𝜀 → 0 uniformly
in 𝑥, 𝑡 in a wide domain. This notion will be specified in Section 6. The main aim is an
approximate description of the trajectory (of motion of the center) of the perturbed wave, the
exact position of which is determined by the sought solution via the relation 𝜑(𝑥, 𝑡; 𝜀) = 𝜋/2.

2. Initial numerical simulations

When analyzing problems related to applications, numerical and analytical methods com-
plement each other. In papers on construction of asymptotics, numerical calculations are often
used for illustrations. Sometimes a comparison of numerical and analytical results is provided
as an argument in favor of the formally obtained formulas instead of their rigorous justification.
In the present paper, a similar comparison is made in order to choose an asymptotic ansatz.
The point is that in the considered problem different constructions for the asymptotic solu-
tion are possible. Since the justification theorems are absent, this leads to the indeterminacy
of the asymptotic solution and to the appearance of fictitious asymptotics known in different
situations [12].
In this section we present the results of numerical simulations for equation (1.1) with co-

efficients 𝑐2 = Ω2 = 𝛼 = 1. The perturbation consists in a slow variation in the coefficient
𝜔2(𝜏) = (1 + 𝜏)𝜔2

0, 𝜏 = 𝜀𝑡 for small parameter 𝜀 = 0.03. The initial data corresponds to a
simple wave in form (1.5). In Figures 1 and 2, the wave profiles as functions spatial coordinates
𝑥 are given at distant times 𝑡 = 1/2𝜀 for different values of the constant 𝜔2

0. The dotted line
corresponds to the profile of the initial wave shifted for comparison by a suitable distance.
The main result of numerical experiments: for a perturbed wave we observe that the sym-

metry with respect to the center breaks with time. In this case, the structure of the wave front
is preserved, while the wave tail is deformed. This effect is weakly expressed at 𝜔2 < Ω2 and is
clearly observed at 𝜔2 > 2Ω2.

3. Ansatz for asymptotic solution

We choose an ansatz for the asymptotic solution as a partial sum of a series in powers of the
small parameter:

𝜑𝑎𝑠(𝑥, 𝑡; 𝜀) = Φ(𝑠; 𝜏) + 𝜀Φ1(𝑠; 𝜏) + 𝜀2Φ2(𝑠; 𝜏) + . . . (3.1)
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Figure 1. Comparison of the perturbed wave (solid line) with the profile of the
initial function at Ω2 < 𝜔2 < 2Ω2.
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Figure 2. Comparison of the perturbed wave (solid line) with the profile of the
initial function at 𝜔2 > 2Ω2.

with a single fast variable

𝑠 = 𝑥− 𝜀−1𝑆(𝜏)− 𝑆1(𝜏)− 𝜀𝑆2(𝜏)− . . . , 𝜏 = 𝜀𝑡.

The phase function 𝑆(𝜏), as well as the shift of the phase 𝑆1(𝜏) and next correctors are to be
determined. This approach correspond to the two-scale method.
Substituting ansatz (3.1) into original equation (1.1) and collecting terms of order 𝒪(1),

𝜀 → 0, we arrive at a single equation for two functions Φ(𝑠, 𝜏) and 𝑉 (𝜏) = 𝑆 ′(𝜏):

[𝑉 2 − 𝑐2]
𝑑2Φ

𝑑𝑠2
+ Ω2 sin𝜑 cosΦ + 𝜔2 sinΦ− 𝛼𝑉

𝑑Φ

𝑑𝑠
= 0. (3.2)

Additionally, we impose a boundary condition corresponding to the initial one:

Φ(𝑠; 𝜏) → 0 as 𝑠 → −∞, Φ(𝑠; 𝜏) → 𝜋 as 𝑠 → +∞, (3.3)

and an initial condition for the velocity: 𝑉 (0) = 𝑣0. Apart of this, in order to single out a unique
solution to autonomous equation (3.2), we should fix the shift in the independent variable 𝑠.
This can be done by an additional condition:

Φ(0; 𝜏) =
𝜋

2
. (3.4)

If we choose the velocity 𝑉 = 𝑉 (𝜏) by the relation

𝛼
𝑉√

𝑐2 − 𝑉 2
Ω = 𝜔2, (3.5)
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then the solution to ordinary differential equation (3.2) with conditions (3.3), (3.4) is written
in elementary functions [7]:

Φ(𝑠; 𝜏) = 2 arctan exp(𝑠Λ), Λ = Ω/
√
𝑐2 − 𝑉 2. (3.6)

The asymptotics of this solution at infinity is described by the formulas

Φ(𝑠; 𝜏) =

{︃
exp(Λ 𝑠)[2 +𝒪

(︀
exp(Λ 𝑠))

)︀
], 𝑠 → −∞,

𝜋 + exp(−Λ 𝑠)[2 +𝒪
(︀
exp(−Λ 𝑠)

)︀
], 𝑠 → +∞.

We note that for variable coefficients the velocity 𝑉 (𝜏) and the exponent Λ = Λ(𝜏) in the
general case depend on the slow time 𝜏 . The analysis of the phase portrait of equation (3.2)
implies that the found in this way a pair of functions Φ, 𝑉 is a unique solution of problem
(3.2), (3.3), (3.4) if 𝜔2 < Ω2.
As 𝜔2 > Ω2, there is no uniqueness and there exist other pairs Φ, 𝑉 , for which explicit

representations are absent. For Φ(𝑠, 𝜏) we can write an asymptotics in the vicinity of the
equilibria:

Φ(𝑠; 𝜏) =

{︃
exp(𝜆−𝑠)[𝑐− +𝒪

(︀
exp(𝜆−𝑠)

)︀
], 𝑠 → −∞,

𝜋 + exp(−𝜆+𝑠)[𝑐+ +𝒪
(︀
exp(−𝜆+𝑠)

)︀
], 𝑠 → +∞,

𝑐±(𝜏) ̸= 0. (3.7)

Here the functions of the slow time 𝜆±(𝜏) > 0 and 𝑐±(𝜏) depend on the choice of 𝑉 (𝜏). There
are no explicit expressions for the coefficients 𝑐±(𝜏) as it happens for an non-integrable equation.
The exponents 𝜆±(𝜏) satisfy algebraic equations

(𝑉 2 − 𝑐2)(𝜆±)
2 ± 𝛼𝑉 𝜆± + Ω2 ∓ 𝜔2 = 0. (3.8)

Under Condition 1.7, the roots 𝜆±(𝜏) remain real and the property 𝑐±(𝜏) ̸= 0 preserves de-
pending on 𝑉 (𝜏) in some neighbourhood of the initial point 0 < 𝜏 < 𝜏0. However, the evolution
of the velocity 𝑉 (𝜏) as 𝜏 > 0 is not determined and this remains a main problem in the case
𝜔2 > Ω2.
Our approach is based on observation of the results of numerical simulations: as 𝜔2 > Ω2,

the wave front is deformed weakly. This is why it is assumed that the exponent 𝜆+ in the
asymptotics at infinity remains constant and coincides with the value 𝜆+(𝜏) ≡ 𝜆0

+ = const,
which corresponds to the asymptotics of the initial (unperturbed) wave at velocity 𝑉 (0) = 𝑣0.
In this case 𝑉 (𝜏) for 𝜏 > 0 is uniquely determined by (3.8):

𝑉 (𝜏) =
1

2𝜆0
+

[︂
−𝛼 +

√︁
𝛼2 + 4(𝑐2(𝜆0

+)
2 + 𝜔2 − Ω2)

]︂
. (3.9)

An opposite statement is true as well: if 𝑉 (𝜏) is defined by formula (3.9), then corresponding
root of equation (3.8) is constant 𝜆+(𝜏) ≡ const. We call this property a stability of the

wave front1. Other arguments supporting the stability of the wave front arise in the formal
construction of the asymptotic solutions and are given in Section 5.
The second equation in (3.8) determines the root 𝜆−(𝜏), the dependence of which on 𝜏 reflects

the deformation in time of the wave tail.
We note that when choosing the velocity 𝑉 (𝜏) by relation (3.5), both equations (3.8) are

satisfied, the roots are the same 𝜆+ = 𝜆− = Λ(𝜏) and are not constants. In this case, for the
leading term of the asymptotics in form (3.6), the symmetry is preserved with deformation
of the wave front and wave tail, which corresponds to numerical simulation at 𝜔2 < Ω2. An
alternative way to determine the velocity by the formula (3.9) is for the case 𝜔2 > Ω2 when the
symmetry is not is preserved, and the initial wave need not be symmetrical (3.6).

1For other equations, for instance, of Kolmogorov-Petrovskii-Piskunov type, the stability of wave front and
wave tail was not discussed although it was in fact used in [5], [6].
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Once the velocity is calculation, the phase function is recovered by the integral

𝑆(𝜏) =

∫︁ 𝜏

0

𝑉 (𝜂) 𝑑𝜂.

The corrector of the velocity 𝑉1(𝜏) = 𝑆 ′
1(𝜏) and the phase shift 𝑆1(𝜏) at this step remain

undetermined.
Since the function Φ(𝑠; 𝜏) as a solution of problem (3.2), (3.3) fast stabilizes at infinity as

𝑠 → ±∞, then the zero of the phase 𝑥 − 𝜀−1𝑆(𝜀𝑡) + 𝑆1(𝜀𝑡) = 0 can be identified with an
approximate trajectory of the center of the perturbed wave. It is obvious that to find the
trajectory at large time as 𝜀𝑡 ≈ 1, apart of the function 𝑆(𝜏) we need to determine the shift
of the phase 𝑆1𝜏), which can be found via the corrector of the velocity 𝑉1(𝜏) = 𝑆 ′

1(𝜏). As in
other problems of the perturbation theory, the function 𝑉1(𝜏) is determined at the next step
by requiring the smallness of the first corrector in comparison with the leading term in the
asymptotic solution.

4. First corrector

For the first corrector of asymptotic solution (3.1) we obtain a linear equation

[𝑉 2 − 𝑐2]
𝑑2Φ1

𝑑𝑠2
+ 𝑞(𝑠; 𝜏)Φ1 − 𝛼𝑉

𝑑Φ1

𝑑𝑠
= 𝑓(𝑠; 𝜏) (4.1)

with the coefficient

𝑞(𝑠; 𝜏) =
𝑑

𝑑𝜑

[︀
Ω2 sin𝜑 cos𝜑+ 𝜔2 sin𝜑

]︀
𝜑=Φ(𝑠;𝜏)

.

The right hand side 𝑓 is written via the previous approximation. This function is extracted
from the error term, which arises under the substitution of the leading term Φ(𝑠; 𝜏) of the
asymptotics into original equation (1.1):

𝑓(𝑠; 𝜏) = −2𝑉 𝑉1Φ𝑠𝑠 + 𝑉 ′Φ𝑠 + 2𝑉 Φ𝑠𝜏 + 𝛼𝑉1Φ𝑠 − 𝛼Φ𝜏 . (4.2)

Comment. The formulation of problem and described construction of asymptotic solution
are similar to the perturbation theory of solitons [13]–[16]. Main difference comes from the
nonintegrability of the original unperturbed equation with constant coefficients (1.1). The lack
of integrability makes it impossible to use an analogue of the Fourier expansion [17], [18] when
solving the Cauchy problem for a linearized partial differential equation

𝜕2𝜑1

𝜕𝑡2
− 𝑐2

𝜕2𝜑1

𝜕𝑥2
+ 𝑞 𝜑1 + 𝛼

𝜕𝜑1

𝜕𝑡
= 𝑓, 𝑡 > 0, 𝑥 ∈ R.

This is why for correctors the initial problem is not considered and the matter is restricted by
partial solutions 𝜑1 = Φ1(𝑠; 𝜏) determined by the ordinary differential equation1.
An explicit representation for the corrector Φ1 is written in terms of the function Φ(𝑠; 𝜏)

on the base of the fundamental system of solutions for a homogeneous linearized equation
corresponding to (4.1). One of such solutions is given by the derivative Ψ1(𝑠; 𝜏) = 𝜕𝑠Φ(𝑠; 𝜏)
and possesses an exponential asymptotics at infinity:

Ψ1(𝑠; 𝜏) = exp(∓𝜆±𝑠)[∓𝑐±𝜆± +𝒪
(︀
exp(∓𝜆±𝑠)

)︀
], 𝑠 → ±∞. (4.3)

By using the Wronskian 𝑊 (𝑠; 𝜏) = exp(−𝛽(𝜏) 𝑠), where

𝛽(𝜏) = 𝛼𝑉 (𝜏)/[𝑐2 − 𝑉 (𝜏)2],

the second solution is determined by the Liouville formula:

Ψ2(𝑠; 𝜏) = Φ𝑠(𝑠; 𝜏)

∫︁ 𝑠

0

exp(−𝛽𝜂)

(Φ𝜂(𝜂; 𝜏))2
𝑑𝜂. (4.4)

1For nonintegrable equations the influence of small errors in initial data remains unclarified in all problems
on perturbation of simple waves [3]; very often this issues is not discussed at all [16].
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An exponential asymptotics is easily extracted from formula (4.4):

Ψ2(𝑠, 𝜏) = exp((𝜆− − 𝛽)𝑠)[𝐶− +𝒪
(︀
exp((𝜆− − 𝛽)𝑠)

)︀
], 𝑠 → −∞. (4.5)

At the other infinity 𝑠 → +∞ the structure of the asymptotics depends on the difference 𝜆+−𝛽:

Ψ2(𝑠, 𝜏) =

{︃
exp((𝜆+ − 𝛽)𝑠)[𝐶+ +𝒪

(︀
exp((𝜆+ − 𝛽)𝑠)

)︀
] if 𝜆+ − 𝛽 > −𝜆+,

exp(−𝜆+𝑠)[𝐶+ +𝒪
(︀
exp(−𝜆+𝑠)

)︀
] if 𝜆+ − 𝛽 < −𝜆+.

(4.6)

The coefficients 𝐶±(𝜏) ̸= 0 are expressed in terms of 𝛽, 𝑐± and 𝜆±.
We note that the general solution of equation (4.1) involves a linear combinations of solutions

from the basisΨ1, Ψ2. The functionΨ1(𝑠; 𝜏) = 𝜕𝑠Φ(𝑠; 𝜏) exponentially tends to zero as 𝑠 → ±∞
with the exponents 𝜆±. The adding of this function does not change the structure of the first
corrector at infinity and can not be taken into consideration because the same effect is made by
the corrector of the phase shift 𝜀𝑆1(𝜏), the determination of which is moved to the next step.
The function Ψ2(𝑠, 𝜏) grows exponentially as 𝑠 → −∞ and this is why it is not included into
the corrector Φ1(𝑠; 𝜏). At the same time we should control the employed partial solution for
Φ1 in order it not to contain growing terms.
A particular solution of homogeneous equation can be written in various forms up to an

additive term Ψ1(𝑠; 𝜏) = 𝜕𝑠Φ(𝑠; 𝜏). For further calculations the following representation is
convenient:

Φ1(𝑠; 𝜏) = Φ𝑠(𝑠; 𝜏)

∫︁ 𝑠

0

exp(−𝛽𝜂)

(Φ𝜂(𝜂; 𝜏))2

∫︁ 𝜂

−∞
𝑓(𝜁; 𝜏)Φ𝜁(𝜁; 𝜏) exp(𝛽𝜁) 𝑑𝜁 𝑑𝜂. (4.7)

In what follows we analyze the first corrector Φ1(𝑠; 𝜏) in order to determine the correctors
for the velocity 𝑉1(𝜏). In order to do this, we construct an asymptotics for the function Φ1(𝑠; 𝜏)
as 𝑠 → ±∞ aiming to select the terms growing slower than Ψ1(𝑠; 𝜏) and because of which the
asymptoticity is violated in sequence of approximations (3.1).

Lemma 4.1. The right hand side in the equation for the first corrector (4.1) has the following
asymptotics at infinity:

𝑓(𝑠, 𝜏) =

{︃
𝑐− exp(𝜆−𝑠)[𝑠 𝑓

−(𝜏) + 𝑓−
0 (𝜏) +𝒪

(︀
exp(𝜆−𝑠)

)︀
], 𝑠 → −∞,

𝑐+ exp(−𝜆+𝑠)[𝑠 𝑓
+(𝜏) + 𝑓+

0 (𝜏) +𝒪
(︀
exp(−𝜆+𝑠)

)︀
], 𝑠 → +∞

(4.8)

with the coefficients at the leading part

𝑓±(𝜏) = 𝜆′
±(𝜏)[±𝛼 + 2𝑉 (𝜏)𝜆±(𝜏)],

𝑓±
0 (𝜏) = −2𝑉 𝑉1𝜆

2
± − [𝑉 ′ + 𝛼𝑉1](±𝜆±)− [2𝑉 (±𝜆±) + 𝛼]𝑐′±/𝑐±.

(4.9)

The proof is carried out by substituting asymptotics (3.7) into formula (4.2). Growing in 𝑠
factors arises while differentiating exponentials in 𝜏 .
Independently on the way of determining the velocity 𝑉 (𝜏) the structure of the first corrector

in the asymptotics as 𝑠 → −∞ is determined by the function Ψ1(𝑠; 𝜏) = Φ𝑠(𝑠; 𝜏) up to a power
factor 𝑠2.

Lemma 4.2. The first corrector determined by formula (4.7) has the following asymptotics

at the negative infinity

Φ1(𝑠, 𝜏) = Ψ1(𝑠; 𝜏)
1

2𝜆−(𝜏) + 𝛽(𝜏)

[︂
1

2
𝑠2 𝑓−(𝜏) + 𝑠 𝑓−(𝜏) +𝒪(1)

]︂
, 𝑠 → −∞ (4.10)

with the coefficient

𝑓−(𝜏) = 𝑓−
0 (𝜏)−

𝑓−(𝜏)

2𝜆−(𝜏) + 𝛽(𝜏)
.
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The proof is obtained by integrating the corresponding asymptotics in formula (4.7) after
substituting (4.8).
The asymptotics at the other infinity 𝑠 → +∞ differs from Ψ1(𝑠; 𝜏) in exponential terms.

Lemma 4.3. If 2𝜆+(𝜏) > 𝛽(𝜏), then the first corrector determined by formula (4.7) has the
following asymptotics as 𝑠 → +∞:

Φ1(𝑠, 𝜏) = Ψ2(𝑠; 𝜏)𝐽(𝜏) + Ψ1(𝑠; 𝜏)
1

−2𝜆+(𝜏) + 𝛽(𝜏)

[︂
1

2
𝑠2 𝑓+(𝜏) + 𝑠 𝑓+(𝜏) +𝒪(1)

]︂
. (4.11)

The coefficient 𝐽(𝜏) is determined by the converging integral:

𝐽(𝜏) =

∫︁ ∞

−∞
𝑓(𝜁; 𝜏)Φ𝜁(𝜁; 𝜏)exp(𝛽𝜁) 𝑑𝜁; 𝑓+(𝜏) = 𝑓+

0 (𝜏)−
𝑓+(𝜏)

−2𝜆+(𝜏) + 𝛽(𝜏)
. (4.12)

Proof. The leading term of the asymptotics of the inner integral in formula (4.7) as 𝜂 → +∞
is determined by the expression 𝐽(𝜏) from (4.12). We note that the outer integral in formula
(4.7) is a function Ψ2(𝑠; 𝜏). Therefore, after separating the main term from the inner integral,
we obtain the relation

Φ1(𝑠; 𝜏) = Ψ2(𝑠; 𝜏)𝐽(𝜏)−Ψ1(𝑠; 𝜏)

∫︁ 𝑠

0

exp(−𝛽𝜂)

(Φ𝜂(𝜂; 𝜏))2

∫︁ ∞

𝜂

𝑓(𝜁; 𝜏)Φ𝜁(𝜁; 𝜏)exp(𝛽𝜁) 𝑑𝜁 𝑑𝜂.

The asymptotics of the second term as 𝑠 → +∞ is obtained by integration similar to Lemma 2.
The proof is complete.

Remark 4.1. While using formula (4.11) we should have in mind that it has nothing to do

with the a symptotics at minus infinity. The function Ψ2(𝑠; 𝜏), which grows exponentially as

𝑠 → −∞, is used here only for brevity in the asymptotics as 𝑠 → +∞.

In the case 2𝜆+(𝜏) < 𝛽(𝜏) the integral in (4.12) diverges, so the asymptotics of the inner
integral in (4.7) should be calculated by another way.

Lemma 4.4. If 2𝜆+(𝜏) < 𝛽(𝜏), then the first corrector determined by formula (4.7) possesses
the following asymptotics at infinity

Φ1(𝑠, 𝜏) = Ψ1(𝑠; 𝜏)
1

−2𝜆+(𝜏) + 𝛽(𝜏)

[︂
1

2
𝑠2 𝑓+(𝜏) + 𝑠𝑓+(𝜏) +𝒪(1)

]︂
, 𝑠 → +∞. (4.13)

The proof consists in selecting the leading terms in the exponentially growing asymptotics
of the inner integral as 𝜂 → +∞. Due to the conditions 2𝜆+(𝜏) < 𝛽(𝜏), the function in outer
integral (4.7) exponentially tends to zero as 𝜂 → +∞. As a result, we arrive at required relation
(4.13).

5. Phase shift

The following calculation of the velocity correction 𝑉1(𝜏) and the corresponding phase shift
𝑆1(𝜏) is not the main aim. These calculations are more focused on refinement of the first
correction Φ1(𝑠; 𝜏) in the asymptotic solution and on justifying the formula for the leading
term in the asymptotics of the velocity 𝑉 (𝜏) + 𝜀𝑉1(𝜏).
The formulas for 𝑉1(𝜏) are obtained from the condition that the leading terms of the asymp-

totics as 𝑠 → +∞ should be excluded from the corrector Φ1(𝑠; 𝜏) of the principal terms of the
asymptotics as 𝑠 → +∞.

Lemma 5.1. Let 2𝜆+(𝜏) > 𝛽(𝜏). If the velocity corrector 𝑉1(𝜏) is chosen by the relation

𝑎(𝜏)𝑉1 + 𝑏(𝜏) = 0, (5.1)
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where

𝑎(𝜏) = [𝑉 (𝜏)𝛽(𝜏) + 𝛼]

∫︁ ∞

−∞
Φ2

𝑠(𝑠; 𝜏) exp(𝛽(𝜏)𝑠) 𝑑𝑠,

𝑏(𝜏) =

∫︁ ∞

−∞
[𝜕𝜏 (𝑉 (𝜏) Φ2

𝑠(𝑠; 𝜏))− 𝛼Φ𝜏 (𝑠; 𝜏)Φ𝑠(𝑠; 𝜏)] exp(𝛽(𝜏)𝑠) 𝑑𝑠,

then the first corrector of the asymptotic solution determined by formula (4.7) has the following

asymptotics at the positive infinity:

Φ1(𝑠; 𝜏) = Ψ1(𝑠; 𝜏)
1

−2𝜆+(𝜏) + 𝛽(𝜏)

[︂
1

2
𝑠2 𝑓+(𝜏) + 𝑠 𝑓+(𝜏) +𝒪(1)

]︂
, 𝑠 → +∞ (5.2)

independently on the way of determining the velocity 𝑉 (𝜏).

Proof. If the condition 2𝜆+(𝜏) > 𝛽(𝜏) is satisfied, then comparing formulas (4.3) and (4.6), we
see that in expression (4.11) the leading term of the asymptotics as 𝑠 → +∞ is contained in
the term Ψ2(𝑠; 𝜏)𝐽(𝜏). To exclude this term, we require the factor 𝐽(𝜏) = 0 vanishes. In view
of expressions (4.2), (4.12) such requirement is equivalent to relation (5.1). Therefore, under
condition (5.1), relation (4.11) becomes (5.2). The uncertainty in the velocity 𝑉 (𝜏) is preserved
for the case 𝜔2 > Ω2. The proof is complete.

Corollary 5.1. If the function 𝑉 (𝜏) is chosen according to formula (3.9) and the velocity

corrector 𝑉1(𝜏) is determined by relation (5.1), then the first corrector of the asymptotic solution

given by formula (4.7) has the following asymptotics at infinity:

Φ1(𝑠; 𝜏) = Ψ1(𝑠; 𝜏)
1

−2𝜆+(𝜏) + 𝛽(𝜏)

[︀
𝑠 𝑓+

0 (𝜏) +𝒪(1)
]︀
, 𝑠 → +∞.

Proof. Since in this case 𝜆′
+ = 0, by (4.9) the coefficient in the leading term of asymptotics

(5.2) vanishes 𝑓+ = 0, while the coefficient at 𝑠 is equal to 𝑓+
0 . This result indicates that

formula (3.9) is preferable in comparison with (3.5) while choosing the velocity 𝑉 (𝜏) in the
case 𝜔2 > Ω2.

If 2𝜆+(𝜏) < 𝛽(𝜏), then formula (5.1) for 𝑉1(𝜏) makes no sense since the integrals diverge. In
this case the asymptotics for Φ1(𝑠; 𝜏) as 𝑠 → +∞ has a different structure and the exclusion
of secular terms leads us to another formula for the velocity corrector.

Lemma 5.2. Let 2𝜆+(𝜏) < 𝛽(𝜏) and the function 𝑉 (𝜏) be chosen by formula (3.9). If the

velocity corrector 𝑉1(𝜏) is defined by the relation

𝑉1 +
𝑉 ′

2𝑉 𝜆+ + 𝛼
+

𝑐′+
𝑐+𝜆+

= 0, (5.3)

then the first corrector of the asymptotic solution determined by formula (4.7) has the following

asymptotics at the positive infinity

Φ1(𝑠, 𝜏) = Ψ1(𝑠; 𝜏) · 𝒪(1), 𝑠 → +∞. (5.4)

Proof. Under the condition 2𝜆+(𝜏) < 𝛽(𝜏) the asymptotics of the function Φ1(𝑠, 𝜏) is repre-
sented in formula (4.13). The leading terms are determined by the terms with power factors 𝑠2

and 𝑠. The exclusion of the coefficient 𝑓+(𝜏) at 𝑠
2 with expression (4.9) taken into consideration

leads to the identity 𝜆′
+(𝜏) = 0 and this corresponds to choosing 𝑉 (𝜏) by formula (3.9). The

exclusion of the remaining coefficient 𝑓 0
+(𝜏) at 𝑠 with expression (4.9) taken into consideration

gives the equation for 𝑉1 in form (4.9). After that relation (4.13) becomes (5.4).

Comment. Relation (5.1) involves both the velocity 𝑉 (in the coefficients) and the corrector
𝑉1. Such feature arises due to the presence of the dissipation with the coefficient 𝛼 ̸= 0.
Under perturbation of integrable equations[16] such relation dose not involve 𝑉1 and is used
to define the leading term of 𝑉 (𝜏). In the considered problem, as 𝜔2 > Ω2, requirement
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(5.1) in the form of one equation for two functions 𝑉 , 𝑉1 reflects the essence of an asymptotic
incorrectness phenomenon, which arises in the analysis of dissipative systems [4], [5]. As usual
in mathematical problems, to eliminate an uncertainty, additional restrictions on the desired
(asymptotic) solution are needed. One option is to require stability of the wave front in the
form 𝜆′

+ = 0. On one hand, this leads to a unique definition of 𝑉 by formula (3.9). On the
other hand, the relation 𝜆′

+ = 0 leads to the extension the suitability domain of the asymptotic
solution, which can be considered as another form of additional requirement.

6. Suitability domain of asymptotic solution

The construction of the asymptotic solution in the form of series (3.1) with coefficients de-
pending on one fast variable 𝑠 can be implemented up to an arbitrary order 𝜀𝑛. The suitability
domain of an asymptotic solution is understood as the set of points (𝑠, 𝜏) ∈ 𝐷 ⊂ R2 on the
plane, on which the series (3.1) is uniformly asymptotic as 𝜀 → 0 [19]. By the requirement
of smallness of the subsequent correction 𝜀𝑛+1Φ𝑛+1(𝑠; 𝜏) compared to the previous 𝜀𝑛Φ𝑛(𝑠; 𝜏)
uniformly in (𝑠, 𝜏) the constraints on 𝐷 are extracted. These restrictions depend on the con-
struction of the coefficients of the asymptotics Φ𝑛(𝑠; 𝜏), 𝑉𝑛(𝜏). Since the functions Φ𝑛(𝑠; 𝜏) are
smooth, the series is asymptotic as 𝜀 → 0 uniformly in 𝑠, 𝜏 in the strip {|𝑠| ⩽ 𝐿, 0 < 𝜏 ⩽ 𝜏0},
of any width 𝐿 = const > 0 independent of 𝜀. This simplest result for the suitability region
is independent of the way of calculating the velocity corrections and for 𝜔2 > Ω2 it is also
independent of the velocity 𝑉 (𝜏).
The extension of the suitability region is possible by taking into account the structure of the

coefficients Φ𝑛(𝑠; 𝜏) at infinity. The feature of the considered problem manifests in the fact that
the source of irregularities are the power factors 𝑠𝑘, 𝑘 > 0, which appear at decreasing exponen-
tials in the asymptotics of the functions Φ𝑛(𝑠; 𝜏) for 𝑠 → ±∞. An extension of the suitability
domain occurs when such (secular) terms are excluded and is possible under an appropriate
choice of 𝑉𝑛(𝜏). In this way, the asymptotic solution is refined and velocity ambiguities are
eliminated. These ideas are similar to those used in the theory of non-linear oscillations [20].
The simplest refinement of the suitability region can be obtained by taking into account the

asymptotics at negative infinity. For the first correction, the asymptotics is given by the formula
(4.10) and involves terms with factors 𝑠, 𝑠2. In higher correctors, the powers of 𝑠 increase by 2
at each step. The requirement of the asymptoticity of the sequence of corrections in the form
𝜀 𝑠2 ⩽ 𝜀2𝛿 (for some 𝛿 > 0) provide a description suitability regions at wave tail in the form

−𝜀−1/2+𝛿 < 𝑠 < 𝐿, for all 𝛿, 𝐿 > 0.

At the wave front, similar expansion is obtained if in the construction of the asymptotic
solution the velocity corrections are chosen appropriately, as it is done for the first correction
in Lemma 5.

Theorem 6.1. Let the initial wave have a special structure (1.5), and let the velocity 𝑉 (𝜏)
be chosen according to formula (3.5). If the first velocity correction is chosen by (5.1) and

subsequent corrections are fixed by similar conditions in the leading terms of the asymptotics,

then series (3.1) is an asymptotic solution of equation (1.1) in the strip

−𝜀−1/2+𝛿 < 𝑠 < 𝜀−1/2+𝛿, ∀ 𝛿 > 0. (6.1)

Proof. If the velocity 𝑉 (𝜏) is determined by formula (3.5), then the following relations hold

𝛼𝑉 Ω√
𝑐2 − 𝑉 2

= 𝜔2, 𝜆+ = Λ =
Ω√

𝑐2 − 𝑉 2
, 𝛽 =

𝛼𝑉 Ω

𝑐2 − 𝑉 2
.

Therefore,

𝜆+ − 𝛽 =
1

Ω
√
𝑐2 − 𝑉 2

(Ω2 − 𝜔2).
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In the case Ω2 − 𝜔2 > 0 we obtain 𝜆+ − 𝛽 > 0 > −𝜆+, since, according to (4.5), the function
Ψ2(𝑠; 𝜏) grows exponentially as 𝑠 → +∞. The corresponding term in the asymptotics of first
corrector (4.11) should be excluded. This can be achieved by the identity 𝐽(𝜏) = 0, which is
reduced to equation (5.1) for the velocity corrector. Once 𝑉1 is determined, asymptotics (4.11)
still involve the terms with the factors 𝑠2, 𝑠. They determine the boundary of the suitability
region at wave front (6.1) by condition 𝜀𝑠2 < 𝜀2𝛿.
In the case Ω2 − 𝜔2 < 0 we obtain 𝜆+ − 𝛽 < 0 and here two options are possible:
1) If −𝜆+ < 𝜆+ − 𝛽, then, according to (4.5), the leading term of the asymptotics of the

function Ψ2(𝑠; 𝜏) decays exponentially as 𝑠 → +∞. However, it decays slower than the function
Ψ1(𝑠; 𝜏)(𝑠; 𝜏) ≈ exp(−𝜆+𝑠) and is treated as a secular term. This is why the term Ψ2(𝑠; 𝜏)𝐽(𝜏)
in formula (4.11) is to be excluded by the same condition 𝐽(𝜏) = 0, which is reduced to equation
(5.1) for the velocity corrector.
2) If −𝜆+ > 𝜆+ − 𝛽, then asymtptotics (4.11) involves only the terms with the factors 𝑠2, 𝑠,

which are determined the suitability domain at the wave front in form (6.1).

For the case 𝜔2 < Ω2, the velocity 𝑉 (𝜏), 𝜏 > 0 and its corrections are uniquely determined,
and the above construction shows no other possibilities for extending the suitability domain.
The situation is different for 𝜔2 > Ω2, when the choice of 𝑉 (𝜏), 𝜏 > 0, remains arbitrary. The
requirement for the stability of the wave front makes it possible to expand the suitability region.

Theorem 6.2. Let 𝜔2(𝜏) > Ω2(𝜏), 0 < 𝜏 < 𝜏0, the initial parameters of the wave satisfy

condition (1.7) and the velocity 𝑉 (𝜏) is chosen by formula (3.9). If the first velocity corrector

is determined by (5.1) an the next correctors are fixed by similar conditions in the leading terms

of the asymptotics, then series (3.1) is an asymptotic solution of equation (1.1) in the strip

−𝜀−1/2+𝛿 < 𝑠 < 𝜀−1+𝛿, ∀ 𝛿 > 0. (6.2)

If, in addition, the relation for the initial parameters

2𝜆0
+ < 𝛼𝑉/(𝑐2 − 𝑉 2) ≡ 𝛽(𝜏), 0 < 𝜏 < 𝜏0,

hold and the first velocity corrector is determined by (5.3) and the next correctors are fixed by

similar conditions in the leading terms of the asymptotics, then the suitability domain at the

wave front is extended to infinity:

−𝜀−1/2+𝛿 < 𝑠 < ∞.

Proof. The choice of the velocity by (3.9) implies that the exponent is constant: 𝜆+ = 𝜆0
+ =

const. In this case the asymptotics of the first corrector (5.2) involves no term with the factor
𝑠2 and it casts into the form

Φ1(𝑠, 𝜏) = Ψ1(𝑠; 𝜏) · 𝒪(𝑠), 𝑠 → +∞.

This is way to ensure that the first corrector is small on the half-line 𝑠 > 0, it is sufficient to
impose the inequality 𝜀𝑠 < 𝜀𝛿, 𝛿 > 0.
Under an additional condition, which means 2𝜆+ < 𝛽, the asymptotics of the first correction

in form (4.13) contains no term with the factor 𝑠2 due to 𝜆+ = 𝜆0
+ = const. The term

with the first power 𝑠 is eliminated by choosing the velocity corrector by (5.3), as shown
in Lemma 5.2. As a result, the asymptotics of the first corrector contains growing factors
Φ1(𝑠, 𝜏) = Ψ1(𝑠; 𝜏) · 𝒪(1), 𝑠 → +∞, and thus the asymptotic property holds regardless of
𝑠 > 0.

Comment. The domain described by formula (6.2) is obviously not symmetrical with respect
to the center of the wave 𝑠 = 0. Such asymmetry is due to the choice of the speed 𝑉 (𝜏) from the
requirement of stability of the wave front: 𝜆+ = const. All formal constructions of (another)
asymptotic solution in same form (3.1) can be obtained from from the wave tail stability
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requirement: 𝜆− = const. For such solution, the suitability domain is described by a formula
similar to (6.2) with changed boundary:

−𝜀−1+𝛿 < 𝑠 < 𝜀−1/2+𝛿. (6.3)

As we see, the problem of the uniqueness of the asymptotic is not solved by extension of the
suitability area. Since, in order to justify the asymptotics no prospects are visible at present,
in this work the choice an asymptotic solution is proposed to be made from a comparison with
a numerical simulation. This choice leads to the requirement stability of the wave front (rather
than the wave tail): 𝜆+ = const.

7. Concluding numerical simulation

This section compares three methods for approximate calculation of the wave trajectories. In
the first method, which we call numerical, the trajectory is found by the relation 𝜑(𝑥, 𝑡) = 𝜋/2
based on the numerical solution of original equation (1.1). For numerical implementation, the
problem is supplemented with initial conditions on a segment of large length −𝑙 < 𝑥 < 𝐿 ,
which correspond to special unperturbed solution (1.5). The boundary conditions 𝜑(−𝑙, 𝑡) =
0, 𝜑(−𝐿, 𝑡) = 𝜋, 𝑡 > 0 on far edges of 𝑙, 𝐿 ≈ 𝜀−1 mimic conditions at infinity (1.2). The
trajectory obtained in this way is close to the exact one. The error depends on the method
of approximation of the equation and little depends on the relation between the parameters 𝜔
and Ω.
Two other approximations for the trajectory are defined on the base asymptotic formulas by

the relation

𝑥 =

∫︁ 𝑡

0

𝑉 (𝜀 𝜂) 𝑑𝜂

without using phase shift1. For the velocity 𝑉 (𝜏) formulas (3.5) or (3.9) are used. The graphs
of the corresponding three approximations are shown in the figures: bold dotted line, bold solid
and weak solid lines. The weak dotted line corresponds to the unperturbed trajectory.
The numerical simulations were carried out for the coefficients 𝑐2 = Ω2 = 𝛼 = 1. The

perturbation is embedded in the slow coefficient 𝜔2(𝜏) = (1 ± 𝜏/2)𝜔2
0, 𝜏 = 𝜀𝑡 with the value

of the small parameter 𝜀 = 0.01 ÷ 0.03. The direction of deformation of the trajectory under
perturbation is determined by the sign of the derivative (𝜔2)′(𝜏) = ±(𝜔0)

2/2, see Figure 3.
The closeness of asymptotic trajectories to numerical ones depends on a relation between the

parameters 𝜔 and Ω. If 𝜔2 ⩽ Ω2, then calculations on the base of formula (3.5) are unalternative
since the speed 𝑉 is unique. In Figure 4 the corresponding asymptotic trajectory practically
coincides with the numerical one. If 𝜔2 > Ω2, then as the difference 𝜔2 −Ω2 increases, formula
(3.9) becomes more suitable, cf. Figure 5; this is especially noticeable for 𝜔2 > 2Ω2 in Figure 6.
Comment. On the considered wave with special initial profile (1.5), for which 𝜆+ = Λ(0),

the following relation holds:

2Λ(0)− 𝛽(0) =
𝜆

Ω2
(2Ω2 − 𝜔2)|𝜏=0.

Therefore, for 𝜔2 > 2Ω2 the inequality 2𝜆0 < 𝛽(𝜏) is satisfied on some interval 0 < 𝜏 < 𝜏0.
Then, by virtue of Theorem 6.2, formula (3.9) implied by the requirement of stability ensures
the suitability domain of the asymptotic solution at the wave front. The presence of a wide
suitability region indicates the closeness of the corresponding asymptotic trajectory to the
exact one. Nevertheless, the extension of the suitability domain cannot serve as a criterion for

selecting a formula for the velocity. For example, the requirement of the stability of the wave

1The efficiency of equations (5.3) for calculating the velocity correction and phase shift is not great due to
the lack of explicit expressions for solving the ordinary differential equation for Φ(𝑠; 𝜏) and for the asymptotic
coefficients 𝑐±(𝜏).
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Figure 3. The trajectory of the perturbed wave (thick dotted line) in com-
parison with the trajectory of the unperturbed wave for different directions of
deformation of the coefficient 𝜔2(𝜏).
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Figure 4. Approximate trajectories of the perturbed wave on different scales at
𝜔2 < Ω2.

tail 𝜆− = const also expands the suitability domain of (6.3). This requirement, applied to the
second equation in (3.8), gives the formula for the velocity

𝑉 (𝜏) =
1

2𝜆0
−

[︂
𝛼 +

√︁
𝛼2 + 4(𝑐2(𝜆0

−)
2 − 𝜔2 − Ω2)

]︂
different from (3.9). The unsuitability of this result is found when compared with a numerical
simulation. The asymptotic trajectory obtained in this way is not close to the numerical
trajectory for all parameters 𝜔 and Ω, as seen in Figure 7.
A similar situation occurs for formula (3.5). In the problem with special initial condition (1.5),

the estimate of suitability region (6.1) is independent on the relation between the parameters
𝜔2, Ω2. However, for 𝜔2 > Ω2, the use of formula (3.5) produces large errors, which is revealed
when compared with a numerical simulation. However, for initial data other than (1.5), formula
(3.5) is definitely not suitable.

8. Conclusion

When a simple wave is perturbed, the asymptotic solution depends on the choice of the
leading term in the asymptotics of the slowly deforming velocity 𝑉 (𝜀𝑡) +𝒪(𝜀), 𝜀 → 0. For the
problem for equation (1.1) we propose a construction based on the requirement for the stability
of the wave front. It leads to an algebraic equation for the velocity1 and to a unique definition of
𝑉 (𝜏) by the formula (3.9). The choice of an asymptotic solution with a stable front is indicated

1In a more general problem, this becomes the Hamilton-Jacobi equation for the phase function [5], [6].
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Figure 5. Approximate trajectories of the perturbed wave for different direc-
tions of deformation of the coefficient 𝜔2(𝜏) in the case Ω2 < 𝜔2 < 2Ω2.
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Figure 6. Approximate trajectories of the perturbed wave for different direc-
tions of deformation of the coefficient 𝜔2(𝜏) in the case 𝜔2 > 2Ω2.
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Figure 7. Approximate trajectories of the perturbed wave for different direc-
tions of deformation of the coefficient 𝜔2(𝜏) calculated from the condition of the
wave tail stability. The parameters 𝜔2, Ω2 correspond to Figure 5.

by numerical simulations. The role of the wave front in determining the wave velocity was
discussed in the first work by Fischer [21], see also [2]. There is no rigorous justification of the
asymptotics presented here with a proof of the existence theorem and with an estimate for the
remainder. This applies to all known results on the perturbation of simple waves.
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