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ASYMPTOTICS FOR SOLUTIONS OF PROBLEM

ON OPTIMALLY DISTRIBUTED CONTROL IN

CONVEX DOMAIN WITH SMALL PARAMETER

AT ONE OF HIGHER DERIVATIVES

A.R. DANILIN

Abstract. We consider a problem on optimally distributed control in a planar strictly
convex domain with a smooth boundary and a small parameter at one of the higher deriva-
tives in the elliptic operator. On the boundary of the domain the homogeneous Dirichlet
condition is imposed, while the control is additively involved in an inhomogeneity. As a
set of admissible controls we use a unit ball in the corresponding space of square integrable
functions. The solutions of the studied boundary value problem are treated in the gener-
alized sense as elements of some Hilbert space. As the optimality criterion, we employ the
sum of squared norm of the deviation of a state from a prescribed one and the squared
norm of the control with some coefficient. Such structure of the optimality criterion allows,
if this is needed, to strengthen the role of the first or the second term in this criterion. In
the first case it is more important to achieve a prescribed state, while in this second case it
is more important to minimize the resource expenses. We study in details the asymptotics
of the problem generated by the differential operator with a small coefficient at one of the
higher derivatives, to which a zero order differential operator is added.

Keywords: small parameter, optimal control, boundary value problems for systems of
partial differential equations, asymptotic expansions.
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1. Introduction

The paper is devoted to studying the asymptotics of solution to a problem on an optimally
distributed control [1] in a planar strictly convex domain with a smooth boundary and a small
parameter at one of the higher derivative in an elliptic operator. Such operators are typical for
the steady processes of heat conduction and diffusion in layered media, when the propagation
of heat (diffusion) has significantly different coefficients in perpendicular directions (in a layer
and when moving to a new layer) [2, Ch. III, Sect. 1, Item 3].
Asymptotics of the solutions of the Dirichlet problem for such elliptic equations in such

domains was studied in [3], [4]. An asymptotics of the distributed control for an operator with
a small coefficient at the Laplace operator in an essentially different domain was considered in
[8], [9], while the case of a similar domain was treated in [10]. We also note that the study
of the problems on optimal control described by partial differential equations is permanently
relevant, see, for instance, [5]–[7] and the references therein.
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2. General formulation of problem and optimality conditions

Let Ω ⊂ R2 be a bounded strictly convex domain with a smooth boundary Γ :=Γ (Ω is a
manifold of the class 𝐶∞ with an edge).
We consider the following problem on a distributed control [1, Ch. 2, Sect. 2, Eqs. (2.8)–

(2.9)]

ℒ𝜀𝑧𝜀 :=−𝜀2𝜕
2𝑧𝜀
𝜕𝑥2

− 𝜕2𝑧𝜀
𝜕𝑦2

+ 𝑎(𝑥, 𝑦)𝑧𝜀 = 𝑓(𝑥, 𝑦)− 𝑢𝜀(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, 𝑧𝜀 ∈ 𝐻1
0 (Ω), (2.1)

𝐽(𝑢) := ‖𝑧𝜀 − 𝑧𝑑‖2 + 𝛽−1‖𝑢‖−→ inf, 𝑢 ∈ 𝒰 , (2.2)

𝒰 = 𝒰(1), where 𝒰(𝑟) :={𝑢 ∈ 𝐿2(Ω) : ‖𝑢‖ ⩽ 𝑟}. (2.3)

Here 𝜀 > 0, 𝐻1
0 (Ω) is the Sobolev space of differentiable functions with zero trace on the

boundary 𝜕Ω (see, for instance, [11]), ‖ · ‖ is the norm in the space 𝐿2(Ω),

𝑓, 𝑧𝑑, 𝑎 ∈ 𝐶∞(Ω𝛿), 𝑎(𝑥, 𝑦) ⩾ 𝛼2 > 0 as (𝑥, 𝑦) ∈ Ω𝛿, (2.4)

where 𝛿 > 0 and Ω𝛿 is a 𝛿-neighbourhood of the domain Ω.
The scalar product in 𝐿2(Ω) is denoted by ( · , · ). A solution of equation (2.1) is treated in

the weak sense, that is, for each 𝑣 ∈ 𝐻1
0 (Ω) the identities hold:

𝜀2
(︂
𝜕𝑧

𝜕𝑥
,
𝜕𝑣

𝜕𝑥

)︂
+

(︂
𝜕𝑧

𝜕𝑦
,
𝜕𝑣

𝜕𝑦

)︂
+ (𝑎(𝑥, 𝑦)𝑧, 𝑣) = (𝑓 + 𝑢, 𝑣).

By (2.4) for all small 𝜀 > 0 the relation is true:

(ℒ𝜀𝑣, 𝑣) =𝜀
2

⃦⃦⃦⃦
𝜕𝑣

𝜕𝑥

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝜕𝑣

𝜕𝑦

⃦⃦⃦⃦2
+ (𝑎(𝑥, 𝑦)𝑣, 𝑣)

⩾𝜀2
⃦⃦⃦⃦
𝜕𝑣

𝜕𝑥

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝜕𝑣

𝜕𝑦

⃦⃦⃦⃦2
+ 𝛼2‖𝑣‖2 ⩾ 𝜀2‖𝑣‖2𝐻1

0 (Ω).

(2.5)

In this case the unique optimal control 𝑢𝜀(·) and a corresponding 𝑧𝜀(·) in problem (2.1)–(2.3)
are characterized as follows: there exist 𝑝𝜀 ∈ 𝐻1

0 (Ω) such that [1, Ch. 2, Sect. 2, Eqs. (2.10)]{︃
ℒ𝜀𝑧𝜀 = 𝑓(𝑥, 𝑦) + 𝑢𝜀, ℒ𝜀𝑝𝜀 − 𝑧𝜀 = −𝑧𝑑(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, 𝑧𝜀, 𝑝𝜀 ∈ 𝐻1

0 (Ω),

𝑧𝜀 = 0, 𝑝𝜀 = 0, (𝑥, 𝑦) ∈ Γ,

∀ ̃︀𝑣 ∈ 𝒰
(︀
𝑝+ 𝛽−1𝑢𝑜𝑝𝑡, (̃︀𝑣 − 𝑢𝑜𝑝𝑡)

)︀
⩾ 0. (2.6)

As it was shown in Lemma 1 in [12], in this case condition (2.6) is equivalent to the following
one: (︀

𝑢𝜀 = −𝜆𝜀𝑝𝜀
)︀
∧
(︀
𝜆𝜀 ∈ (0; 𝛽]

)︀
∧
(︁
𝜆𝜀‖𝑝𝜀‖ ⩽ 1

)︁
∧
(︁
(𝛽 − 𝜆𝜀) ·

(︀
1− 𝜆𝜀‖𝑝𝜀‖

)︀
= 0
)︁
. (2.7)

Thus, the original problem is reduced to the system of equations⎧⎪⎨⎪⎩
ℒ𝜀𝑧𝜀 + 𝜆𝜀𝑝𝜀 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,

ℒ𝜀𝑝𝜀 − 𝑧𝜀 = −𝑧𝑑(𝑥, 𝑦), 𝑧𝜀, 𝑝𝜀 ∈ 𝐻1
0 (Ω),

𝑧𝜀 = 0, 𝑝𝜀 = 0, (𝑥, 𝑦) ∈ Γ,

(2.8)

depending on a scalar parameter 𝜆𝜀 with additional condition (2.7).
The aim of the work is to study the behavior of 𝑧𝜀, 𝑝𝜀 and 𝜆𝜀 as 𝜀→ 0 and to find complete

asymptotic expansions for these quantities as 𝜀→ 0.
In what follows we often denote by the letter 𝐾, sometimes with subscripts, various positive

constants which depend only on the domain Ω and the function 𝑎(𝑥, 𝑦).
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3. Apriori estimates

The first part of inequality (2.5) implies the following lemma.

Lemma 3.1. Let the function 𝑎(·) satisfies the conditions in (2.4). If 𝑓 ∈ 𝐿2(Ω) and ℒ𝜀𝑧𝜀 =
𝑓 , then the inequality

{𝛼2‖𝑧𝜀‖, 𝛼𝜀‖𝑧′𝑥‖, 𝛼‖𝑧′𝑦‖} ⩽ ‖𝑓‖ (3.1)

holds true, where 𝑧′𝑥 :=
𝜕𝑧
𝜕𝑥

and 𝑧′𝑦 :=
𝜕𝑧
𝜕𝑦
.

Corollary 3.1. Let conditions (2.4) hold. If 𝜆𝜀, 𝑧𝜀 and 𝑝𝜀 satisfy (2.8), (2.7), then there
exists a constant 𝜆* > 0 such that for all small 𝜀 > 0 the inequalities 𝜆𝜀 ⩾ 𝜆* and

‖𝑧𝜀‖ ⩽ 𝛼−2(‖𝑓‖+ 1), ‖𝑝𝜀‖ ⩽ 𝛼−2‖𝑧𝑑‖+ 𝛼−4(‖𝑓‖+ 1)

hold true.

Proof. Two latter inequalities are implied by (3.1), while the first inequality follows from the
boundedness of ‖𝑝𝜀‖ and (2.7).

Together with (2.7) we consider a system{︃
ℒ𝜀𝑧𝜀,𝜆 + 𝜆𝑝𝜀,𝜆 = 𝑓𝜀,1(𝑥, 𝑦), ℒ𝜀𝑝𝜀,𝜆 − 𝑧𝜀,𝜆 = 𝑓𝜀,2(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,

𝑧 = 0, 𝑝 = 0, (𝑥, 𝑦) ∈ Γ.
(3.2)

Theorem 3.1. Problem (3.2) is uniquely solvable for all 𝑓𝜀,𝑖 ∈ 𝐿2(Ω) and 𝜀 > 0, 𝑖 = 1, 2,
and its solution satisfies 𝑧, 𝑝 ∈ 𝐻2(Ω). If 𝑓𝜀,𝑖 ∈ 𝐶∞(Ω), then 𝑧𝜀,𝜆, 𝑝𝜀,𝜆 ∈ 𝐶∞(Ω).

Proof. This theorem can be proved similarly to Theorem 1 from [13].

As 𝑓𝜀,1 = 𝑓 and 𝑓𝜀,2 = −𝑧𝑑, we denote the solution of system (3.2) by 𝑧𝜀,𝜆,𝑑, 𝑝𝜀,𝜆,𝑑.

Remark 3.1. We note that if 𝛽‖𝑝𝜀,𝛽,𝑑‖ ⩽ 1, then 𝑧𝜀,𝛽,𝑑 = 𝑧𝜀 and 𝑝𝜀,𝛽,𝑑 = 𝑝𝜀, while restrictions
for the control are not essential.

Let 𝑧𝜀,𝜆, 𝑝𝜀,𝜆 ∈ 𝐻1
0 (Ω) be solutions of system (3.2), then for all 𝜀 > 0 the identity

(ℒ𝜀𝑧𝜀,𝜆, 𝑝𝜀,𝜆) = (𝑧𝜀,𝜆,ℒ𝜀𝑝𝜀,𝜆) holds. Then by (3.2) we obtain

‖𝑧𝜀,𝜆‖2 + 𝜆‖𝑝𝜀,𝜆‖2 = (𝑓𝜀,1, 𝑝𝜀,𝜆)− (𝑓𝜀,2, 𝑧𝜀,𝜆). (3.3)

By (3.3), the norms ‖𝑧𝜀,𝜆‖ and ‖𝑝𝜀,𝜆‖ satisfy a quadratic inequality

‖𝑧𝜀,𝜆‖2 + 𝜆‖𝑝𝜀,𝜆‖2 ⩽ ‖𝑓𝜀,1‖ · ‖𝑝𝜀,𝜆‖+ ‖𝑓𝜀,2‖ · ‖𝑧𝜀,𝜆‖,
which yields

‖𝑧𝜀,𝜆‖ ⩽ ‖𝑓𝜀,2‖+
‖𝑓𝜀,1‖
2
√
𝜆
, ‖𝑝𝜀,𝜆‖ ⩽

‖𝑓𝜀,1‖
𝜆

+
‖𝑓𝜀,2‖
2
√
𝜆
, (3.4)

By (3.4) and (2.5) we get apriori estimates for the derivatives

𝜀2
⃦⃦⃦⃦
𝜕

𝜕𝑥
𝑧𝜀,𝜆

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝜕

𝜕𝑦
𝑧𝜀,𝜆

⃦⃦⃦⃦2
⩽ ‖𝑧𝜀,𝜆‖(‖𝑓𝜀,1‖+ 𝜆‖𝑝𝜀,𝜆‖),

𝜀2
⃦⃦⃦⃦
𝜕

𝜕𝑥
𝑝𝜀,𝜆

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝜕

𝜕𝑦
𝑝𝜀,𝜆

⃦⃦⃦⃦2
⩽ ‖𝑝𝜀,𝜆‖(‖𝑓𝜀,2‖+ ‖𝑧𝜀,𝜆‖).

Thus, if 𝜆 ∈ [𝜆*, 𝜆
*] ⊂ (0,+∞), there exists 𝐾 > 0 such that for each small 𝜀 > 0 the

inequalities

𝜀

⃦⃦⃦⃦
𝜕

𝜕𝑥
𝑧𝜀,𝜆

⃦⃦⃦⃦
+

⃦⃦⃦⃦
𝜕

𝜕𝑦
𝑧𝜀,𝜆

⃦⃦⃦⃦
+ ‖𝑧𝜀,𝜆‖ ⩽ 𝐾(‖𝑓𝜀,1‖+ ‖𝑓𝜀,2‖),

𝜀

⃦⃦⃦⃦
𝜕

𝜕𝑥
𝑝𝜀,𝜆

⃦⃦⃦⃦
+

⃦⃦⃦⃦
𝜕

𝜕𝑦
𝑝𝜀,𝜆

⃦⃦⃦⃦
+ ‖𝑝𝜀,𝜆‖ ⩽ 𝐾(‖𝑓𝜀,1‖+ ‖𝑓𝜀,2‖).

(3.5)
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hold.

4. Limiting relations

We consider a “limiting” for (3.2) problem⎧⎪⎨⎪⎩
ℒ0𝑧0,𝜆 + 𝜆𝑝0,𝜆 = 𝑓0,1(𝑥, 𝑦),

ℒ0𝑝0,𝜆 − 𝑧0,𝜆 = 𝑓0,2(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,

𝑧 = 0, 𝑝 = 0, (𝑥, 𝑦) ∈ Γ, 𝜆 ⩾ 0,

(4.1)

where the operator ℒ0 is obtained from ℒ𝜀 once we formally let 𝜀 = 0:

ℒ0𝑣 :=−𝜕
2𝑣

𝜕𝑦2
+ 𝑎(𝑥, 𝑦)𝑣, 𝑣 ∈ 𝐻1

0 (Ω).

Since the domain Ω is strictly convex, there exist points 𝑀𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ Γ, 𝑖 = 1, 2, at which
the equation of the tangentials to Γ reads as 𝑥 = 𝑥𝑖, respectively. The points 𝑀𝑖 partition the
boundary Γ into two parts Γ𝑗, a lower one (𝑗 = 1) and an upper one (𝑗 = 2). Both these parts
are the graphs of the functions 𝜙𝑗(𝑥), 𝑥 ∈ [𝑥1;𝑥2]. At the same time,

𝜙𝑗(𝑥) ∈ 𝐶([𝑥1;𝑥2]) ∩ 𝐶∞(𝑥1;𝑥2), 𝜙𝑗(𝑥𝑖) = 𝑦𝑖, 𝜙′
𝑗(𝑥𝑖 − (−1)𝑖0) = ∞. (4.2)

In the vicinity of the points 𝑀𝑖 there exists one more parametrization of the boundary Γ,
namely, 𝑥 = 𝜓𝑖(𝑦), respectively. We observe that 𝜓1 is convex (𝜓′′

1 ⩾ 0), while 𝜓2 is concave
(𝜓′′

1 ⩽ 0) and 𝜓′
𝑖(𝑦𝑖) = 0.

In what follows we assume that

𝑥1 = 𝑦1 = 0, 𝜓′′
1(𝑦1) > 0, 𝜓′′

2(𝑦2) < 0. (4.3)

Theorem 4.1. Let conditions (2.4), (4.2) hold and 𝑓0,1, 𝑓0,1 ∈ 𝐶∞(Ω𝛿). Then problem (4.1)
is uniquely solvable and its solutions are infinitely differentiable in Ω ∖ {𝑀1,𝑀2}. At the same
time, for each segment [𝜆*, 𝜆

*] ⊂ (0,+∞) there exists 𝐾 > 0 such that for all (𝑥, 𝑦) ∈ Ω and
all continuous in Ω functions 𝑓0,1, 𝑓0,2 the apriori inequality

|𝑧0,𝜆(𝑥, 𝑦)|+
⃒⃒⃒⃒
𝜕

𝜕𝑦
𝑧0,𝜆(𝑥, 𝑦)

⃒⃒⃒⃒
+ |𝑝0,𝜆(𝑥, 𝑦)|+

⃒⃒⃒⃒
𝜕

𝜕𝑦
𝑝0,𝜆(𝑥, 𝑦)

⃒⃒⃒⃒

⩽ 𝐾

𝜙2(𝑥)∫︁
𝜙1(𝑥)

(|𝑓0,1(𝑥, 𝑦)|+ |𝑓0,2(𝑥, 𝑦)|) 𝑑𝑦
(4.4)

holds true.

Proof. If 𝜆 = 0, then by the first equation in system (4.1) we obtain

(𝑓0,1, 𝑧0,0) = (ℒ0𝑧0,0, 𝑧0,0) =

⃦⃦⃦⃦
𝜕

𝜕𝑦
𝑧0,0

⃦⃦⃦⃦2
+ (𝑎(𝑥, 𝑦)𝑧0,0, 𝑧0,)) ⩾ 𝛼2‖𝑧0,𝜆‖2

and this yields
𝛼2‖𝑧0,0‖ ⩽ ‖𝑓0,1‖, 𝛼2‖𝑝0,0‖ ⩽ ‖𝑓0,2‖+ 𝛼−2‖𝑓0,1‖. (4.5)

Similarly to (3.3) we show that each solution 𝑧0,𝜆, 𝑝0,𝜆 of system (4.1) satisfies the identity

‖𝑧0,𝜆‖2 + 𝜆‖𝑝0,𝜆‖2 = (𝑓0,1, 𝑝0,𝜆)− (𝑓0,2, 𝑧0,𝜆),

and hence, for 𝜆 ∈ [𝜆*, 𝜆
*] ⊂ (0,+∞) there exists 𝐾 > 0 such that

‖𝑧0,𝜆‖+ ‖𝑝0,𝜆‖ ⩽ 𝐾(‖𝑓0,1‖+ ‖𝑓0,2‖). (4.6)

The equations in (4.1) is a system of ordinary differential equations in 𝑦 smoothly depending
on the parameter 𝑥. Since this system is Fredholm, we consider its solution as 𝑓1 = 0 and 𝑓2 = 0.
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By (4.6) under these conditions we obtain that 𝑧0,𝜆 = 0 and 𝑝0,𝜆 = 0. Thus, problem (4.1) is
solvable for each 𝑥 ∈ (𝑥1;𝑥2), while by the theorem on solutions depending on a parameter we
obtain the smoothness of 𝑧0,𝜆 and 𝑝0,𝜆 in Ω.
Applying Theorem 3.1 from [14, Ch. XII, Sect. 3] to system (4.1), in view of the continuity

in Ω𝛿 of the fundamental matrix of the linear system associated with system (4.1) we obtain
apriori estimates (4.4). The proof is complete.

As 𝑓0,1 = 𝑓 and 𝑓0,2 = −𝑧𝑑, we denote the solution of system (4.1) by 𝑧0,𝜆,𝑑, 𝑝0,𝜆,𝑑.

Theorem 4.2. Let conditions (2.4) and (4.2) be satisfied. Then

‖𝑧𝜀,𝜆,𝑑 − 𝑧0,𝜆,𝑑‖ → 0, ‖𝑝𝜀,𝜆,𝑑 − 𝑝0,𝜆,𝑑‖ → 0, as 𝜀→ 0.

Proof. We consider the functions ̃︀𝑧𝑟 :=𝜒𝑟(𝑥)𝑧0,𝜆,𝑑 and ̃︀𝑝𝑟 :=𝜒𝑟(𝑥)𝑝0,𝜆,𝑑, where 𝑟 is an auxiliary
small positive parameter, while 𝜒𝑟(𝑥) is a cut-off function, that is,

𝜒𝑟(·) ∈ 𝐶∞(R), |𝜒𝑟(𝑥)| ⩽ 1 for all 𝑥 ∈ R,

𝜒𝑟(𝑥) =

{︃
0, 𝑥 ∈ (−∞; 𝑟/2) ∪ (𝑥2 − 𝑟/2;+∞),

1, 𝑥 ∈ [𝑟;𝑥2 − 𝑟].

The functions ̃︀𝑧𝑟, ̃︀𝑝𝑟 are infinitely differentiable on Ω, vanish on Γ and satisfy the identities

ℒ0̃︀𝑧𝑟 + 𝜆̃︀𝑝𝑟 = 𝜒𝑟(𝑥)𝑓and ℒ0̃︀𝑝𝑟 − ̃︀𝑧𝑟 = −𝜒𝑟(𝑥)𝑧𝑑.

This is why

ℒ𝜀̃︀𝑧𝑟 + 𝜆̃︀𝑝𝑟 = 𝜒𝑟(𝑥)𝑓 + 𝜀2
𝜕2

𝜕𝑥2
̃︀𝑧𝑟, ℒ𝜀̃︀𝑝𝑟 − ̃︀𝑧𝑟 = −𝜒𝑟(𝑥)𝑧𝑑 + 𝜀2

𝜕2

𝜕𝑥2
̃︀𝑝𝑟.

Since ̃︀𝑧𝑟, ̃︀𝑝𝑟 ∈ 𝐶∞(Ω), there exists 𝐾𝑟 > 0 such that⃦⃦⃦⃦
𝜕2

𝜕𝑥2
̃︀𝑧𝑟 ⃦⃦⃦⃦ ⩽ 𝐾𝑟,

⃦⃦⃦⃦
𝜕2

𝜕𝑥2
̃︀𝑝𝑟 ⃦⃦⃦⃦ ⩽ 𝐾𝑟.

We denote ̃︀𝑧𝜀,𝑟 := 𝑧𝜀,𝜆,𝑑 − ̃︀𝑧𝑟, ̃︀𝑝𝜀,𝑟 := 𝑝𝜀,𝜆,𝑑 − ̃︀𝑝𝑟. Then
ℒ𝜀̃︀𝑧𝜀,𝑟 + 𝜆̃︀𝑝𝜀,𝑟 = (1− 𝜒𝑟(𝑥))𝑓 + 𝜀2

𝜕2

𝜕𝑥2
̃︀𝑧𝑟, ℒ𝜀̃︀𝑝𝜀,𝑟 − ̃︀𝑧𝜀,𝑟 = −(1− 𝜒𝑟(𝑥))𝑧𝑑 + 𝜀2

𝜕2

𝜕𝑥2
̃︀𝑝𝑟.

By (3.5) the inequalities hold

‖̃︀𝑧𝜀,𝑟‖ ⩽ 𝐾‖1− 𝜒𝑟‖(‖𝑓‖+ ‖𝑧𝑑‖) + 2𝜀2𝐾𝑟,

‖̃︀𝑝𝜀,𝑟‖ ⩽ 𝐾‖1− 𝜒𝑟‖(‖𝑓‖+ ‖𝑧𝑑‖) + 2𝜀2𝐾𝑟.
(4.7)

Since

𝑧𝜀,𝜆,𝑑 − 𝑧0,𝜆,𝑑 = ̃︀𝑧𝜀,𝑟 + (1− 𝜒𝑟(𝑥))𝑧0,𝜆,𝑑, 𝑝𝜀,𝜆,𝑑 − 𝑝0,𝜆,𝑑 = ̃︀𝑝𝜀,𝑟 + (1− 𝜒𝑟(𝑥))𝑝0,𝜆,𝑑,

then by (4.7)

0 ⩽ lim inf
𝜀→+0

‖𝑧𝜀,𝜆,𝑑 − 𝑧0,𝜆,𝑑‖ ⩽ lim sup
𝜀→+0

‖𝑧𝜀,𝜆,𝑑 − 𝑧0,𝜆,𝑑‖

⩽ 𝐾‖1− 𝜒𝑟‖(‖𝑓‖+ ‖𝑧𝑑‖) + ‖1− 𝜒𝑟‖ · ‖𝑧0,𝜆,𝑑‖,
0 ⩽ lim inf

𝜀→+0
‖𝑝𝜀,𝜆,𝑑 − 𝑝0,𝜆,𝑑‖ ⩽ lim sup

𝜀→+0
‖𝑝𝜀,𝜆,𝑑 − 𝑝0,𝜆,𝑑‖

⩽ 𝐾‖1− 𝜒𝑟‖(‖𝑓‖+ ‖𝑧𝑑‖) + ‖1− 𝜒𝑟‖ · ‖𝑝0,𝜆,𝑑‖.

But ‖1− 𝜒𝑟‖−→ 0 as 𝑟 → +0 and this is why

lim
𝑟→+0

(︁
𝐾‖1− 𝜒𝑟‖(‖𝑓‖+ ‖𝑧𝑑‖) + ‖1− 𝜒𝑟‖ · ‖𝑝0,𝜆,𝑑‖

)︁
= 0,
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and hence, ‖𝑧𝜀,𝜆,𝑑 − 𝑧0,𝜆,𝑑‖ → 0 and ‖𝑝𝜀,𝜆,𝑑 − 𝑝0,𝜆,𝑑‖ → 0 as 𝜀→ 0. The proof is complete.

Corollary 4.1. Let conditions (2.4) and (4.2) be satisfied. Then
1. If

𝛽‖𝑝0,𝛽,𝑑‖ < 1, (4.8)

then 𝜆𝜀 = 𝛽 for all small 𝜀 > 0, that is, the restrictions for the control in problem (2.1)–(2.3)
are not essential and ‖𝑧𝜀 − 𝑧0,𝛽,𝑑‖ → 0, ‖𝑝𝜀 − 𝑝0,𝛽,𝑑‖ → 0 as 𝜀→ 0.

2. If 𝛽‖𝑝0,𝛽,𝑑‖ > 1, then for all small 𝜀 > 0 the restrictions for the control in problem (2.1)–
(2.3) are essential and 𝜆𝜀‖𝑝𝜀‖ = 1 for all such 𝜀.

Proof. If 𝛽‖𝑝0,𝛽,𝑑‖ < 1, then for all small 𝜀 > 0 the inequality 𝛽‖𝑝𝜀,𝛽,𝑑‖ < 1 holds and by
Remark 3.1 the identities 𝑧𝜀,𝛽,𝑑 = 𝑧𝜀 and 𝑝𝜀,𝛽,𝑑 = 𝑝𝜀 are valid. The proof is complete.

Lemma 4.1. Let

ℒ0𝑧𝑑 ̸= 𝑓 and 𝛽‖𝑝0,𝛽,𝑑‖ > 1. (4.9)

Then there exists a unique 𝜆0 ∈ (0, 𝛽) such that

𝜆0‖𝑝0,𝜆0,𝑑‖ = 1. (4.10)

Proof. In (4.1) we pass from the functions 𝑧0,𝜆,𝑑 and 𝑝0,𝜆,𝑑 to the functions 𝑍𝜆 := 𝑧0,𝜆,𝑑 and
𝑃𝜆 :=𝜆𝑝0,𝜆,𝑑. Then {𝑍𝜆, 𝑃𝜆} satisfies the system{︃

ℒ0𝑍𝜆 + 𝑃𝜆 = 𝑓(𝑥, 𝑦), ℒ0𝑃𝜆 − 𝜆𝑍𝜆 = −𝜆𝑧𝑑(𝑥, 𝑦),
𝑍𝜆|Γ = 0 = 𝑃𝜆|Γ.

(4.11)

We consider a function ℱ(𝜆) := ‖𝑃𝜆‖2. Then ℱ ′(𝜆) = 2(𝑃𝜆,
𝜕
𝜕𝜆
𝑃𝜆).

Let ̃︀𝑍𝜆 :=
𝜕
𝜕𝜆
𝑍𝜆, and ̃︀𝑃𝜆 :=

𝜕
𝜕𝜆
𝑃𝜆. Then by the theorem on the differentiability in the parame-

ter of the solution to a system of ordinary differential equations, the pair { ̃︀𝑍𝜆, ̃︀𝑃𝜆} is a solution
of the system {︃

ℒ0
̃︀𝑍𝜆 + ̃︀𝑃𝜆 = 0, ℒ0

̃︀𝑃𝜆 − 𝜆 ̃︀𝑍𝜆 = 𝜆( ̃︀𝑍𝜆 − 𝑧𝑑(𝑥, 𝑦)),̃︀𝑍𝜆|Γ = 0 = ̃︀𝑃𝜆|Γ.
(4.12)

Let us show that ̃︀𝑃𝜆 ̸= 0 for all 𝜆 > 0. Otherwise by (4.12) we obtain that ̃︀𝑍𝜆 = 0 and

𝑧𝜆 := ̃︀𝑍𝜆 = 𝑧𝑑. But in this case it follows from (4.1) that ℒ0𝑝0,𝜆,𝑑 = 0 and hence, 𝑝0,𝜆,𝑑 = 0 and
ℒ0𝑧0,𝜆,𝑑 = ℒ0𝑧𝑑 = 𝑓 , which contradicts condition (4.9).
By (4.11) and (4.12) we have:

(𝑃𝜆, ̃︀𝑃𝜆) = −(ℒ0
̃︀𝑍𝜆, 𝑃𝜆) = −( ̃︀𝑍𝜆,ℒ*

0𝑃𝜆) = −( ̃︀𝑍𝜆, 𝜆(𝑧𝜆 − 𝑧𝑑(𝑥, 𝑦))

= −( ̃︀𝑍𝜆,ℒ*
0
̃︀𝑃𝜆 − 𝜆 ̃︀𝑍𝜆) = 𝜆‖ ̃︀𝑍𝜆‖2 + ‖ ̃︀𝑃𝜆‖2 > 0.

This is why ℱ ′(𝜆) > 0 and the function ℱ(𝜆) strictly increases, is continuous on [0, 𝛽] and
ℱ(0) = 0, while ℱ(𝛽) > 1. This is why there exists a unique 𝜆0 ∈ (0, 𝛽) such that 1 = ℱ(𝜆0) =
𝜆0‖𝑝0,𝜆0,𝑑‖. The proof is complete.

Theorem 4.3. Let conditions (4.9) be satisfied. Then

𝜆𝜀 −→𝜆0, ‖𝑧𝜀 − 𝑧0,𝜆0,𝑑‖ → 0, ‖𝑝𝜀 − 𝑝0,𝜆0,𝑑‖ → 0 as 𝜀→ 0,

where 𝜆0 satisfies (4.10).

Proof. First of all by the assumptions of the theorem for all sufficiently small 𝜀 > 0 the identity
holds:

𝜆𝜀‖𝑝𝜀‖ = 1. (4.13)
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Let 𝜆0 ∈ [0, 𝛽] be a partial limit of {𝜆𝜀}, that is, 𝜆𝜀𝑘 −→𝜆0 for some {𝜆𝜀𝑘} such that 𝜀𝑘 −→+0.
In the rest of the proof, to avoid bulky writing, we shall omit the subscript 𝑘 of 𝜀𝑘.
We consider the functions 𝑍𝜀 := 𝑧𝜀 − 𝑧𝜀,𝜆0,𝑑 and 𝑃𝜀 := 𝑝𝜀 − 𝑝𝜀,𝜆0,𝑑. Since

ℒ𝜀𝑍𝜀 + 𝜆0𝑃𝜀 = (𝜆0 − 𝜆𝜀)𝑝𝜀, ℒ𝜀𝑃𝜀 − 𝑍𝜀 = 0,

then by (3.5)
‖𝑍𝜀‖ ⩽ 𝐾|𝜆0 − 𝜆𝜀| · ‖𝑝𝜀‖, ‖𝑃𝜀‖ ⩽ 𝐾|𝜆0 − 𝜆𝜀| · ‖𝑝𝜀‖,

and by using Corollary 3.1 we see that ‖𝑍𝜀‖−→ 0 and ‖𝑃𝜀‖−→ 0. Applying Theorem 4.2, we
obtain:

‖𝑧𝜀 − 𝑧0,𝜆0,𝑑‖ → 0 and ‖𝑝𝜀 − 𝑝0,𝜆0,𝑑‖ → 0.

Passing then to the limit in (4.13), we find that 𝜆0 solves equation (4.10). By the uniqueness
of solution to equation (4.10) this shows that 𝜆0 is the unique partial limit of 𝜆𝜀 and therefore,
𝜆𝜀 −→𝜆0. The proof is complete.

5. Approximation theorems

In order to justify asymptotic expansions for solutions of problem (2.8), (2.7), we need theo-
rems on estimates for the deviation of the exact solution {𝑧𝜀, 𝑝𝜀, 𝜆𝜀} of this problem from that
of the approximating problem⎧⎪⎨⎪⎩

ℒ𝜀̃︀𝑧𝜀,𝛾 + ̃︀𝜆𝜀,𝛾̃︀𝑝𝜀,𝛾 = 𝑓(𝑥, 𝑦) + 𝑓1,𝛾, (𝑥, 𝑦) ∈ Ω,

ℒ𝜀̃︀𝑝𝜀,𝛾 − ̃︀𝑧𝜀,𝛾 = 𝑓2,𝛾 − 𝑧𝑑(𝑥, 𝑦), ̃︀𝑧𝜀,𝛾, ̃︀𝑝𝜀,𝛾 ∈ 𝐻1
0 (Ω),̃︀𝑧𝜀,𝛾 = 0, ̃︀𝑝𝜀,𝛾 = 0, (𝑥, 𝑦) ∈ Γ,

(5.1)

in the case when as 𝜀→ 0

𝑓𝑗,𝛾 ∈ 𝐶∞(Ω), ‖𝑓𝑗,𝛾‖ = 𝑂
(︀
𝜀𝛾
)︀
, 𝑗 = 1, 2, (5.2)

and we also need an approximation of condition (2.7).
If for all sufficiently small 𝜀 > 0 the restrictions on the control in the original problem are

not essential, then ̃︀𝜆𝜀,𝛾 = 𝛽. Otherwise an additional approximation condition reads as̃︀𝜆𝜀,𝛾‖̃︀𝑝𝜀,𝛾‖ = 1 +𝑂
(︀
𝜀𝛾
)︀
. (5.3)

If ̃︀𝜆𝜀,𝛾 = 𝛽, then (3.5) provide needed estimates for the approximation errors.

Theorem 5.1. Let ̃︀𝜆𝜀,𝛾 = 𝛽. Then

𝜀

⃦⃦⃦⃦
𝜕

𝜕𝑥
(𝑧𝜀 − ̃︀𝑧𝜀,𝛾)⃦⃦⃦⃦+ ⃦⃦⃦⃦ 𝜕

𝜕𝑦
(𝑧𝜀 − ̃︀𝑧𝜀,𝛾)⃦⃦⃦⃦+ ‖(𝑧𝜀 − ̃︀𝑧𝜀,𝛾)‖ = 𝑂(𝜀𝛾),

𝜀

⃦⃦⃦⃦
𝜕

𝜕𝑥
(𝑝𝜀 − ̃︀𝑝𝜀,𝛾)⃦⃦⃦⃦+ ⃦⃦⃦⃦ 𝜕

𝜕𝑦
(𝑝𝜀 − ̃︀𝑝𝜀,𝛾)⃦⃦⃦⃦+ ‖(𝑝𝜀 − ̃︀𝑝𝜀,𝛾)‖ = 𝑂(𝜀𝛾)

as 𝜀→ 0, where ̃︀𝑧𝜀,𝛾 and ̃︀𝑝𝜀,𝛾 is a solution of problem (5.1), (5.2).

In the case when the restrictions for the control are not essential, that is, approximation
condition (5.3) holds, to prove an approximation theorem we need an auxiliary statement on
the dependence of the optimal 𝑢𝜀,𝑟 in problem (2.1)–(2.2) on 𝑟 under the condition 𝒰 = 𝒰𝑟 and
‖𝑢𝜀,𝑟‖ = 𝑟.

Theorem 5.2. Let conditions (2.4) be satisfied, and 𝑢𝜀,𝑟 be a solution of problem (2.1), (2.2)
with 𝒰 = 𝒰𝑟 and ‖𝑢𝜀,𝑟‖ = 𝑟 for all 𝑟 ∈ [𝑟*; 𝑟

*]. Then

∀ 𝑟, 𝑟′ ∈ [𝑟*; 𝑟
*], ∀ 𝜀 ∈ (0; 𝜀0], ‖𝑢𝑟 − 𝑢𝑟′‖ ⩽ 𝐾|𝑟 − 𝑟′| (5.4)

for some 𝐾 > 0 and 𝜀0 > 0.
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Proof. Let 𝑧𝜀,0 be the solution of problem (2.1) with 𝑢 = 0, and an operator 𝐴𝜀 : 𝐿2(Ω) → 𝐿2(Ω)
maps the function 𝑢𝜀 into the solution of problem (2.1) with 𝑓 = 0. Then 𝑧𝜀 = 𝑧𝜀,0 +𝐴𝜀𝑢𝜀 and
the quality functional becomes

𝐽(𝑢𝜀) = ‖𝐴𝜀𝑢𝜀 + 𝑣0‖2 + 𝛽−1‖𝑢𝜀‖2,
where 𝑣0 := 𝑧𝜀,0 − 𝑧𝑑. By Theorem 3 in [15]

‖𝑢𝑟 − 𝑢𝑟′‖ ⩽ 𝐾1 · |𝑟 − 𝑟′| · ‖𝐴𝜀‖2 ·
(︀
‖𝐴𝜀‖+ ‖𝑣0‖

)︀4
.

By estimates (3.1) and the definition of ‖𝐴𝜀‖ we get ‖𝐴‖ ⩽ 𝐾2. At the same time ‖𝑣0‖ ⩽ 𝐾3,
where 𝐾2 and 𝐾3 are constants determined by (3.1). Thus, ‖𝑢𝑟 − 𝑢𝑟′‖ ⩽ 𝐾|𝑟 − 𝑟′| for all
sufficiently small 𝜀 > 0. The proof is complete.

Theorem 5.3. Let identity (4.13) hold for all sufficiently small 𝜀 > 0. Then

𝜀

⃦⃦⃦⃦
𝜕

𝜕𝑥
(𝑧𝜀 − ̃︀𝑧𝜀,𝛾)⃦⃦⃦⃦+ ⃦⃦⃦⃦ 𝜕

𝜕𝑦
(𝑧𝜀 − ̃︀𝑧𝜀,𝛾)⃦⃦⃦⃦+ ‖(𝑧𝜀 − ̃︀𝑧𝜀,𝛾)‖ = 𝑂(𝜀𝛾),

𝜀

⃦⃦⃦⃦
𝜕

𝜕𝑥
(𝑝𝜀 − ̃︀𝑝𝜀,𝛾)⃦⃦⃦⃦+ ⃦⃦⃦⃦ 𝜕

𝜕𝑦
(𝑝𝜀 − ̃︀𝑝𝜀,𝛾)⃦⃦⃦⃦+ ‖(𝑝𝜀 − ̃︀𝑝𝜀,𝛾)‖ = 𝑂(𝜀𝛾),

|𝜆𝜀 − ̃︀𝜆𝜀,𝛾| = 𝑂(𝜀𝛾),

as 𝜀→ 0, where ̃︀𝑧𝜀,𝛾, ̃︀𝑝𝜀,𝛾 and ̃︀𝜆𝜀,𝛾 are the solution of problem (5.1)–(5.3).

Proof. This theorem can be proved similarly to Theorem 4 in [15] taking into consideration
(3.1) and (5.4).

The approximation theorems show that the construction of an asymptotic expansion for the
solution of problem (2.8), (2.7) is reduced to constructing its formal asymptotic solution [16,
Ch. I, Sect. 1].

6. Outer asymptotic expansion

In contrast to [10], since for 𝜀 = 0 system (2.8) remains a system of second order ordinary
differential equations smoothly depending on the parameter 𝑥, by means of the outer expansion
we succeed to satisfy the boundary conditions without an exponentially decaying boundary
layer.
We seek outer expansions for 𝑧𝜀 and 𝑝𝜀 and an expansion for 𝜆𝜀 as

𝑧𝑜𝑢𝑡 :=
+∞∑︁
𝑘=0

𝜀2𝑘𝑧𝑘(𝑥, 𝑦), 𝑝𝑜𝑢𝑡 :=
+∞∑︁
𝑘=0

𝜀2𝑘𝑝𝑘(𝑥, 𝑦), 𝜆 :=
+∞∑︁
𝑘=0

𝜀2𝑘𝜆𝑘. (6.1)

We substitute these series into system (2.8) and equate the terms of like smallness order. As a
result, for determining the functions 𝑧𝑘, 𝑝𝑘 and constants 𝜆𝑘, we obtain the equations⎧⎪⎪⎨⎪⎪⎩

ℒ0𝑧0 + 𝜆0𝑝0 = 𝑓(𝑥, 𝑦),ℒ0𝑝0 − 𝑧0 = −𝑧𝑑(𝑥, 𝑦),

ℒ0𝑧𝑘 + 𝜆0𝑝𝑘 + 𝜆𝑘𝑝0 = 𝐹1,𝑘,ℒ0𝑝𝑘 − 𝑧𝑘 = 𝐹2,𝑘, 𝑘 ⩾ 1,

𝑧𝑘|Γ = 0 = 𝑝𝑘|Γ,𝑘 ⩾ 0,

(6.2)

where an operator ℒ0 is obtained from ℒ𝜀 once we formally let 𝜀 = 0:

ℒ0 :=− 𝜕2

𝜕𝑦2
+ 𝑎(𝑥, 𝑦), 𝐹1,𝑘 =

𝜕2𝑧𝑘−1

𝜕𝑥2
−

𝑘−1∑︁
𝑙=1

𝜆𝑙𝑝𝑘−𝑙, 𝐹2,𝑘 =
𝜕2𝑝𝑘−1

𝜕𝑥2
. (6.3)

By Theorem 4.1, system (6.2), (6.3) possesses an unique solution for a given set {𝜆𝑘}.
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Thus, the outer expansion has been constructed for a given set {𝜆𝑘}. By its construction,
this expansion is a formal asymptotic solution for problem (2.8) in subdomains of the domain
Ω, in which series (6.1) keep their asymptotic property.
We are going to show that these series are valid in the entire domain Ω. In order to do this,

we consider the asymptotics of the functions 𝑧𝑘 and 𝑝𝑘 as (𝑥, 𝑦) → 𝑀𝑖, 𝑖 = 1, 2. The arguing
for all such neighbourhoods are similar and this is why we consider only the neighbourhood of
the point 𝑀1 = (0, 0).
Let

𝜓1(𝑦)
𝑎𝑠
= 𝑐−2𝑦2

(︃
1 +

+∞∑︁
𝑘=1

𝑐𝑘𝑦
𝑘

)︃
, 𝑦 → 0.

Then the functions 𝜙𝑗 determining Γ𝑗 have the following asymptotic expansions as 𝑥→ +0:

𝜙1(𝑥)
𝑎𝑠
= −𝑐𝑥1/2 +

+∞∑︁
𝑠=2

𝑐𝑠(−𝑥1/2)𝑠, 𝜙2(𝑥)
𝑎𝑠
= 𝑐𝑥1/2 +

+∞∑︁
𝑠=2

𝑐𝑠(−𝑥1/2)𝑠. (6.4)

By 𝜎(𝑥), sometimes with subscripts, we shall denote smooth on (0;𝑥1) functions having a
power asymptotic expansion as 𝑥 → +0, which can be differentiated infinitely many times.
By 𝜎(𝑥, 𝑦), sometimes with subscripts, we shall denote smooth in Ω functions having a power
asymptotic expansion as Ω ∋ (𝑥, 𝑦) → (0, 0), which can be differentiated infinitely many times.
We shall group the terms in the asymptotic representation of the functions 𝜎(𝑥, 𝑦) into

homogeneous of (2, 1)-degree polynomials, where deg(2,1)(𝑥
𝑠𝑦𝑟) := 2𝑠+𝑟. Homogeneous of (2, 1)-

degree 𝑛 polynomials are denoted by 𝑃𝑛. Such polynomial reads as

𝑃𝑛(𝑥, 𝑦) =
∑︁

𝑠:𝑛⩾2𝑠⩾0

𝛾𝑠𝑥
𝑠𝑦𝑛−2𝑠.

Thus, as Ω ∋ (𝑥, 𝑦) → (0, 0),

𝜎(𝑥, 𝑦)
𝑎𝑠
=

+∞∑︁
𝑛=0

𝑃𝑛(𝑥, 𝑦).

As for usual homogeneous polynomials of degree 𝑛,

𝑃𝑛(𝑥, 𝑦)𝑃𝑚(𝑥, 𝑦) = 𝑃𝑛+𝑚(𝑥, 𝑦).

We note that 𝑃𝑛(𝑥, 𝑦) = 𝑥𝑛/2𝑄(𝑦/
√
𝑥), where 𝑄(𝜂) is some polynomial of 𝜂.

If 𝜎(𝑥, 𝑦)
𝑎𝑠
=

+∞∑︀
𝑛=𝑘

𝑃𝑛(𝑥, 𝑦) as Ω ∋ (𝑥, 𝑦) → (0, 0), to stress this fact, we shall employ the

notation 𝜎(𝑥, 𝑦; 𝑘).
By (6.4), the functions 𝜙1 and 𝜙2 can be represented as

𝜙1(𝑥) = −𝑥1/2𝜎1(𝑥) + 𝑥𝜎2(𝑥), 𝜙2(𝑥) = 𝑥1/2𝜎1(𝑥) + 𝑥𝜎2(𝑥), 𝜎1(0) = 𝑐. (6.5)

It follows from (6.5) that the following asymptotic estimates hold:⃒⃒⃒⃒
𝜙𝑖(𝑥)√
𝑥

⃒⃒⃒⃒
= 𝑐+𝑂(𝑥) as 𝑥→ +0, 𝑖 = 1, 2,

𝜎(𝑥, 𝑦;𝑛) = 𝑂
(︁
𝑥𝑛/2

)︁
as Ω ∋ (𝑥, 𝑦) → (0; 0) uniformly in 𝑦.

(6.6)

Lemma 6.1. If 𝑤𝑘(𝑥, 𝑦) is a solution of the problem

ℒ0,0𝑤𝑘 :=
𝜕2𝑤𝑘

𝜕𝑦2
= 𝑦𝑘, (𝑥, 𝑦) ∈ Ω, 𝑤𝑘

⃒⃒⃒
Γ
= 0,

then
𝑤𝑘(𝑥, 𝑦) = 𝛾𝑘𝑦

𝑘+2 + 𝑦𝑥[(𝑘+1)/2]𝜎3(𝑥, 𝑦) + 𝑥[(𝑘+2)/2]𝜎4(𝑥, 𝑦). (6.7)
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Here [𝑏] is the integer part of a number 𝑏 and 𝛾𝑘 = 1/((𝑘 + 1)(𝑘 + 2)).

Proof. By an explicit formula, the solution of the considered equation 𝑤𝑘(𝑥, 𝑦) is of the form

𝑤𝑘(𝑥, 𝑦)

𝛾𝑘
= 𝑦𝑘+2 − 𝑦

𝜙2(𝑥)
𝑘+2 − 𝜙1(𝑥)

𝑘+2

𝜙2(𝑥)− 𝜙1(𝑥)
+
𝜙1(𝑥)𝜙2(𝑥)

(︀
𝜙2(𝑥)

𝑘+1 − 𝜙1(𝑥)
𝑘+1
)︀

𝜙2(𝑥)− 𝜙1(𝑥)
.

Since by (6.5)

𝜙2(𝑥)− 𝜙1(𝑥) = 2
√
𝑥𝜎1(𝑥), 𝜙2(𝑥)𝜙1(𝑥) = 𝑥2𝜎2(𝑥)

2 − 𝑥𝜎1(𝑥)
2,

and for a natural number 𝑚

𝜙2(𝑥)
𝑚 − 𝜙1(𝑥)

𝑚 = 2
√
𝑥

2𝑠⩽𝑚∑︁
𝑠=0

𝐶2𝑠+1
𝑚 𝑥𝑚−𝑠−1𝜎1(𝑥)

2𝑠+1𝜎2(𝑥)
𝑚−2𝑠−1,

then by standard procedures with power asymptotic series we obtain formula (6.7).

Corollary 6.1. If 𝑤𝑘(𝑥, 𝑦) is the solution of the problem

ℒ0,0𝑤𝑘 = 𝑃𝑘(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, 𝑤𝑘

⃒⃒
Γ
= 0,

then

𝑤𝑘(𝑥, 𝑦) = 𝜎(𝑥, 𝑦; 𝑘 + 1).

Proof. By the linear property of the considered problem, it is sufficient to confirm this fact for
a monomial, that is, for 𝑃𝑘(𝑥, 𝑦) = 𝑥𝑠𝑦𝑘−2𝑠. In this case by formula (6.7) we obtain

𝑤𝑘(𝑥, 𝑦) = 𝛾𝑘𝑥
𝑠𝑦𝑘+2 + 𝑦𝑥[(𝑘+1+2𝑠)/2]𝜎3(𝑥, 𝑦) + 𝑥[(𝑘+2+2𝑠)/2]𝜎4(𝑥, 𝑦).

Considering even and odd 𝑘, we see that the relation

𝑤𝑘(𝑥, 𝑦) = 𝜎(𝑥, 𝑦; 𝑘 + 1)

is true. The proof is complete.

Lemma 6.2. If 𝑣(𝑥, 𝑦), 𝑤(𝑥, 𝑦) is the solution of problem (4.1) with 𝑓0,𝑖(𝑥, 𝑦) = 𝜎𝑖(𝑥, 𝑦; 𝑘),
𝑖 = 1, 2, then

𝑣(𝑥, 𝑦) = 𝜎1(𝑥, 𝑦; 𝑘 + 1), 𝑤(𝑥, 𝑦) = 𝜎2(𝑥, 𝑦; 𝑘 + 1).

Proof. We first of all observe that 𝑎(𝑥, 𝑦) = 𝜎(𝑥, 𝑦; 0). Let

𝑓0,𝑖(𝑥, 𝑦)
𝑎𝑠
=

+∞∑︁
𝑛=𝑘

𝑃𝑛,𝑖,1(𝑥, 𝑦), 𝑙 = 1, 2,

where 𝑃𝑛,𝑖,1(𝑥, 𝑦) are homogeneous of (2, 1)-degree 𝑛 polynomials, while 𝑣1(𝑥, 𝑦) and 𝑤1(𝑥, 𝑦) is
the solution of the problem

ℒ0,0𝑣1 = 𝑃𝑘,1,1(𝑥, 𝑦), ℒ0,0𝑤1 = 𝑃𝑘,2,1(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, 𝑣1
⃒⃒
Γ
= 0 = 𝑤1

⃒⃒
Γ
.

Then 𝑣1 = 𝜎𝑣,1(𝑥, 𝑦; 𝑘+1), 𝑤1 = 𝜎𝑤,1(𝑥, 𝑦; 𝑘+1) by Corollary 6.1, and the functions 𝑉1 := 𝑣−𝑣1
and 𝑊1 :=𝑤 − 𝑤1 satisfy the system

ℒ0𝑉1 + 𝜆𝑊1 = 𝑓0,1 − 𝑣1 − 𝑎(𝑥, 𝑦)𝑣1 − 𝜆𝑤1 = 𝜎1,1(𝑥, 𝑦; 𝑘 + 1)
𝑎𝑠
=

+∞∑︁
𝑛=𝑘+1

𝑃𝑛,1,2(𝑥, 𝑦),

ℒ0𝑊1 − 𝑉1 = 𝑓0,2 − 𝑤1 − 𝑎(𝑥, 𝑦)𝑤1 + 𝑣1 = 𝜎2,1(𝑥, 𝑦; 𝑘 + 1)
𝑎𝑠
=

+∞∑︁
𝑛=𝑘+1

𝑃𝑛,2,2(𝑥, 𝑦),

𝑉1

⃒⃒⃒
Γ
= 0 = 𝑊1

⃒⃒⃒
Γ
.
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Now we consider the solution 𝑣2(𝑥, 𝑦) and 𝑤2(𝑥, 𝑦) of the problem

ℒ0,0𝑣2 = 𝑃𝑘+1,1,2(𝑥, 𝑦) ℒ0,0𝑤2 = 𝑃𝑘+1,2,2(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, 𝑣1
⃒⃒
Γ
= 0 = 𝑤1

⃒⃒
Γ
.

Then the functions 𝑉1 := 𝑣 − 𝑣1 − 𝑣2 and 𝑊1 :=𝑤 − 𝑤1 − 𝑤2 solve the system

ℒ0𝑉2 + 𝜆𝑊2 = 𝜎1,2(𝑥, 𝑦; 𝑘 + 2), ℒ0𝑊1 − 𝑉1 = 𝜎2,2(𝑥, 𝑦; 𝑘 + 1), 𝑉1
⃒⃒
Γ
= 0 = 𝑊1

⃒⃒
Γ
.

Continuing this process, we obtain asymptotic series 𝑉 :=
+∞∑︀
𝑛=1

𝑣𝑛 and 𝑊 :=
+∞∑︀
𝑛=1

𝑤𝑛, which are

a formal asymptotic solution of problem (4.1). By estimates (4.4) and (6.6) the constructed
series are asymptotic expansions for the solutions of problem (4.1). The proof is complete.

Theorem 6.1. Let conditions (2.4) and (4.3) hold. Then for each set {𝜆𝑘}∞𝑘=0 ⊂ [𝜆*;𝜆
*] ⊂

(0;+∞) the solution of system (6.2), (6.3) read as 𝑧𝑘 = 𝜎𝑧,𝑘(𝑥, 𝑦), 𝑝𝑘 = 𝜎𝑝,𝑘(𝑥, 𝑦).

Proof. By Lemma 6.2 we have 𝑧0 = 𝜎𝑧,0(𝑥, 𝑦) and 𝑝0 = 𝜎𝑝,0(𝑥, 𝑦). Since by the definition a
function of for 𝜎(𝑥, 𝑦) (𝜕/𝜕𝑥)𝜎(𝑥, 𝑦) is again a function of form 𝜎(𝑥, 𝑦), then

ℒ0𝑧1 =
𝜕2

𝜕𝑥2
𝑧0 − 𝜆1𝑝0 = 𝜎𝑧,0,1(𝑥, 𝑦), ℒ0𝑝1 =

𝜕2

𝜕𝑥2
𝑝0 = 𝜎𝑝,0,1(𝑥, 𝑦),

and hence, 𝑧1 = 𝜎𝑧,1(𝑥, 𝑦) and 𝑝1 = 𝜎𝑝,1(𝑥, 𝑦). Then we continue arguing by induction and this
completes the proof.

Thus, the outer expansion is valid everywhere in Ω and by Corollary 3.1 this is an asymptotic
expansion of the solution of problem (2.8) for each fixed 𝜆𝜀 with an asymptotic expansion of

form
+∞∑︀
𝑘=0

𝜀2𝑘𝜆𝑘.

We note that for a single equation with 𝜓1(𝑦) = 𝑦2 a similar result was obtained in [3, Thm.
2]. At the same time, if 𝜓1(𝑦) = 𝑦4, then the functions in the outer expansion have increasing
singularities as Ω ∋ (𝑥, 𝑦) → (0; 0), see [3, Sect. 1.2].

7. Complete asymptotics for solution

1. Let condition (4.8) hold. In this case the identity 𝜆𝜀 = 𝛽 is true and hence, 𝜆0 = 𝛽,
𝜆𝑘 = 0 as 𝑘 > 0. This is why by Theorem 5.1 we arrive at the following theorem.

Theorem 7.1. Let conditions (2.4), (4.3) and (4.8) hold. Then outer expansion (6.1) with
𝜆0 = 𝛽, 𝜆𝑘 = 0 for 𝑘 > 0 is an asymptotic expansion for the solution of problem (2.8) with
𝜆𝜀 = 𝛽 as 𝜀→ +0.

2. Let condition (4.9) hold. In this case the conditions determining {𝜆𝑘} are generated by
the asymptotic identity Λ2‖𝑝𝑜𝑢𝑡‖2

𝑎𝑠
= 1 as 𝜀→ +0.

Equating the coefficients at the like powers of 𝜀, we obtain the identities

𝜆0‖𝑝0‖ = 1, 2𝜆0𝜆𝑘‖𝑝0‖2 + 2𝜆20(𝑝0, 𝑝𝑘) = ℎ𝑘, 𝑘 ∈ N, (7.1)

where ℎ𝑘 is completely determined by previous 𝑧𝑙, 𝑝𝑙 and 𝜆𝑙, 0 ⩽ 𝑙 < 𝑘. Thus, as 𝜆0 we choose
a unique solution of the equation 𝜆‖𝑝0,𝜆,𝑑‖ = 1, which is ensured by Lemma 4.1.
As in [10], for 𝑘 > 0 it is convenient to represent 𝑧𝑘 and 𝑝𝑘 as 𝑧𝑘 = ̃︀𝑧𝑘 + 𝜆𝑘̃︀𝑧, 𝑝𝑘 = ̃︀𝑝𝑘 + 𝜆𝑘̃︀𝑝,

where ̃︀𝑧𝑘, ̃︀𝑝𝑘 is the solution of the problem{︃
ℒ0̃︀𝑧𝑘 + 𝜆0̃︀𝑝𝑘 = 𝐹1,𝑘, ℒ0̃︀𝑝𝑘 − ̃︀𝑧𝑘 = 𝐹2,𝑘, 𝑘 ⩾ 1,̃︀𝑧𝑘|Γ = 0 = ̃︀𝑝𝑘|Γ, 𝑘 ⩾ 0,

(7.2)
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while ̃︀𝑧, ̃︀𝑝 is the solution of the problem{︃
ℒ0̃︀𝑧 + 𝜆0̃︀𝑝+ 𝑝0 = 0, ℒ0̃︀𝑝− ̃︀𝑧 = 0,̃︀𝑧|Γ = 0 = ̃︀𝑝|Γ. (7.3)

We observe that the functions ̃︀𝑧𝑘, ̃︀𝑝𝑘 are completely determined by previous 𝑧𝑙, 𝑝𝑙 and 𝜆𝑙,
0 ⩽ 𝑙 < 𝑘. Under such representation, equations (7.1) for determining 𝜆𝑘 become

𝜆0‖𝑝0‖ = 1, 2𝜆𝑘

(︁
𝜆0‖𝑝0‖2 + 𝜆20(𝑝0, ̃︀𝑝))︁ = ̃︀ℎ𝑘, 𝑘 ∈ N. (7.4)

Lemma 7.1. If condition (4.9) hold, then

𝜆0‖𝑝0‖2 + 𝜆20(𝑝0, ̃︀𝑝) > 0.

Proof. We note that ̃︀𝑧 = 𝜕

𝜕𝜆
𝑧0,𝜆,𝑑

⃒⃒⃒⃒
𝜆=𝜆0

, ̃︀𝑝 = 𝜕

𝜕𝜆0,𝜆,𝑑

⃒⃒⃒⃒
𝜆=𝜆0

.

This is why by Lemma 4.1

0 <
𝜕

𝜕𝜆

(︁
𝜆2‖𝑝0,𝜆,𝑑‖2

)︁⃒⃒⃒
𝜆=𝜆0

= 2𝜆0‖𝑝0‖2 + 2𝜆20(𝑝0, ̃︀𝑝).
The proof is complete.

Thus, problems (6.2)–(6.3), (7.2)–(7.4) are uniquely solvable and outer expansion (6.1) is
a formal asymptotic solution of problem (2.8), (2.7). Thus, in this case we also have a final
theorem.

Theorem 7.2. Let conditions (2.4), (4.3) and (4.9 hold. Then outer expansion (6.1) with
the coefficients determined by problems (6.2)–(6.3), (7.2)–(7.4) is an asymptotic expansion for
solution of problem (2.8) as 𝜀→ +0 with an additional condition 𝜆𝜀‖𝑝𝜀‖ = 1.

Conclusion

We note that under condition (4.3) considered problem (2.1)–(2.3) turns out to be regular
and the asymptotic expansion for its solution coincides with the outer expansion. However,
as 𝜓(𝑦) = 𝑦4, the outer expansion is no longer valid everywhere in Ω and for constructing the
asymptotic expansion for the solution of the considered problem in this case one has to employ
the method of matching asymptotic expansions [16].
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