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CONDITIONS FOR ABSENCE OF SOLUTIONS TO

SOME HIGHER ORDER ELLIPTIC INEQUALITIES

WITH SINGULAR COEFFICIENTS IN R𝑛

W.E. ADMASU, E.I. GALAKHOV

Abstract. In this paper we study Liouville type theorems for elliptic higher order inequal-
ities with singular coefficients and gradient terms in R𝑛. Our approach is based on the
Pokhozhaev nonlinear capacity method, which is widely used for studying various nonlinear
elliptic inequalities. We obtain apriori estimates for solutions of an elliptic inequality using
the method of test functions. An optimal choice of the test function leads us to a nonlinear
minimax problem, which generates a nonlinear capacity induced by a corresponding nonlin-
ear problem. The existence of the zero limit of the corresponding apriori estimate ensures
the absence of a nontrivial solution to the problem. Our result provide a new view on
the behavior of solutions of higher order elliptic inequalities with singular coefficients and
gradient terms and this approach can be useful in studying nonlinear elliptic inequalities of
other types.
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1. Introduction

Over past ten years the absence of solutions to various nonlinear differential inequalities
and systems was studied by many mathematicians, in particular, for elliptic inequalities and
systems of partial differential equations with singular coefficients and gradient terms, what is
equivalent to the absence of stationary states for the corresponding parabolic inequalities and
systems, see [1]–[25]. Here we can mention a result by B. Gidas and J. Spruck [13] on absence
of positive solutions to the equation

−∆𝑢 = 𝑢𝑞 (𝑥 ∈ R𝑛)

for 1 < 𝑞 < 𝑛+2
𝑛−2

. Later a comparison method became a main approach for studying this
problem, which allowed to obtain the sufficient conditions for the absence of solutions in terms
of the critical nonlinearity index for many second order equations like

−∆𝑢 = |𝑥|−2𝑢𝑞 (𝑥 ∈ R𝑛 ∖ {0}),
−∆𝑝𝑢 = 𝑢𝑞 − |∇𝑢|𝑠 (𝑥 ∈ R𝑛),

where ∆𝑝𝑢 = div(|∇𝑢|𝑝−2∇𝑢), and similar ones as well as for corresponding inequalities, see,
for instance, [2]–[3], [14]–[16] and the references therein. However, in the general case, the
comparison methods are not applicable for higher order operators.
E. Mitidieri and S.I. Pokhozhaev [17] developed a new effective approach to these issues

called a nonlinear capacity method. It is based on a special choice of a parametric family of
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test functions, which allows one to obtain apriori estimates by applying corresponding algebraic
inequalities to the integral formulation of the considered elliptic inequality and to get then
the results on the absence of solutions by letting the parameter tend to zero or to infinity.
This approach provides simple and exact results. In particular, it was shown in [23] that the
inequality

−∆𝑝𝑢 ⩾ |𝑥|−𝛼𝑢𝑞 (𝑥 ∈ R𝑛)

with 𝑝 > 1, 𝛼 < 𝑝 and 𝑝 − 1 < 𝑞 ⩽ (𝑛−𝛼)(𝑝−1)
𝑛−𝑝

has no positive solutions. This method
was successfully applied to inequalities with more general operators like a mean curvature
operator [1], [9], a wide class of anisotropic quasilinear operators [5], [6], [8], [11], [12], [14]–
[19], [21]–[24], as well as for systems of inequalities [7]–[12], [20]. Later, by employing a more
sophisticated technique, R. Filippucci, P. Pucci, M. Rigoli [2]–[7] obtained rather essential
results on existence and absence of solutions for coercive inequalities with the opposite sign at
∆𝑝 including inequalities with gradient terms of form |∇𝑢|𝑠.
In the present paper we prove a Liouville type theorem for some higher order elliptic inequal-

ities with singular coefficients and gradient terms in R𝑛, which were not studied before.
The rest of the papers consists of Sections 2 and 3. In Section 2 we formulate a result on

the absence of non-constant solutions to an elliptic inequality, while in Section 3 we prove this
statement. Throughout the paper the letter 𝑐 denotes for positive constants, which can depend
on the parameters of the considered inequalities.

2. Formulation of result

We establish the absence of non-constant entire solutions to inequalities of form

±∆𝑘𝑢(𝑥) ⩾ (1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 − (1 + |𝑥|)−𝛽|∇𝑢(𝑥)|𝑠, 𝑥 ∈ R𝑛, (2.1)

where 𝑘 ∈ N, 𝛼, 𝛽 ∈ R and

𝑠 > 0, 𝑞 > max(1, 𝑠). (2.2)

Definition 2.1. A weak solution to inequality (2.1) is a function 𝑢 ∈ 𝑊 1,𝑞
𝑙𝑜𝑐 (R

𝑛) such that

(1 + |𝑥|)−𝛼 |∇𝑢|𝑞 ∈ 𝐿1
𝑙𝑜𝑐(R

𝑛), (1 + |𝑥|)−𝛽|∇𝑢|𝑠 ∈ 𝐿1
𝑙𝑜𝑐(R

𝑛),

and∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙(𝑥) 𝑑𝑥 ⩽ ±
∫︁
R𝑛

𝑢(𝑥)∆𝑘𝜙(𝑥) 𝑑𝑥+

∫︁
R𝑛

(1 + |𝑥|)−𝛽 |∇𝑢(𝑥)|𝑠 𝜙(𝑥) 𝑑𝑥 (2.3)

holds for each non-negative test function 𝜙 ∈ 𝐶2𝑘
0 (R𝑛).

Theorem 2.1. Let (2.2) holds. Assume that 𝜃1 ⩽ 0 and 𝜃2 < 0, and

𝜃1 =
𝑛(𝑞 − 1)− (2𝑘 − 1)𝑞 + 𝛼

𝑞 − 1
, 𝜃2 =

𝑛(𝑞 − 𝑠)− 𝛽𝑞 + 𝛼𝑠

𝑞 − 𝑠
. (2.4)

Then each weak solution to equation (2.1) is identically constant almost everywhere in R𝑛.

3. Proof of the result

We use definition (2.3) of a weak solution to inequality (2.1) and integrate by parts in the
first term in the right hand side:

±
∫︁
R𝑛

𝑢(𝑥)∆𝑘𝜙(𝑥) 𝑑𝑥 = −
∫︁
R𝑛

∇𝑢(𝑥) · ∇(∆𝑘−1𝜙(𝑥)) 𝑑𝑥.
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This implies: ∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙(𝑥) 𝑑𝑥 ⩽
∫︁
R𝑛

|∇𝑢(𝑥)| · |∇(∆𝑘−1𝜙(𝑥))| 𝑑𝑥

+

∫︁
R𝑛

(1 + |𝑥|)−𝛽 |∇𝑢(𝑥)|𝑠 𝜙(𝑥) 𝑑𝑥.
(3.1)

Now we are going to estimate the terms in the right hand side of (3.1). Applying the Young
inequality with the exponents 𝑞 > 1 and 𝑞′ = 𝑞

𝑞−1
> 1 to the first term in the right hand side

of (3.1), we obtain the following estimate:∫︁
R𝑛

|∇𝑢(𝑥)| · |∇(∆𝑘−1𝜙(𝑥))| ⩽1

3

∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙(𝑥) 𝑑𝑥

+ 𝑐

∫︁
supp𝜙

(1 + |𝑥|)𝛼
𝑞′
𝑞 |∇(∆𝑘−1𝜙(𝑥))|𝑞′𝜙− 𝑞′

𝑞 (𝑥) 𝑑𝑥.
(3.2)

In the same way was we estimate the second term in the right hand side of (3.1). Applying the
Young inequality with the exponents

𝑟 =
𝑞

𝑠
> 1, 𝑟′ =

𝑞

𝑞 − 𝑠
> 1,

we obtain: ∫︁
R𝑛

(1 + |𝑥|)−𝛽 |∇𝑢(𝑥)|𝑠 𝜙(𝑥) 𝑑𝑥 ⩽
1

3

∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙(𝑥) 𝑑𝑥

+ 𝑐

∫︁
R𝑛

(1 + |𝑥|)(−𝛽+𝛼
𝑟
)𝑟′𝜙(𝑥) 𝑑𝑥.

(3.3)

Combining (3.1)–(3.3), we arrive at∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙(𝑥) 𝑑𝑥 ⩽𝑐
∫︁

supp 𝜙

(1 + |𝑥|)𝛼
𝑞′
𝑞 |∇(∆𝑘−1𝜙(𝑥))|𝑞′𝜙− 𝑞′

𝑞 (𝑥) 𝑑𝑥

+ 𝑐

∫︁
R𝑛

(1 + |𝑥|)(−𝛽+𝛼
𝑟
)𝑟′𝜙(𝑥) 𝑑𝑥.

(3.4)

We choose a test function 𝜙 of form

𝜙(𝑥) = 𝜙𝑅(𝑥) = 𝜓𝜆

(︃
|𝑥|2

𝑅2

)︃
, (3.5)

where 𝜆 > 2𝑘𝑞′ and an non-negative function 𝜓 ∈ 𝐶2𝑘
0

(︀
R+

)︀
is such that

𝜓(𝑠) =

{︃
1, 0 ⩽ 𝑠 ⩽ 1,

0, 𝑠 ⩾ 4.
(3.6)

We then make the change of variables

𝑥→ 𝜉, where 𝑥 = 𝑅𝜉. (3.7)
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Considering the right hand sides of inequalities (3.4) and (3.7) for 𝑅 ⩾ 1, we obtain∫︁
R𝑛

(1 + |𝑥|)𝛼
𝑞′
𝑞

⃒⃒
∇(∆𝑘−1𝜙𝑅(𝑥))

⃒⃒𝑞′
𝜙
− 𝑞′

𝑞

𝑅 (𝑥) 𝑑𝑥

⩽ 𝑅𝜃1

∫︁
1⩽|𝜉|⩽2

(1 + |𝜉|)𝛼
𝑞′
𝑞

⃒⃒
∇(∆𝑘−1𝜙1(𝜉))

⃒⃒𝑞′
𝜙
− 𝑞′

𝑞

1 (𝜉)𝑑𝜉,

(3.8)

where 𝜃1 = 𝑛− (2𝑘 − 1)𝑞′ + 𝛼 𝑞′

𝑞
⩽ 0, and∫︁

R𝑛

(1 + |𝑥|)(−𝛽+𝛼
𝑟
)𝑟′𝜙𝑅(𝑥) 𝑑𝑥 ⩽ 𝑅𝜃2

∫︁
|𝜉|⩽2

(1 + |𝜉|)(−𝛽+𝛼
𝑟
)𝑟′𝜙1(𝜉) 𝑑𝜉, (3.9)

where 𝜃2 = 𝑛 + (−𝛽 + 𝛼
𝑟
)𝑟′ < 0. Then by the choice of the test function 𝜙1(𝜉) = 𝜓𝜆(|𝜉|) with

𝜆 > 2𝑘𝑞′, we have ∫︁
1⩽|𝜉|⩽2

(1 + |𝜉|)𝛼
𝑞′
𝑞

⃒⃒
∇(∆𝑘−1𝜙1(𝜉))

⃒⃒𝑞′
𝜙
− 𝑞′

𝑞

1 (𝜉) 𝑑𝜉 <∞

and ∫︁
|𝜉|⩽2

(1 + |𝜉|)(−𝛽+𝛼
𝑟
)𝑟′𝜙1(𝜉) 𝑑𝜉 <∞,

since the integral in the right hand side of (3.4) is finite. Then it follows from (3.4) that∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙𝑅(𝑥) 𝑑𝑥 ⩽ 𝑐𝑅𝜃, (3.10)

where 𝜃 = max(𝜃1, 𝜃2). Now we consider the following two cases with different values of 𝜃1.
Case 1: If 𝜃1 < 0, we pass to the limit as 𝑅 → ∞ in (3.10) and we get:∫︁

R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙𝑅(𝑥) 𝑑𝑥→ 0. (3.11)

Thus, 𝑢 is constant almost everywhere in R𝑛.
Case 2: 𝜃1 = 0. In this case it follows from relation (3.8) that∫︁

R𝑛

(1 + |𝑥|)𝛼
𝑞′
𝑞

⃒⃒
∇(∆𝑘−1𝜙𝑅(𝑥))

⃒⃒𝑞′
𝜙
− 𝑞′

𝑞

𝑅 (𝑥) 𝑑𝑥

⩽
∫︁
1⩽|𝜉|⩽2

(1 + |𝜉|)𝛼
𝑞′
𝑞

⃒⃒
∇(∆𝑘−1𝜙1(𝜉))

⃒⃒𝑞′
𝜙
− 𝑞′

𝑞

1 (𝜉) 𝑑𝜉 := 𝑐

(3.12)

and since 𝜃2 < 0,

lim
𝑅→∞

∫︁
R𝑛

(1 + |𝑥|)(−𝛽+𝛼
𝑟
)𝑟′𝜙𝑅(𝑥) 𝑑𝑥 = lim

𝑅→∞
𝑐𝑅𝜃2

∫︁
|𝜉|⩽2

(1 + |𝜉|)(−𝛽+𝛼
𝑟
)𝑟′𝜙1(𝜉) 𝑑𝜉 = 0. (3.13)

This is why by (3.4) we have∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙𝑅(𝑥) 𝑑𝑥 ⩽ 𝑐.

Passing to limit as 𝑅 → ∞, we obtain∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝑑𝑥 ⩽ 𝑐. (3.14)
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We return back to inequality (3.1). We observe that

supp{∇(∆𝑘−1𝜙𝑅)} ⊆ {𝑥 ∈ R𝑛 | 𝑅 ⩽ |𝑥| ⩽ 2𝑅}.
Then by the Hölder inequality with the corresponding exponents from relation (3.1) we obtain∫︁
R𝑛

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙𝑅(𝑥) 𝑑𝑥 ⩽

(︂∫︁
𝑅⩽|𝑥|⩽2𝑅

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙𝑅(𝑥) 𝑑𝑥

)︂ 1
𝑞

·
(︂∫︁

𝑅⩽|𝑥|⩽2𝑅

(1 + |𝑥|)𝛼
𝑞′
𝑞

⃒⃒
∇(∆𝑘−1𝜙𝑅(𝑥))

⃒⃒𝑞′
𝜙
− 𝑞′

𝑞

𝑅 (𝑥) 𝑑𝑥

)︂ 1
𝑞′

+

(︂∫︁
𝑅⩽|𝑥|⩽2𝑅

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝜙𝑅(𝑥) 𝑑𝑥

)︂ 1
𝑟

·
(︂∫︁

𝑅⩽|𝑥|⩽2𝑅

(1 + |𝑥|)(−𝛽+𝛼
𝑟
)𝑟′𝜙𝑅(𝑥)𝑑𝜉

)︂ 1
𝑟′

.

(3.15)

However, by (3.14) and the absolute convergence of the integral in this relation we have∫︁
𝑅⩽|𝑥|⩽2𝑅

(1 + |𝑥|)−𝛼 |∇𝑢(𝑥)|𝑞 𝑑𝑥→ 0

as 𝑅 → ∞. Passing to the limit as 𝑅 → ∞ in (3.15) and taking into considered (3.12) and
(3.13), we again obtain (3.11). Thus, the function 𝑢 is constant in R𝑛 in this case as well. The
proof is complete.
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