A ONE-RADIUS THEOREM ON A SPHERE WITH PRICKED POINT

N.P. VOLCHKOVA, VIT. V. VOLCHKOV

Abstract

We considers local properties of mean periodicity on the two-dimensional sphere \mathbb{S}^{2}. According to the classical properties of periodic functions, each function continuous on the unit circle \mathbb{S}^{1} and possessing zero integrals over any interval of a fixed length $2 r$ on \mathbb{S}^{1} is identically zero if and only if the number r / π is irrational. In addition, there is no non-zero continuous function on \mathbb{R} possessing zero integrals over all segments of fixed length and their boundaries. The aim of this paper is to study similar phenomena on a sphere in \mathbb{R}^{3} with a pricked point. We study smooth functions on $\mathbb{S}^{2} \backslash(0,0,-1)$ with zero integrals over all admissible spherical caps and circles of a fixed radius. For such functions, we establish a one-radius theorem, which implies the injectivity of the corresponding integral transform. We also improve the well-known Ungar theorem on spherical means, which gives necessary and sufficient conditions for the spherical cap belong to the class of Pompeiu sets on \mathbb{S}^{2}. The proof of the main results is based on the description of solutions $f \in C^{\infty}\left(\mathbb{S}^{2} \backslash(0,0,-1)\right)$ of the convolution equation $\left(f * \sigma_{r}\right)(\xi)=0, \xi \in B_{\pi-r}$, where $B_{\pi-r}$ is the open geodesic ball of radius $\pi-r$ centered at the point $(0,0,1)$ on \mathbb{S}^{2} and σ_{r} is the delta-function supported on ∂B_{r}. The key tool used for describing f is the Fourier series in spherical harmonics on \mathbb{S}^{1}. We show that the Fourier coefficients $f_{k}(\theta)$ of the function f are representable by series in Legendre functions related with the zeroes of the function $P_{\nu}(\cos r)$. Our main results are consequence of the above representation of the function f and the corresponding properties of the Legendre functions. The results obtained in the work can be used in solving problems associated with ball and spherical means.

Keywords: spherical means, Pompeiu transform, Legendre functions, convolution
Mathematics Subject Classification: 53C65; 44A35

1. Introduction

Let r be a fixed positive number. An obvious property of non-zero $2 r$-periodic functions on the real axis is the absence of the anti-period equal to $2 r$. In other words, if a function f defined on \mathbb{R} satisfies the relations

$$
f(x+r)-f(x-r)=0, \quad f(x+r)+f(x-r)=0, \quad x \in \mathbb{R},
$$

then $f \equiv 0$. In terms of integral means, this implies that each continuous function on \mathbb{R} having zero integrals over all segments $K_{r}=[x-r, x+r]$ and over its boundaries $\partial K_{r}=\{x \pm r\}$ vanishes identically; as usually, the integral over ∂K_{r} is introduced as the sum of the values of the functions at points in the set ∂K_{r}.

This fact admits non-trivial generalizations for various multi-dimensional spaces, see [1]-[5]. In particular, if the function $f \in C\left(\mathbb{R}^{n}\right), n \geqslant 2$, has zero integrals over all balls and spheres of a fixed radius, then $f \equiv 0$, see [2]. The statements of such kind are called one radius theorems.

In the present work we study functions on a pricked two-dimensional sphere having zero integrals over all admissible spherical caps and circumferences of a fixed radius. For such

[^0]functions we establish a new one radius theorem specifying one of the results in work [6]. We also observe that an intermediate result of the work is an improving of the known theorem by P. Ungar on spherical means [7], see Theorem 4.1] in Section 4.

2. Main RESUlT

Let $\mathbb{S}^{2}=\left\{\xi \in \mathbb{R}^{3}:|\xi|=1\right\}, \xi_{1}, \xi_{2}, \xi_{3}$ be Cartesian coordinates of a point $\xi \in \mathbb{S}^{2}$,

$$
\mathbb{S}^{\prime}=\left\{\xi \in \mathbb{S}^{2}: \xi_{3} \neq-1\right\} .
$$

The distance $d(\xi, \eta)$ between points $\xi, \eta \in \mathbb{S}^{2}$ is calculated by the formula

$$
d(\xi, \eta)=\arccos \left(\xi_{1} \eta_{1}+\xi_{2} \eta_{2}+\xi_{3} \eta_{3}\right) .
$$

In particular,

$$
d(\xi, 0)=\arccos \xi_{3}, \quad \text { where } \quad 0=(0,0,1)
$$

The set

$$
B_{r}(\eta)=\left\{\xi \in \mathbb{S}^{2}: d(\xi, \eta)<r\right\}, \quad 0<r<\pi,
$$

is called an open geodesic ball (spherical cap) on \mathbb{S}^{2} of the radius r centered at the point η. Its boundary

$$
\partial B_{r}(\eta)=\left\{\xi \in \mathbb{S}^{2}: d(\xi, \eta)=r\right\}
$$

is a geodesic circumference of the radius r on \mathbb{S}^{2} centered at the point η. In the same way, the set

$$
\overline{B_{r}(\eta)}=B_{r}(\eta) \cup \partial B_{r}(\eta)
$$

is called a closed geodesic ball on \mathbb{S}^{2} of the radius r centered at the point η.
We denote by $d \xi$ and $d l(\xi)$ the differential of the area and the length on \mathbb{S}^{2}, respectively.
The main result of the present work is the following spherical analogue of a one radius theorem.

Theorem 2.1. Let r be a fixed number in the interval $(0 ; \pi), f \in C^{\infty}\left(\mathbb{S}^{\prime}\right)$ and the following conditions hold:

1) the function f has zero integrals with respect to the measure $d \xi$ over each closed geodesic ball of radius r on \mathbb{S}^{2} lying in \mathbb{S}^{\prime};
2) the function f has non-zero integrals with respect to the measure $d l(\xi)$ over each geodesic circumference of the radius r on \mathbb{S}^{2} located in \mathbb{S}^{\prime}.

Then $f \equiv 0$.
It is interesting to compare this result with a one radius theorem obtained in work 6]. Theorem 2 in [6] shows that if $0<r \leqslant \pi / 2, f \in C\left(\mathbb{S}^{\prime}\right)$ and

$$
\begin{equation*}
\int_{B} f(\xi) d \xi=\int_{\partial B} f(\xi) d l(\xi)=0 \tag{2.1}
\end{equation*}
$$

for each closed geodesic ball B of radius r located in \mathbb{S}^{\prime}, then $f \equiv 0$. Moreover, as $\pi / 2<r<\pi$, there exist non-zero functions f satisfying conditions (2.1). If f is smooth on \mathbb{S}^{\prime} and satisfies conditions 1), 2) in Theorem 2.1 for some $r \in(0 ; \pi)$, then $f \equiv 0$.

For other one radius theorem, we refer to [2]-[5] and the references therein.

3. Main notations

Let $\mathbb{N}, \mathbb{Z}, \mathbb{Z}_{+}$, \mathbb{C} be the sets of natural, integer, non-negative integer and complex numbers, respectively. We denote by $P_{\nu}^{\mu}(\mu, \nu \in \mathbb{C})$ the Legendre functions of first kind on $(-1,1)$, that is,

$$
\begin{aligned}
& P_{\nu}^{\mu}(x)=\frac{1}{\Gamma(1-\mu)}\left(\frac{1+x}{1-x}\right)^{\frac{\mu}{2}} F\left(-\nu, \nu+1 ; 1-\mu ; \frac{1-x}{2}\right), \quad \mu \notin \mathbb{N}, \\
& P_{\nu}^{\mu}(x)=(-1)^{\mu}\left(1-x^{2}\right)^{\frac{\mu}{2}}\left(\frac{d}{d x}\right)^{\mu} P_{\nu}(x), \quad \mu \in \mathbb{N},
\end{aligned}
$$

where F is the Gauss hypergeometric function, Γ is the Gamma function and $P_{\nu}=P_{\nu}^{0}$, see [8, Ch. 3, Sect. 3.4, Eq. (6); Sect. 3.6.1, Eq. (6)]. They satisfy Meler-Dirichlet integral representation

$$
\begin{equation*}
P_{\nu}^{\mu}(\cos \theta)=\sqrt{\frac{2}{\pi}} \frac{(\sin \theta)^{\mu}}{\Gamma\left(\frac{1}{2}-\mu\right)} \int_{0}^{\theta}(\cos t-\cos \theta)^{-\mu-\frac{1}{2}} \cos \left(\left(\nu+\frac{1}{2}\right) t\right) d t \tag{3.1}
\end{equation*}
$$

as $\theta \in(0 ; \pi), \operatorname{Re} \mu<\frac{1}{2}$. The Legendre functions of second kind on $(-1,1)$ are defined by the identity

$$
\begin{aligned}
& \frac{\left(1-x^{2}\right)^{\mu / 2} Q_{\nu}^{\mu}(x)}{2^{\mu} \pi^{3 / 2}}= \cot \left(\frac{\pi}{2}(\nu+\mu)\right) \frac{x F\left(\frac{1-\nu-\mu}{2}, \frac{\nu-\mu}{2}+1 ; \frac{3}{2} ; x^{2}\right)}{\Gamma\left(\frac{1+\nu-\mu}{2}\right) \Gamma\left(-\frac{\nu+\mu}{2}\right)}- \\
&-\frac{1}{2} \tan \left(\frac{\pi}{2}(\nu+\mu)\right) \frac{F\left(-\frac{\nu+\mu}{2}, \frac{1+\nu-\mu}{2} ; \frac{1}{2} ; x^{2}\right)}{\Gamma\left(\frac{1-\nu-\mu}{2}\right) \Gamma\left(1+\frac{\nu-\mu}{2}\right)}, \quad-\nu-\mu \notin \mathbb{N}, \\
& Q_{\nu}=Q_{\nu}^{0}, \quad-\nu \notin \mathbb{N} .
\end{aligned}
$$

They are related with P_{ν}^{μ} as follows:

$$
\begin{equation*}
P_{\nu}^{\mu}(-x)=P_{\nu}^{\mu}(x) \cos (\pi(\nu+\mu))-\frac{2}{\pi} Q_{\nu}^{\mu}(x) \sin (\pi(\nu+\mu)), \tag{3.2}
\end{equation*}
$$

see [8, Ch. 3, Sect. 3.4, Eqs. (14), (15), (20), (21)]. Moreover,

$$
\begin{equation*}
\left(1-x^{2}\right)\left(P_{\nu}^{\mu}(x) \frac{d}{d x} Q_{\nu}^{\mu}(x)-Q_{\nu}^{\mu}(x) \frac{d}{d x} P_{\nu}^{\mu}(x)\right)=2^{2 \mu} \frac{\Gamma\left(1+\frac{\nu+\mu}{2}\right) \Gamma\left(\frac{1+\nu+\mu}{2}\right)}{\Gamma\left(\frac{1+\nu-\mu}{2}\right) \Gamma\left(1+\frac{\nu-\mu}{2}\right)} \tag{3.3}
\end{equation*}
$$

see [8, Ch. 3, Sect. 3.4, Formula (25)].
Hereafter r is a fixed number in the interval $(0 ; \pi)$. It follows from (3.1) that the function

$$
h(\nu)=P_{\nu}(\cos r)=P_{\nu}^{0}(\cos r)
$$

is an entire function in the variable ν of exponential type r. It possesses infinitely many zeroes, all zeroes are real, simple and are located symmetrically with respect to the point $-\frac{1}{2}$ and lie outside the segment $[-1 ; 0]$, see [3, Part 2, Ch. 3]. We denote the set of the zeroes of this function in the interval $(0 ;+\infty)$ by the symbol $N(r)$, that is,

$$
N(r)=\left\{\nu>0: P_{\nu}(\cos r)=0\right\} .
$$

We also let

$$
\mathcal{Z}(r)=\left\{l \in \mathbb{N}: P_{l}(\cos r)=0\right\} .
$$

We note that

$$
\mathcal{Z}(\pi / 2)=N(\pi / 2)=\left\{2 k+1, k \in \mathbb{Z}_{+}\right\} .
$$

Moreover, the set $\{r \in(0, \pi): \mathcal{Z}(r) \neq \varnothing\}$ is countable and everywhere dense in the interval $(0, \pi)$, see (9].

We introduce spherical coordinates φ, θ on \mathbb{S}^{2} as follows:

$$
\xi_{1}=\sin \theta \sin \varphi, \quad \xi_{2}=\sin \theta \cos \varphi, \quad \xi_{3}=\cos \theta, \quad \varphi \in(0,2 \pi), \quad \theta \in(0, \pi)
$$

as above $\xi_{1}, \xi_{2}, \xi_{3}$ are the Cartesian coordinates of a point $\xi \in \mathbb{S}^{2}$. We let

$$
\begin{equation*}
p_{\nu, k}(\theta)=P_{\nu}^{-k}(\cos \theta), \tag{3.4}
\end{equation*}
$$

$$
S_{\nu, k}(\xi)=p_{\nu,|k|}(\theta) e^{i k \varphi}, \quad \nu \in \mathbb{C}, \quad k \in \mathbb{Z}
$$

The function $S_{\nu, k}$ is real analytic on \mathbb{S}^{\prime}. At that,

$$
\begin{equation*}
L\left(S_{\nu, k}\right)=-\nu(\nu+1) S_{\nu, k} \tag{3.5}
\end{equation*}
$$

where L is the Laplace operator on \mathbb{S}^{2}, that is,

$$
L=\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

see the proof of Lemma 4.1 below.
With each function $f \in C\left(\mathbb{S}^{\prime}\right)$, we associate the Fourier series

$$
\begin{equation*}
f \sim \sum_{k \in \mathbb{Z}} f^{k} \tag{3.6}
\end{equation*}
$$

whose terms are defined by the identities

$$
f^{k}(\xi)=f_{k}(\theta) e^{i k \varphi}, \quad f_{k}(\theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\sin \theta \sin \alpha, \sin \theta \cos \alpha, \cos \theta) e^{-i k \alpha} d \alpha
$$

If $f \in C^{\infty}\left(\mathbb{S}^{\prime}\right)$, then series (3.6) converges to f in the standard topology of the space $C^{\infty}\left(\mathbb{S}^{\prime}\right)$, see [4, Ch. 11, Sect. 11.1]. Relation (3.6) implies the formula

$$
\begin{equation*}
f^{k}(\xi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\tau_{\alpha} \xi\right) e^{i k \alpha} d \alpha \tag{3.7}
\end{equation*}
$$

where τ_{α} is the rotation of \mathbb{R}^{3} in the plane $\left(x_{1}, x_{2}\right)$ by the angle α, that is,

$$
\tau_{\alpha} \xi=\left(\xi_{1} \cos \alpha-\xi_{2} \sin \alpha, \xi_{1} \sin \alpha+\xi_{2} \cos \alpha, \xi_{3}\right)
$$

Let $O(3)$ be an orthogonal group in \mathbb{R}^{3},

$$
\begin{aligned}
& B_{r}=B_{r}(0)=\left\{\xi \in \mathbb{S}^{2}: \xi_{3}>\cos r\right\}=\{(\varphi, \theta): 0 \leqslant \theta<r\} \\
& S_{r}=S_{r}(0)=\left\{\xi \in \mathbb{S}^{2}: \xi_{3}=\cos r\right\}=\{(\varphi, \theta): \theta=r\}
\end{aligned}
$$

We let

$$
U_{r}\left(\mathbb{S}^{\prime}\right)=\left\{f \in C\left(\mathbb{S}^{\prime}\right): \int_{S_{r}} f(\tau \xi) d l(\xi)=0 \quad \forall \tau \in O(3): \tau \bar{B}_{r} \subset \mathbb{S}^{\prime}\right\}
$$

The class $U_{r}\left(\mathbb{S}^{\prime}\right)$ can be regarded as a set of the functions $f \in C\left(\mathbb{S}^{\prime}\right)$ satisfying the convolution equation $f * \sigma_{r}=0$ in the ball $B_{\pi-r}$, where σ_{r} is the delta-function supported on S_{r}.

4. Auxiliary statements

We denote by D_{k} the differential operator defined on the space $C^{1}(0, \pi)$ as follows:

$$
\left(D_{k} u\right)(\theta)=(\sin \theta)^{k} \frac{d}{d \theta}\left(\frac{u(\theta)}{(\sin \theta)^{k}}\right), \quad u \in C^{1}(0, \pi)
$$

Let $I d$ be the identity mapping.
Lemma 4.1. The identities hold:

$$
\begin{align*}
& D_{k} p_{\nu, k}=(k-\nu)(k+\nu+1) p_{\nu, k+1}, \quad D_{-k} p_{\nu, k}=p_{\nu, k-1}, \tag{4.1}\\
& (L+\nu(\nu+1) I d)\left(p_{\nu, k}(\theta) e^{i k \varphi}\right)=0 . \tag{4.2}
\end{align*}
$$

Proof. Employing the formula

$$
\left(1-x^{2}\right) \frac{d P_{\nu}^{\mu}(x)}{d x}=-\nu x P_{\nu}^{\mu}(x)+(\nu+\mu) P_{\nu-1}^{\mu}(x),
$$

see [8, Ch. 3, Sect. 3.8, Eq. (19)], we find

$$
p_{\nu, k}^{\prime}(\theta)=\nu \operatorname{ctg} \theta p_{\nu, k}(\theta)+\frac{(k-\nu)}{\sin \theta} p_{\nu-1, k}(\theta)
$$

This implies

$$
\begin{align*}
& D_{k} p_{\nu, k}(\theta)=\frac{(k-\nu)}{\sin \theta}\left(p_{\nu-1, k}(\theta)-\cos \theta p_{\nu, k}(\theta)\right), \tag{4.3}\\
& D_{-k} p_{\nu, k}(\theta)=\frac{1}{\sin \theta}\left((\nu+k) \cos \theta p_{\nu, k}(\theta)-(\nu-k) p_{\nu-1, k}(\theta)\right) . \tag{4.4}
\end{align*}
$$

Since

$$
\begin{aligned}
& P_{\nu-1}^{\mu}(x)-x P_{\nu}^{\mu}(x)=(\nu-\mu+1) \sqrt{1-x^{2}} P_{\nu}^{\mu-1}(x) \\
& (\nu-\mu) x P_{\nu}^{\mu}(x)-(\nu+\mu) P_{\nu-1}^{\mu}(x)=\sqrt{1-x^{2}} P_{\nu}^{\mu+1}(x)
\end{aligned}
$$

see [8, Ch. 3, Sect. 3.8, Eqs. (15), (17)], by (4.3) and (4.4) we arrive at 4.1).
On a function u of the form $u(\xi)=v(\theta) e^{i k \varphi}$, the operator L acts by the rule

$$
\begin{equation*}
(L u)(\xi)=\left(\ell_{k} v\right)(\theta) e^{i k \varphi} \tag{4.5}
\end{equation*}
$$

where

$$
\ell_{k}=\frac{d^{2}}{d \theta^{2}}+\operatorname{ctg} \theta \frac{d}{d \theta}-\frac{k^{2}}{\sin ^{2} \theta} I d .
$$

The operator ℓ_{k} can be represented as

$$
\begin{equation*}
\ell_{k}=D_{-k-1} D_{k}-k(k+1) I d=D_{k-1} D_{-k}-k(k-1) I d . \tag{4.6}
\end{equation*}
$$

Now relation (4.2) follows (4.6) and (4.1).
Lemma 4.2. (i) Let $\varepsilon, \theta \in(0, \pi), k \in \mathbb{Z}_{+}$. Then as $\nu \rightarrow \infty$ and $|\arg \nu|<\pi-\varepsilon$, the asymptotic identity

$$
\begin{equation*}
p_{\nu, k}(\theta)=\sqrt{\frac{2}{\pi \sin \theta}} \frac{\cos \left(\left(\nu+\frac{1}{2}\right) \theta-\frac{\pi}{4}(2 k+1)\right)}{\left(\nu+\frac{1}{2}\right)^{k+\frac{1}{2}}}+O\left(\frac{e^{\theta|\operatorname{Im} \nu|}}{|\nu|^{k+\frac{3}{2}}}\right) \tag{4.7}
\end{equation*}
$$

holds uniformly in θ over each segment $[\alpha, \beta] \subset(0, \pi)$.
(ii) If $\nu \in \mathbb{C}, \theta \in(0, \pi), k \in \mathbb{Z}_{+}$, then

$$
\begin{equation*}
\left|p_{\nu, k}(\theta)\right| \leqslant \frac{1}{k!}\left(\sin \frac{\theta}{2}\right)^{k}\left(\cos \frac{\theta}{2}\right)^{-k-1} e^{\theta|\operatorname{Im} \nu|} \tag{4.8}
\end{equation*}
$$

(iii) Let $0<a<\pi$, $s, k \in \mathbb{Z}_{+}$. Then

$$
\begin{equation*}
\max _{\theta \in[0, a]}\left|\frac{d^{s} p_{\nu, k}(\theta)}{d \theta^{s}}\right|=O\left(\nu^{s-k}\right), \quad \nu \rightarrow+\infty . \tag{4.9}
\end{equation*}
$$

Proof. Taking into consideration (3.4), by formula (3.1) we have

$$
\begin{equation*}
p_{\nu, k}(\theta)=\frac{(\sin \theta)^{-k}}{\sqrt{2 \pi} \Gamma\left(k+\frac{1}{2}\right)} \int_{-\theta}^{\theta}(\cos t-\cos \theta)^{k-\frac{1}{2}} e^{i\left(\nu+\frac{1}{2}\right) t} d t . \tag{4.10}
\end{equation*}
$$

By (4.10) and asymptotic expansion of Fourier integrals, see [10, Ch. 2, Proof of Theorem 10.2], we obtain (4.7).

To prove (4.8), we again employ (4.10). Then

$$
\left|p_{\nu, k}(\theta)\right| \leqslant \frac{(\sin \theta)^{-k}}{\sqrt{2 \pi} \Gamma\left(k+\frac{1}{2}\right)} \int_{-\theta}^{\theta}(\cos t-\cos \theta)^{k-\frac{1}{2}} d t e^{\theta|\operatorname{Im} \nu|}
$$

The integral in the right hand side is estimated as follows:

$$
\begin{aligned}
\int_{0}^{\theta}(\cos t-\cos \theta)^{k-\frac{1}{2}} d t & =\int_{\cos \theta}^{1}(x-\cos \theta)^{k-\frac{1}{2}} \frac{d x}{\sqrt{1-x^{2}}} \\
& \leqslant \frac{1}{\sqrt{1+\cos \theta}} \int_{\cos \theta}^{1}(x-\cos \theta)^{k-\frac{1}{2}}(1-x)^{-\frac{1}{2}} d x \\
& =\frac{\sqrt{\pi} 2^{k-\frac{1}{2}} \Gamma\left(k+\frac{1}{2}\right)}{k!}\left(\sin \frac{\theta}{2}\right)^{2 k}\left(\cos \frac{\theta}{2}\right)^{-1},
\end{aligned}
$$

and this proves estimate (4.8).
Finally, let us prove 4.9). As $a<\pi / 2$, estimate (4.9) is implied by the integral representation

$$
p_{\nu,-k}(\theta) e^{i k \varphi}=i^{k} \frac{\Gamma(\nu+k+1)}{2 \pi \Gamma(\nu+1)} \int_{-\pi}^{\pi}(\cos \theta+i \sin \theta \cos (\psi-\varphi))^{\nu} e^{i k \psi} d \psi, \quad \theta \in(0, \pi / 2)
$$

and the identity

$$
p_{\nu,-k}(\theta)=(-1)^{k} \frac{\Gamma(\nu+k+1)}{\Gamma(\nu-k+1)} p_{\nu, k}(\theta)
$$

see [8, Ch. 3, Sect. 3.7, Eqs. (25), (26); Sect. 3.3.1, Eq. (7); Sect. 3.4, Eq. (5)]. On the other hand, asymptotic expansion (4.7) and the second relation in (4.1) show that

$$
\max _{0<\alpha \leqslant \theta \leqslant \beta<\pi}\left|\frac{d^{s} p_{\nu, k}(\theta)}{d \theta^{s}}\right|=O\left(\nu^{s-k-1 / 2}\right), \quad \nu \rightarrow+\infty .
$$

Employing these two cases, we obtain statement (iii).
Lemma 4.3. (i) The identity holds

$$
\mathcal{Z}(r)=\mathcal{Z}(\pi-r)
$$

(ii) If $p_{\nu, 0}(r)=0$, then $p_{\nu, 1}(r) \neq 0$.
(iii) If $p_{\nu, 0}(r)=0$, then $Q_{\nu}(\cos r) \neq 0$.

Proof. Statement (i) is implied by the definition of the set $\mathcal{Z}(r)$ and the relation

$$
P_{n}(-x)=(-1)^{n} P_{n}(x), \quad n \in \mathbb{Z}_{+},
$$

see [8, Ch. 3, Sect. 3.4, Formula (19)].
We assume that $p_{\nu, 0}(r)=p_{\nu, 1}(r)=0$ for some $\nu \in \mathbb{C}$. Then

$$
p_{\nu, 0}(r)=p_{\nu, 0}^{\prime}(r)=0
$$

and

$$
\frac{d^{2}}{d \theta^{2}} p_{\nu, 0}(\theta)+\operatorname{ctg} \theta \frac{d}{d \theta} p_{\nu, 0}(\theta)+\nu(\nu+1) p_{\nu, 0}(\theta)=0
$$

see (4.1), 4.2 and (4.5). Then by the uniqueness of the solution to the Cauchy problem for a second order ordinary differential equation we obtain $p_{\nu, 0} \equiv 0$ and this contradicts the definition of P_{ν}.

Finally, the formula

$$
\left(1-x^{2}\right)\left(P_{\nu}(x) \frac{d}{d x} Q_{\nu}(x)-Q_{\nu}(x) \frac{d}{d x} P_{\nu}(x)\right)=1
$$

see (3.3), shows that the identities $P_{\nu}(\cos r)=0$ and $Q_{\nu}(\cos r)=0$ can not hold simultaneously. This completes the proof.

Lemma 4.4. Let

$$
\delta(\mu, \nu)=\int_{0}^{r} p_{\nu, 0}(\theta) p_{\mu, 0}(\theta) \sin \theta d \theta, \quad \mu, \nu \in N(r)
$$

Then $\delta(\mu, \nu)=0$ as $\mu \neq \nu$ and

$$
\begin{equation*}
\delta(\nu, \nu)>\frac{c}{\nu^{2}}, \tag{4.11}
\end{equation*}
$$

where constant $c>0$ is independent of ν.
Proof. As $\mu \neq \nu$, the statement is implied by the identity

$$
(\mu-\nu)(\mu+\nu+1) \int_{0}^{r} p_{\nu, 0}(\theta) p_{\mu, 0}(\theta) \sin \theta d \theta=\sin r\left(p_{\mu, 0}(r) p_{\nu, 0}^{\prime}(r)-p_{\nu, 0}(r) p_{\mu, 0}^{\prime}(r)\right)
$$

see [8, Ch. 3, Sect. 3.12, Formula (3)]. It is sufficient to prove inequality (4.11) for sufficiently large $\nu \in N(r)$. Suppose that $\nu>\frac{\pi}{4 r}-\frac{1}{2}$. We let

$$
\begin{equation*}
g(\theta, t)=(\cos t-\cos \theta)^{-\frac{1}{2}}, \quad 0 \leqslant t \leqslant \theta \leqslant \pi . \tag{4.12}
\end{equation*}
$$

Then by (3.1) we get

$$
\begin{align*}
\delta(\nu, \nu) & =\int_{0}^{r}\left(p_{\nu, 0}(\theta)\right)^{2} \sin \theta d \theta=\frac{2}{\pi^{2}} \int_{0}^{r} \sin \theta\left(\int_{0}^{\theta} g(\theta, t) \cos \left(\nu+\frac{1}{2}\right) t d t\right)^{2} d \theta \\
& \geqslant \frac{2}{\pi^{2}} \int_{0}^{\frac{\pi}{4(\nu+1 / 2)}} \sin \theta\left(\int_{0}^{\theta} g(\theta, t) \cos \left(\nu+\frac{1}{2}\right) t d t\right)^{2} d \theta \tag{4.13}\\
& \geqslant \frac{1}{\pi^{2}} \int_{0}^{\frac{\pi}{4(\nu+1 / 2)}} \sin \theta\left(\int_{\frac{\theta}{2}}^{\theta} g(\theta, t) d t\right)^{2} d \theta .
\end{align*}
$$

An internal integral in (4.13) is estimated as follows:

$$
\begin{align*}
\int_{\frac{\theta}{2}}^{\theta} g(\theta, t) d t & =\int_{\cos \theta}^{\cos \frac{\theta}{2}}(x-\cos \theta)^{-\frac{1}{2}} \frac{d x}{\sqrt{1-x^{2}}} \tag{4.14}\\
& \geqslant \frac{1}{\sin \theta} \int_{\cos \theta}^{\cos \frac{\theta}{2}}(x-\cos \theta)^{-\frac{1}{2}} d x=2 \frac{\left(\cos \frac{\theta}{2}-\cos \theta\right)^{\frac{1}{2}}}{\sin \theta}
\end{align*}
$$

Taking into consideration that

$$
\frac{\cos \frac{\theta}{2}-\cos \theta}{\sin \theta}=\frac{\sin \frac{3 \theta}{4}}{2 \cos \frac{\theta}{2} \cos \frac{\theta}{4}} \geqslant \frac{1}{2} \sin \frac{3 \theta}{4} \geqslant \frac{3 \theta}{4 \pi}
$$

as $0<\theta<\frac{\pi}{4(\nu+1 / 2)}$, by 4.13 and 4.14 we obtain

$$
\delta(\nu, \nu) \geqslant \frac{4}{\pi^{2}} \int_{0}^{\frac{\pi}{4(\nu+1 / 2)}} \frac{3 \theta}{4 \pi} d \theta
$$

and this implies 4.11).
Lemma 4.5. Let $r \in(0, \pi), \nu \in \mathbb{C}, k \in \mathbb{Z}$. Then for each $\tau \in O(3)$ such that $\tau \bar{B}_{r} \subset B_{\pi}$ the identities hold:

$$
\begin{align*}
& \int_{S_{r}} S_{\nu, k}(\tau \xi) d l(\xi)=2 \pi \sin r p_{\nu, 0}(r) S_{\nu, k}(\tau 0), \tag{4.15}\\
& \int_{B_{r}} S_{\nu, k}(\tau \xi) d \xi=2 \pi \sin r p_{\nu, 1}(r) S_{\nu, k}(\tau 0) . \tag{4.16}
\end{align*}
$$

Proof. By Pizzetti formula, see [11, Formula (20)] and (3.5), we have

$$
\begin{aligned}
\int_{S_{r}} S_{\nu, k}(\tau \xi) d l(\xi)= & 2 \pi \sin r\left(S_{\nu, k}(\tau 0)+\sum_{m=1}^{\infty} \frac{L(L+2) \ldots(L+(m-1) m) S_{\nu, k}(\tau 0)}{(m!)^{2}}\left(\sin \frac{r}{2}\right)^{2 m}\right) \\
= & 2 \pi \sin r S_{\nu, k}(\tau 0) \\
& \cdot\left(1+\sum_{m=1}^{\infty} \frac{(-\nu(\nu+1))(2-\nu(\nu+1)) \ldots(m(m-1)-\nu(\nu+1))}{(m!)^{2}}\left(\sin \frac{r}{2}\right)^{2 m}\right) \\
= & 2 \pi \sin r S_{\nu, k}(\tau 0) \sum_{m=0}^{\infty} \frac{\Gamma(m-\nu) \Gamma(m+\nu+1)}{\Gamma(-\nu) \Gamma(\nu+1)(m!)^{2}}\left(\sin \frac{r}{2}\right)^{2 m} \\
= & 2 \pi \sin r S_{\nu, k}(\tau 0) F\left(-\nu, \nu+1 ; 1 ;\left(\sin \frac{r}{2}\right)^{2}\right)
\end{aligned}
$$

Then identity (4.15) is implied by (3.4) and the definition of the Legendre function. Employing 4.15) and 4.1), we obtain

$$
\begin{aligned}
\int_{B_{r}} S_{\nu, k}(\tau \xi) d \xi & =\int_{0}^{r} \int_{S_{\rho}} S_{\nu, k}(\tau \xi) d l(\xi) d \rho=2 \pi S_{\nu, k}(\tau 0) \int_{0}^{r} \sin \rho p_{\nu, 0}(\rho) d \rho \\
& =2 \pi S_{\nu, k}(\tau 0) \int_{0}^{r} \sin \rho\left(D_{-1} p_{\nu, 1}\right)(\rho) d \rho=2 \pi S_{\nu, k}(\tau 0) \int_{0}^{r} \frac{d}{d \rho}\left(p_{\nu, 1}(\rho) \sin \rho\right) d \rho \\
& =2 \pi \sin r p_{\nu, 1}(r) S_{\nu, k}(\tau 0)
\end{aligned}
$$

This completes the proof.
Lemma 4.6. Let $f \in C^{\infty}\left(\mathbb{S}^{\prime}\right)$. Then $f \in U_{r}\left(\mathbb{S}^{\prime}\right)$ if and only if for each $k \in \mathbb{Z}$ the expansion holds:

$$
f^{k}(\xi)=\sum_{\nu \in N(r)} \alpha_{\nu, k} S_{\nu, k}(\xi), \quad \xi \in \mathbb{S}^{\prime}
$$

where $\alpha_{\nu, k} \in \mathbb{C}$ and

$$
\begin{equation*}
\alpha_{\nu, k}=O\left(\nu^{-a}\right) \quad \text { as } \quad \nu \rightarrow+\infty \quad \text { for each } \quad a>0 . \tag{4.17}
\end{equation*}
$$

Lemma 4.6 is a particular case of the result established earlier by Vit.V. Volchkov [4, Thm. 16.6(ii)].

According Ungar theorem on spherical means [7], if a function $f \in C\left(\mathbb{S}^{2}\right)$ has zero integrals over all geodesic circumferences of the radius r and $P_{l}(\cos r) \neq 0$ for each $l \in \mathbb{N}$, then $f \equiv 0$.

The next result specifies this fact.
Theorem 4.1. Let $f \in C^{\infty}\left(\mathbb{S}^{\prime}\right)$. Then the function f has zero integrals over all geodesic circumferences of the radius r on \mathbb{S}^{2} lying in \mathbb{S}^{\prime} if and only if for each $k \in \mathbb{Z}$ the expansion holds true:

$$
\begin{equation*}
f^{k}(\xi)=\sum_{\nu \in \mathcal{Z}(r)} \alpha_{\nu, k} S_{\nu, k}(\xi), \quad \xi \in \mathbb{S}^{\prime} \tag{4.18}
\end{equation*}
$$

where the coefficients $\alpha_{\nu, k}$ satisfy condition (4.17).
Proof. First we assume that the integrals of f over all geodesic circumferences of the radius r on \mathbb{S}^{2} located in \mathbb{S}^{\prime} vanish. By Lemma 4.6 we have

$$
\begin{equation*}
f^{k}(\xi)=\sum_{\nu \in N(r)} \alpha_{\nu, k} S_{\nu, k}(\xi), \quad \xi \in \mathbb{S}^{\prime} \tag{4.19}
\end{equation*}
$$

where the coefficients $\alpha_{\nu, k}$ satisfy condition (4.17). By formula (3.7), the integrals of f^{k} over all geodesic circumferences of the radius r on \mathbb{S}^{2} lying in \mathbb{S}^{\prime} are also zero. In particular, since
$S_{\pi-r}=S_{r}((0,0,-1))$, we have

$$
\int_{S_{\pi-r}} f^{k}\left(a_{t} \xi\right) d l(\xi)=0 \quad \text { as } \quad|t|<r
$$

where

$$
a_{t} \xi=\left(\xi_{1}, \xi_{2} \cos t+\xi_{3} \sin t,-\xi_{2} \sin t+\xi_{3} \cos t\right)
$$

Writing this relation for the right hand side in 4.19) and employing Lemmata 4.2, 4.5, we find

$$
\begin{equation*}
\sum_{\nu \in N(r)} \alpha_{\nu, k} P_{\nu}(-\cos r) p_{\nu,|k|}(t)=0, \quad|t|<r \tag{4.20}
\end{equation*}
$$

We apply the differential operator $D_{-1} \ldots D_{-|k|+1} D_{-|k|}$ to both sides of the above identity and taking into consideration (4.9) and (4.1), we obtain

$$
\sum_{\nu \in N(r)} \alpha_{\nu, k} P_{\nu}(-\cos r) p_{\nu, 0}(t)=0, \quad|t|<r
$$

By (4.9) and Lemma 4.4 we then conclude that

$$
\begin{equation*}
\alpha_{\nu, k} P_{\nu}(-\cos r)=0, \quad \nu \in N(r) \tag{4.21}
\end{equation*}
$$

In view of formula $(3.2$, identity 4.21 can be rewritten as

$$
\alpha_{\nu, k} \sin (\pi \nu) Q_{\nu}(\cos r)=0, \quad \nu \in N(r)
$$

Then, in view of Statement (iii) of Lemma 4.3 ,

$$
\alpha_{\nu, k} \sin (\pi \nu)=0, \quad \nu \in N(r)
$$

and hence, $\alpha_{\nu, k}=0$ as $\nu \in N(r), \nu \notin \mathbb{N}$. In view of 4.19 this proves the necessary condition in Theorem 4.1.

We proceed to the sufficient condition. Assume that for each $k \in \mathbb{Z}$ expansion (4.18) holds true. Then by (4.15) and Statement (i) of Lemma 4.3 we conclude that each Fourier coefficient f^{k} has zero integrals over all geodesic circumferences of the radius r on \mathbb{S}^{2} lying in \mathbb{S}^{\prime}. Therefore, the function f possesses the stated property.

5. Proof of Theorem 2.1

Suppose that a function $f \in C^{\infty}\left(\mathbb{S}^{\prime}\right)$ satisfies the assumptions of Theorem 2.1. Then it follows from the first condition of Theorem 2.1 and Theorem 4.1 that for each $k \in \mathbb{Z}$ representation (4.18) holds true and the coefficients obey estimate 4.17). In view of the second condition of Theorem 2.1 and formula (3.7) we obtain

$$
\begin{equation*}
\int_{B_{r}} f^{k}\left(a_{t} \xi\right) d \xi=0, \quad|t|<\pi-r \tag{5.1}
\end{equation*}
$$

Employing (5.1), (4.18), (4.16) and Lemma 4.2, we find

$$
\sum_{\nu \in \mathcal{Z}(r)} \alpha_{\nu, k} p_{\nu, 1}(r) p_{\nu,|k|}(t)=0, \quad|t|<\pi-r
$$

In view of the arguing in the proof of Theorem 4.1 this yields

$$
\sum_{\nu \in \mathcal{Z}(r)} \alpha_{\nu, k} p_{\nu, 1}(r) p_{\nu, 0}(t)=0, \quad|t|<\pi-r
$$

which is equivalent to the identity

$$
\sum_{\nu \in \mathcal{Z}(\pi-r)} \alpha_{\nu, k} p_{\nu, 1}(r) p_{\nu, 0}(t)=0, \quad|t|<\pi-r
$$

see Statement (i) of Lemma 4.3. Now Lemma 4.4 shows that

$$
\alpha_{\nu, k} p_{\nu, 1}(r)=0, \quad \nu \in \mathcal{Z}(r) .
$$

But by Statement (ii) in Lemma 4.3, the identities $p_{\nu, 0}(r)=0$ and $p_{\nu, 1}(r)=0$ can not hold simultaneously. This is why $\alpha_{\nu, k}=0$ as $\nu \in \mathcal{Z}(r)$. This means that $f^{k}=0$ and hence, $f=0$. This completes the proof of Theorem 2.1.

BIBLIOGRAPHY

1. C.A. Berenstein, R. Gay. A local version of the two-circles theorem // Israel J. Math. 55:3, 267-288 (1986).
2. V.V. Volchkov. Solution of the support problem for several function classes // Matem. Sborn. 188:9, 13-30 (1997). [Sb. Math. 188:9, 1279-1294 (1997).]
3. V.V. Volchkov. Integral geometry and convolution equations. Kluwer Academic Publishers, Dordrecht (2003).
4. V.V. Volchkov, Vit.V. Volchkov. Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group. Springer-Verlag, London (2009).
5. V.V. Volchkov, Vit.V. Volchkov. Offbeat integral geometry on symmetric spaces. Birkhäuser, Basel (2013).
6. V.V. Volchkov. On the injectivity of the local Pompeiu transform on the sphere // Matem. Zamet. 81:1, 59-69 (2007). [Math. Notes. 81:1, 51-60 (2007).]
7. P. Ungar. Freak theorem about functions on a sphere // J. London Math. Soc. 29:2, 100-103 (1954).
8. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher transcendental functions. Vols. I-III. Robert E. Krieger Publishing Company. Malabar, Florida (1981).
9. E. Badertscher. The Pompeiu problem on locally symmetric spaces // J. Analyse Math. 57:1, 250-281 (1991).
10. E. Riekstiņš. Asymptotic expansions of integrals. Zinatne, Riga (1974). (in Russian).
11. C.A. Berenstein, L. Zalcman. Pompeiu's problem on spaces of constant curvature // J. d'Analyse Math. 30:1, 113-130 (1976).

Natalia Petrovna Volchkova, Donetsk National Technical University,
Artem str. 58,
83000, Donetsk
E-mail: volna936@gmail.com
Vitalii Vladimirovich Volchkov,
Donetsk National University,
Universitetskaya str. 24,
83001, Donetsk
E-mail: volna936@gmail.com

[^0]: N.P. Volchkova, Vit. V. Volchkov, A one-radius theorem on a sphere with pricked point.
 (c) Volchkova N.P., Volchkov Vit.V. 2019.

 Submitted December 3, 2018.

