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A ONE-RADIUS THEOREM ON A SPHERE

WITH PRICKED POINT

N.P. VOLCHKOVA, VIT. V. VOLCHKOV

Abstract. We considers local properties of mean periodicity on the two-dimensional sphere
S2. According to the classical properties of periodic functions, each function continuous on
the unit circle S1 and possessing zero integrals over any interval of a fixed length 2𝑟 on S1 is
identically zero if and only if the number 𝑟/𝜋 is irrational. In addition, there is no non-zero
continuous function on R possessing zero integrals over all segments of fixed length and
their boundaries. The aim of this paper is to study similar phenomena on a sphere in R3

with a pricked point. We study smooth functions on S2 ∖ (0, 0,−1) with zero integrals over
all admissible spherical caps and circles of a fixed radius. For such functions, we establish
a one-radius theorem, which implies the injectivity of the corresponding integral transform.
We also improve the well-known Ungar theorem on spherical means, which gives necessary
and sufficient conditions for the spherical cap belong to the class of Pompeiu sets on S2.
The proof of the main results is based on the description of solutions 𝑓 ∈ 𝐶∞(S2∖(0, 0,−1))
of the convolution equation (𝑓 *𝜎𝑟)(𝜉) = 0, 𝜉 ∈ 𝐵𝜋−𝑟, where 𝐵𝜋−𝑟 is the open geodesic ball
of radius 𝜋 − 𝑟 centered at the point (0, 0, 1) on S2 and 𝜎𝑟 is the delta-function supported
on 𝜕𝐵𝑟. The key tool used for describing 𝑓 is the Fourier series in spherical harmonics on
S1. We show that the Fourier coefficients 𝑓𝑘(𝜃) of the function 𝑓 are representable by series
in Legendre functions related with the zeroes of the function 𝑃𝜈(cos 𝑟). Our main results are
consequence of the above representation of the function 𝑓 and the corresponding properties
of the Legendre functions. The results obtained in the work can be used in solving problems
associated with ball and spherical means.
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1. Introduction

Let 𝑟 be a fixed positive number. An obvious property of non-zero 2𝑟-periodic functions on
the real axis is the absence of the anti-period equal to 2𝑟. In other words, if a function 𝑓 defined
on R satisfies the relations

𝑓(𝑥+ 𝑟) − 𝑓(𝑥− 𝑟) = 0, 𝑓(𝑥+ 𝑟) + 𝑓(𝑥− 𝑟) = 0, 𝑥 ∈ R,
then 𝑓 ≡ 0. In terms of integral means, this implies that each continuous function on R having
zero integrals over all segments 𝐾𝑟 = [𝑥 − 𝑟, 𝑥 + 𝑟] and over its boundaries 𝜕𝐾𝑟 = {𝑥 ± 𝑟}
vanishes identically; as usually, the integral over 𝜕𝐾𝑟 is introduced as the sum of the values of
the functions at points in the set 𝜕𝐾𝑟.
This fact admits non-trivial generalizations for various multi-dimensional spaces, see [1]–[5].

In particular, if the function 𝑓 ∈ 𝐶(R𝑛), 𝑛 > 2, has zero integrals over all balls and spheres of
a fixed radius, then 𝑓 ≡ 0, see [2]. The statements of such kind are called one radius theorems.
In the present work we study functions on a pricked two-dimensional sphere having zero

integrals over all admissible spherical caps and circumferences of a fixed radius. For such
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functions we establish a new one radius theorem specifying one of the results in work [6]. We
also observe that an intermediate result of the work is an improving of the known theorem by
P. Ungar on spherical means [7], see Theorem 4.1 in Section 4.

2. Main result

Let S2 = {𝜉 ∈ R3 : |𝜉| = 1}, 𝜉1, 𝜉2, 𝜉3 be Cartesian coordinates of a point 𝜉 ∈ S2,

S′ = {𝜉 ∈ S2 : 𝜉3 ̸= −1}.

The distance 𝑑(𝜉, 𝜂) between points 𝜉, 𝜂 ∈ S2 is calculated by the formula

𝑑(𝜉, 𝜂) = arccos(𝜉1𝜂1 + 𝜉2𝜂2 + 𝜉3𝜂3).

In particular,

𝑑(𝜉, 0) = arccos 𝜉3, where 0 = (0, 0, 1).

The set

𝐵𝑟(𝜂) = {𝜉 ∈ S2 : 𝑑(𝜉, 𝜂) < 𝑟}, 0 < 𝑟 < 𝜋,

is called an open geodesic ball (spherical cap) on S2 of the radius 𝑟 centered at the point 𝜂. Its
boundary

𝜕𝐵𝑟(𝜂) = {𝜉 ∈ S2 : 𝑑(𝜉, 𝜂) = 𝑟}

is a geodesic circumference of the radius 𝑟 on S2 centered at the point 𝜂. In the same way, the
set

𝐵𝑟(𝜂) = 𝐵𝑟(𝜂) ∪ 𝜕𝐵𝑟(𝜂)

is called a closed geodesic ball on S2 of the radius 𝑟 centered at the point 𝜂.
We denote by 𝑑𝜉 and 𝑑𝑙(𝜉) the differential of the area and the length on S2, respectively.
The main result of the present work is the following spherical analogue of a one radius

theorem.

Theorem 2.1. Let 𝑟 be a fixed number in the interval (0;𝜋), 𝑓 ∈ 𝐶∞(S′) and the following

conditions hold:

1) the function 𝑓 has zero integrals with respect to the measure 𝑑𝜉 over each closed geodesic

ball of radius 𝑟 on S2 lying in S′;

2) the function 𝑓 has non-zero integrals with respect to the measure 𝑑𝑙(𝜉) over each geodesic

circumference of the radius 𝑟 on S2 located in S′.

Then 𝑓 ≡ 0.

It is interesting to compare this result with a one radius theorem obtained in work [6].
Theorem 2 in [6] shows that if 0 < 𝑟 6 𝜋/2, 𝑓 ∈ 𝐶(S′) and∫︁

𝐵

𝑓(𝜉)𝑑𝜉 =

∫︁
𝜕𝐵

𝑓(𝜉)𝑑𝑙(𝜉) = 0 (2.1)

for each closed geodesic ball 𝐵 of radius 𝑟 located in S′, then 𝑓 ≡ 0. Moreover, as 𝜋/2 < 𝑟 < 𝜋,
there exist non-zero functions 𝑓 satisfying conditions (2.1). If 𝑓 is smooth on S′ and satisfies
conditions 1), 2) in Theorem 2.1 for some 𝑟 ∈ (0; 𝜋), then 𝑓 ≡ 0.
For other one radius theorem, we refer to [2]–[5] and the references therein.
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3. Main notations

Let N, Z, Z+, C be the sets of natural, integer, non-negative integer and complex numbers,
respectively. We denote by 𝑃 𝜇

𝜈 (𝜇, 𝜈 ∈ C) the Legendre functions of first kind on (−1, 1), that
is,

𝑃 𝜇
𝜈 (𝑥) =

1

Γ(1 − 𝜇)

(︂
1 + 𝑥

1 − 𝑥

)︂𝜇
2

𝐹

(︂
−𝜈, 𝜈 + 1; 1 − 𝜇;

1 − 𝑥

2

)︂
, 𝜇 ̸∈ N,

𝑃 𝜇
𝜈 (𝑥) = (−1)𝜇(1 − 𝑥2)

𝜇
2

(︂
𝑑

𝑑𝑥

)︂𝜇
𝑃𝜈(𝑥), 𝜇 ∈ N,

where 𝐹 is the Gauss hypergeometric function, Γ is the Gamma function and 𝑃𝜈 = 𝑃 0
𝜈 , see

[8, Ch. 3, Sect. 3.4, Eq. (6); Sect. 3.6.1, Eq. (6)]. They satisfy Meler-Dirichlet integral
representation

𝑃 𝜇
𝜈 (cos 𝜃) =

√︂
2

𝜋

(sin 𝜃)𝜇

Γ
(︀
1
2
− 𝜇

)︀ ∫︁ 𝜃

0

(cos 𝑡− cos 𝜃)−𝜇−
1
2 cos

(︂(︂
𝜈 +

1

2

)︂
𝑡

)︂
𝑑𝑡 (3.1)

as 𝜃 ∈ (0; 𝜋), Re𝜇 < 1
2
. The Legendre functions of second kind on (−1, 1) are defined by the

identity

(1 − 𝑥2)𝜇/2𝑄𝜇
𝜈 (𝑥)

2𝜇𝜋3/2
= cot

(︁𝜋
2

(𝜈 + 𝜇)
)︁𝑥𝐹 (︀1−𝜈−𝜇

2
, 𝜈−𝜇

2
+ 1; 3

2
;𝑥2
)︀

Γ
(︀
1+𝜈−𝜇

2

)︀
Γ
(︀
−𝜈+𝜇

2

)︀ −

− 1

2
tan
(︁𝜋

2
(𝜈 + 𝜇)

)︁𝐹 (︀−𝜈+𝜇
2
, 1+𝜈−𝜇

2
; 1
2
;𝑥2
)︀

Γ
(︀
1−𝜈−𝜇

2

)︀
Γ
(︀
1 + 𝜈−𝜇

2

)︀ , −𝜈 − 𝜇 ̸∈ N,

𝑄𝜈 = 𝑄0
𝜈 , −𝜈 ̸∈ N.

They are related with 𝑃 𝜇
𝜈 as follows:

𝑃 𝜇
𝜈 (−𝑥) = 𝑃 𝜇

𝜈 (𝑥) cos
(︀
𝜋(𝜈 + 𝜇)

)︀
− 2

𝜋
𝑄𝜇
𝜈 (𝑥) sin

(︀
𝜋(𝜈 + 𝜇)

)︀
, (3.2)

see [8, Ch. 3, Sect. 3.4, Eqs. (14), (15), (20), (21)]. Moreover,

(1 − 𝑥2)

(︂
𝑃 𝜇
𝜈 (𝑥)

𝑑

𝑑𝑥
𝑄𝜇
𝜈 (𝑥) −𝑄𝜇

𝜈 (𝑥)
𝑑

𝑑𝑥
𝑃 𝜇
𝜈 (𝑥)

)︂
= 22𝜇Γ

(︀
1 + 𝜈+𝜇

2

)︀
Γ
(︀
1+𝜈+𝜇

2

)︀
Γ
(︀
1+𝜈−𝜇

2

)︀
Γ
(︀
1 + 𝜈−𝜇

2

)︀ , (3.3)

see [8, Ch. 3, Sect. 3.4, Formula (25)].
Hereafter 𝑟 is a fixed number in the interval (0; 𝜋). It follows from (3.1) that the function

ℎ(𝜈) = 𝑃𝜈(cos 𝑟) = 𝑃 0
𝜈 (cos 𝑟)

is an entire function in the variable 𝜈 of exponential type 𝑟. It possesses infinitely many zeroes,
all zeroes are real, simple and are located symmetrically with respect to the point −1

2
and lie

outside the segment [−1; 0], see [3, Part 2, Ch. 3]. We denote the set of the zeroes of this
function in the interval (0; +∞) by the symbol 𝑁(𝑟), that is,

𝑁(𝑟) = {𝜈 > 0 : 𝑃𝜈(cos 𝑟) = 0}.
We also let

𝒵(𝑟) = {𝑙 ∈ N : 𝑃𝑙(cos 𝑟) = 0} .
We note that

𝒵(𝜋/2) = 𝑁(𝜋/2) = {2𝑘 + 1, 𝑘 ∈ Z+}.
Moreover, the set {𝑟 ∈ (0, 𝜋) : 𝒵(𝑟) ̸= ∅} is countable and everywhere dense in the interval
(0, 𝜋), see [9].
We introduce spherical coordinates 𝜙, 𝜃 on S2 as follows:

𝜉1 = sin 𝜃 sin𝜙, 𝜉2 = sin 𝜃 cos𝜙, 𝜉3 = cos 𝜃, 𝜙 ∈ (0, 2𝜋), 𝜃 ∈ (0, 𝜋);



6 N.P. VOLCHKOVA, VIT. V. VOLCHKOV

as above 𝜉1, 𝜉2, 𝜉3 are the Cartesian coordinates of a point 𝜉 ∈ S2. We let

𝑝𝜈,𝑘(𝜃) = 𝑃−𝑘
𝜈 (cos 𝜃), (3.4)

𝑆𝜈,𝑘(𝜉) = 𝑝𝜈,|𝑘|(𝜃)𝑒
𝑖𝑘𝜙, 𝜈 ∈ C, 𝑘 ∈ Z.

The function 𝑆𝜈,𝑘 is real analytic on S′. At that,

𝐿(𝑆𝜈,𝑘) = −𝜈(𝜈 + 1)𝑆𝜈,𝑘, (3.5)

where 𝐿 is the Laplace operator on S2, that is,

𝐿 =
𝜕2

𝜕𝜃2
+ cot 𝜃

𝜕

𝜕𝜃
+

1

sin2 𝜃

𝜕2

𝜕𝜙2
,

see the proof of Lemma 4.1 below.
With each function 𝑓 ∈ 𝐶(S′), we associate the Fourier series

𝑓 ∼
∑︁
𝑘∈Z

𝑓𝑘, (3.6)

whose terms are defined by the identities

𝑓𝑘(𝜉) = 𝑓𝑘(𝜃)𝑒
𝑖𝑘𝜙, 𝑓𝑘(𝜃) =

1

2𝜋

∫︁ 2𝜋

0

𝑓(sin 𝜃 sin𝛼, sin 𝜃 cos𝛼, cos 𝜃)𝑒−𝑖𝑘𝛼𝑑𝛼.

If 𝑓 ∈ 𝐶∞(S′), then series (3.6) converges to 𝑓 in the standard topology of the space 𝐶∞(S′),
see [4, Ch. 11, Sect. 11.1]. Relation (3.6) implies the formula

𝑓𝑘(𝜉) =
1

2𝜋

∫︁ 2𝜋

0

𝑓(𝜏𝛼𝜉)𝑒
𝑖𝑘𝛼𝑑𝛼, (3.7)

where 𝜏𝛼 is the rotation of R3 in the plane (𝑥1, 𝑥2) by the angle 𝛼, that is,

𝜏𝛼𝜉 = (𝜉1 cos𝛼− 𝜉2 sin𝛼, 𝜉1 sin𝛼 + 𝜉2 cos𝛼, 𝜉3).

Let 𝑂(3) be an orthogonal group in R3,

𝐵𝑟 = 𝐵𝑟(0) = {𝜉 ∈ S2 : 𝜉3 > cos 𝑟} = {(𝜙, 𝜃) : 0 6 𝜃 < 𝑟},
𝑆𝑟 = 𝑆𝑟(0) = {𝜉 ∈ S2 : 𝜉3 = cos 𝑟} = {(𝜙, 𝜃) : 𝜃 = 𝑟}.

We let

𝑈𝑟(S′) =
{︁
𝑓 ∈ 𝐶(S′) :

∫︁
𝑆𝑟

𝑓(𝜏𝜉)𝑑𝑙(𝜉) = 0 ∀𝜏 ∈ 𝑂(3) : 𝜏𝐵𝑟 ⊂ S′
}︁
.

The class 𝑈𝑟(S′) can be regarded as a set of the functions 𝑓 ∈ 𝐶(S′) satisfying the convolution
equation 𝑓 * 𝜎𝑟 = 0 in the ball 𝐵𝜋−𝑟, where 𝜎𝑟 is the delta-function supported on 𝑆𝑟.

4. Auxiliary statements

We denote by 𝐷𝑘 the differential operator defined on the space 𝐶1(0, 𝜋) as follows:

(𝐷𝑘𝑢)(𝜃) = (sin 𝜃)𝑘
𝑑

𝑑𝜃

(︂
𝑢(𝜃)

(sin 𝜃)𝑘

)︂
, 𝑢 ∈ 𝐶1(0, 𝜋).

Let 𝐼𝑑 be the identity mapping.

Lemma 4.1. The identities hold:

𝐷𝑘 𝑝𝜈,𝑘 = (𝑘 − 𝜈)(𝑘 + 𝜈 + 1)𝑝𝜈,𝑘+1, 𝐷−𝑘 𝑝𝜈,𝑘 = 𝑝𝜈,𝑘−1, (4.1)

(𝐿+ 𝜈(𝜈 + 1)𝐼𝑑)(𝑝𝜈,𝑘(𝜃)𝑒
𝑖𝑘𝜙) = 0. (4.2)
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Proof. Employing the formula

(1 − 𝑥2)
𝑑𝑃 𝜇

𝜈 (𝑥)

𝑑𝑥
= −𝜈𝑥𝑃 𝜇

𝜈 (𝑥) + (𝜈 + 𝜇)𝑃 𝜇
𝜈−1(𝑥),

see [8, Ch. 3, Sect. 3.8, Eq. (19)], we find

𝑝′𝜈,𝑘(𝜃) = 𝜈 𝑐𝑡𝑔 𝜃 𝑝𝜈,𝑘(𝜃) +
(𝑘 − 𝜈)

sin 𝜃
𝑝𝜈−1,𝑘(𝜃).

This implies

𝐷𝑘 𝑝𝜈,𝑘(𝜃) =
(𝑘 − 𝜈)

sin 𝜃
(𝑝𝜈−1,𝑘(𝜃) − cos 𝜃 𝑝𝜈,𝑘(𝜃)), (4.3)

𝐷−𝑘 𝑝𝜈,𝑘(𝜃) =
1

sin 𝜃
((𝜈 + 𝑘) cos 𝜃 𝑝𝜈,𝑘(𝜃) − (𝜈 − 𝑘)𝑝𝜈−1,𝑘(𝜃)). (4.4)

Since

𝑃 𝜇
𝜈−1(𝑥) − 𝑥𝑃 𝜇

𝜈 (𝑥) = (𝜈 − 𝜇+ 1)
√

1 − 𝑥2𝑃 𝜇−1
𝜈 (𝑥),

(𝜈 − 𝜇)𝑥𝑃 𝜇
𝜈 (𝑥) − (𝜈 + 𝜇)𝑃 𝜇

𝜈−1(𝑥) =
√

1 − 𝑥2𝑃 𝜇+1
𝜈 (𝑥),

see [8, Ch. 3, Sect. 3.8, Eqs. (15), (17)], by (4.3) and (4.4) we arrive at (4.1).
On a function 𝑢 of the form 𝑢(𝜉) = 𝑣(𝜃)𝑒𝑖𝑘𝜙, the operator 𝐿 acts by the rule

(𝐿𝑢)(𝜉) = (ℓ𝑘𝑣)(𝜃)𝑒𝑖𝑘𝜙, (4.5)

where

ℓ𝑘 =
𝑑2

𝑑𝜃2
+ 𝑐𝑡𝑔 𝜃

𝑑

𝑑𝜃
− 𝑘2

sin2 𝜃
𝐼𝑑.

The operator ℓ𝑘 can be represented as

ℓ𝑘 = 𝐷−𝑘−1𝐷𝑘 − 𝑘(𝑘 + 1)𝐼𝑑 = 𝐷𝑘−1𝐷−𝑘 − 𝑘(𝑘 − 1)𝐼𝑑. (4.6)

Now relation (4.2) follows (4.6) and (4.1).

Lemma 4.2. (i) Let 𝜀, 𝜃 ∈ (0, 𝜋), 𝑘 ∈ Z+. Then as 𝜈 → ∞ and | arg 𝜈| < 𝜋 − 𝜀, the

asymptotic identity

𝑝𝜈,𝑘(𝜃) =

√︂
2

𝜋 sin 𝜃

cos((𝜈 + 1
2
)𝜃 − 𝜋

4
(2𝑘 + 1))

(𝜈 + 1
2
)𝑘+

1
2

+𝑂

(︃
𝑒𝜃|Im 𝜈|

|𝜈|𝑘+ 3
2

)︃
(4.7)

holds uniformly in 𝜃 over each segment [𝛼, 𝛽] ⊂ (0, 𝜋).
(ii) If 𝜈 ∈ C, 𝜃 ∈ (0, 𝜋), 𝑘 ∈ Z+, then

|𝑝𝜈,𝑘(𝜃)| 6
1

𝑘!

(︂
sin

𝜃

2

)︂𝑘 (︂
cos

𝜃

2

)︂−𝑘−1

𝑒𝜃|Im 𝜈|. (4.8)

(iii) Let 0 < 𝑎 < 𝜋, 𝑠, 𝑘 ∈ Z+. Then

max
𝜃∈[0,𝑎]

⃒⃒⃒⃒
𝑑𝑠𝑝𝜈,𝑘(𝜃)

𝑑𝜃𝑠

⃒⃒⃒⃒
= 𝑂(𝜈𝑠−𝑘), 𝜈 → +∞. (4.9)

Proof. Taking into consideration (3.4), by formula (3.1) we have

𝑝𝜈,𝑘(𝜃) =
(sin 𝜃)−𝑘√

2𝜋Γ
(︀
𝑘 + 1

2

)︀ ∫︁ 𝜃

−𝜃
(cos 𝑡− cos 𝜃)𝑘−

1
2 𝑒𝑖(𝜈+

1
2)𝑡𝑑𝑡. (4.10)

By (4.10) and asymptotic expansion of Fourier integrals, see [10, Ch. 2, Proof of Theorem 10.2],
we obtain (4.7).
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To prove (4.8), we again employ (4.10). Then

|𝑝𝜈,𝑘(𝜃)| 6
(sin 𝜃)−𝑘√

2𝜋Γ
(︀
𝑘 + 1

2

)︀ ∫︁ 𝜃

−𝜃
(cos 𝑡− cos 𝜃)𝑘−

1
2𝑑𝑡 𝑒𝜃|Im 𝜈|.

The integral in the right hand side is estimated as follows:∫︁ 𝜃

0

(cos 𝑡− cos 𝜃)𝑘−
1
2𝑑𝑡 =

∫︁ 1

cos 𝜃

(𝑥− cos 𝜃)𝑘−
1
2

𝑑𝑥√
1 − 𝑥2

6
1√

1 + cos 𝜃

∫︁ 1

cos 𝜃

(𝑥− cos 𝜃)𝑘−
1
2 (1 − 𝑥)−

1
2𝑑𝑥

=

√
𝜋2𝑘−

1
2 Γ
(︀
𝑘 + 1

2

)︀
𝑘!

(︂
sin

𝜃

2

)︂2𝑘 (︂
cos

𝜃

2

)︂−1

,

and this proves estimate (4.8).
Finally, let us prove (4.9). As 𝑎 < 𝜋/2, estimate (4.9) is implied by the integral representation

𝑝𝜈,−𝑘(𝜃)𝑒
𝑖𝑘𝜙 = 𝑖𝑘

Γ(𝜈 + 𝑘 + 1)

2𝜋Γ(𝜈 + 1)

∫︁ 𝜋

−𝜋
(cos 𝜃 + 𝑖 sin 𝜃 cos(𝜓 − 𝜙))𝜈𝑒𝑖𝑘𝜓𝑑𝜓, 𝜃 ∈ (0, 𝜋/2)

and the identity

𝑝𝜈,−𝑘(𝜃) = (−1)𝑘
Γ(𝜈 + 𝑘 + 1)

Γ(𝜈 − 𝑘 + 1)
𝑝𝜈,𝑘(𝜃),

see [8, Ch. 3, Sect. 3.7, Eqs. (25), (26); Sect. 3.3.1, Eq. (7); Sect. 3.4, Eq. (5)]. On the other
hand, asymptotic expansion (4.7) and the second relation in (4.1) show that

max
0<𝛼6𝜃6𝛽<𝜋

⃒⃒⃒⃒
𝑑𝑠𝑝𝜈,𝑘(𝜃)

𝑑𝜃𝑠

⃒⃒⃒⃒
= 𝑂(𝜈𝑠−𝑘−1/2), 𝜈 → +∞.

Employing these two cases, we obtain statement (iii).

Lemma 4.3. (i) The identity holds

𝒵(𝑟) = 𝒵(𝜋 − 𝑟).

(ii) If 𝑝𝜈,0(𝑟) = 0, then 𝑝𝜈,1(𝑟) ̸= 0.
(iii) If 𝑝𝜈,0(𝑟) = 0, then 𝑄𝜈(cos 𝑟) ̸= 0.

Proof. Statement (i) is implied by the definition of the set 𝒵(𝑟) and the relation

𝑃𝑛(−𝑥) = (−1)𝑛𝑃𝑛(𝑥), 𝑛 ∈ Z+,

see [8, Ch. 3, Sect. 3.4, Formula (19)].
We assume that 𝑝𝜈,0(𝑟) = 𝑝𝜈,1(𝑟) = 0 for some 𝜈 ∈ C. Then

𝑝𝜈,0(𝑟) = 𝑝′𝜈,0(𝑟) = 0

and
𝑑2

𝑑𝜃2
𝑝𝜈,0(𝜃) + 𝑐𝑡𝑔 𝜃

𝑑

𝑑𝜃
𝑝𝜈,0(𝜃) + 𝜈(𝜈 + 1)𝑝𝜈,0(𝜃) = 0,

see (4.1), (4.2) and (4.5). Then by the uniqueness of the solution to the Cauchy problem for a
second order ordinary differential equation we obtain 𝑝𝜈,0 ≡ 0 and this contradicts the definition
of 𝑃𝜈 .
Finally, the formula

(1 − 𝑥2)

(︂
𝑃𝜈(𝑥)

𝑑

𝑑𝑥
𝑄𝜈(𝑥) −𝑄𝜈(𝑥)

𝑑

𝑑𝑥
𝑃𝜈(𝑥)

)︂
= 1,

see (3.3), shows that the identities 𝑃𝜈(cos 𝑟) = 0 and 𝑄𝜈(cos 𝑟) = 0 can not hold simultaneously.
This completes the proof.
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Lemma 4.4. Let

𝛿(𝜇, 𝜈) =

∫︁ 𝑟

0

𝑝𝜈,0(𝜃)𝑝𝜇,0(𝜃) sin 𝜃𝑑𝜃, 𝜇, 𝜈 ∈ 𝑁(𝑟).

Then 𝛿(𝜇, 𝜈) = 0 as 𝜇 ̸= 𝜈 and

𝛿(𝜈, 𝜈) >
𝑐

𝜈2
, (4.11)

where constant 𝑐 > 0 is independent of 𝜈.

Proof. As 𝜇 ̸= 𝜈, the statement is implied by the identity

(𝜇− 𝜈)(𝜇+ 𝜈 + 1)

∫︁ 𝑟

0

𝑝𝜈,0(𝜃)𝑝𝜇,0(𝜃) sin 𝜃𝑑𝜃 = sin 𝑟(𝑝𝜇,0(𝑟)𝑝
′
𝜈,0(𝑟) − 𝑝𝜈,0(𝑟)𝑝

′
𝜇,0(𝑟)),

see [8, Ch. 3, Sect. 3.12, Formula (3)]. It is sufficient to prove inequality (4.11) for sufficiently
large 𝜈 ∈ 𝑁(𝑟). Suppose that 𝜈 > 𝜋

4𝑟
− 1

2
. We let

𝑔(𝜃, 𝑡) = (cos 𝑡− cos 𝜃)−
1
2 , 0 6 𝑡 6 𝜃 6 𝜋. (4.12)

Then by (3.1) we get

𝛿(𝜈, 𝜈) =

∫︁ 𝑟

0

(𝑝𝜈,0(𝜃))
2 sin 𝜃𝑑𝜃 =

2

𝜋2

∫︁ 𝑟

0

sin 𝜃

(︂∫︁ 𝜃

0

𝑔(𝜃, 𝑡) cos

(︂
𝜈 +

1

2

)︂
𝑡𝑑𝑡

)︂2

𝑑𝜃

>
2

𝜋2

∫︁ 𝜋
4(𝜈+1/2)

0

sin 𝜃

(︂∫︁ 𝜃

0

𝑔(𝜃, 𝑡) cos

(︂
𝜈 +

1

2

)︂
𝑡𝑑𝑡

)︂2

𝑑𝜃

>
1

𝜋2

∫︁ 𝜋
4(𝜈+1/2)

0

sin 𝜃

(︃∫︁ 𝜃

𝜃
2

𝑔(𝜃, 𝑡)𝑑𝑡

)︃2

𝑑𝜃.

(4.13)

An internal integral in (4.13) is estimated as follows:∫︁ 𝜃

𝜃
2

𝑔(𝜃, 𝑡)𝑑𝑡 =

∫︁ cos 𝜃
2

cos 𝜃

(𝑥− cos 𝜃)−
1
2

𝑑𝑥√
1 − 𝑥2

>
1

sin 𝜃

∫︁ cos 𝜃
2

cos 𝜃

(𝑥− cos 𝜃)−
1
2𝑑𝑥 = 2

(︀
cos 𝜃

2
− cos 𝜃

)︀ 1
2

sin 𝜃
.

(4.14)

Taking into consideration that

cos 𝜃
2
− cos 𝜃

sin 𝜃
=

sin 3𝜃
4

2 cos 𝜃
2

cos 𝜃
4

>
1

2
sin

3𝜃

4
>

3𝜃

4𝜋

as 0 < 𝜃 < 𝜋
4(𝜈+1/2)

, by (4.13) and (4.14) we obtain

𝛿(𝜈, 𝜈) >
4

𝜋2

∫︁ 𝜋
4(𝜈+1/2)

0

3𝜃

4𝜋
𝑑𝜃

and this implies (4.11).

Lemma 4.5. Let 𝑟 ∈ (0, 𝜋), 𝜈 ∈ C, 𝑘 ∈ Z. Then for each 𝜏 ∈ 𝑂(3) such that 𝜏𝐵𝑟 ⊂ 𝐵𝜋 the

identities hold: ∫︁
𝑆𝑟

𝑆𝜈,𝑘(𝜏𝜉)𝑑𝑙(𝜉) = 2𝜋 sin 𝑟 𝑝𝜈,0(𝑟)𝑆𝜈,𝑘(𝜏0), (4.15)∫︁
𝐵𝑟

𝑆𝜈,𝑘(𝜏𝜉)𝑑𝜉 = 2𝜋 sin 𝑟 𝑝𝜈,1(𝑟)𝑆𝜈,𝑘(𝜏0). (4.16)
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Proof. By Pizzetti formula, see [11, Formula (20)] and (3.5), we have∫︁
𝑆𝑟

𝑆𝜈,𝑘(𝜏𝜉)𝑑𝑙(𝜉) =2𝜋 sin 𝑟

(︃
𝑆𝜈,𝑘(𝜏0) +

∞∑︁
𝑚=1

𝐿(𝐿+ 2) . . . (𝐿+ (𝑚− 1)𝑚)𝑆𝜈,𝑘(𝜏0)

(𝑚!)2

(︁
sin

𝑟

2

)︁2𝑚)︃
=2𝜋 sin 𝑟 𝑆𝜈,𝑘(𝜏0)

·

(︃
1 +

∞∑︁
𝑚=1

(−𝜈(𝜈 + 1))(2 − 𝜈(𝜈 + 1))...(𝑚(𝑚− 1) − 𝜈(𝜈 + 1))

(𝑚!)2

(︁
sin

𝑟

2

)︁2𝑚)︃

=2𝜋 sin 𝑟 𝑆𝜈,𝑘(𝜏0)
∞∑︁
𝑚=0

Γ(𝑚− 𝜈)Γ(𝑚+ 𝜈 + 1)

Γ(−𝜈)Γ(𝜈 + 1)(𝑚!)2

(︁
sin

𝑟

2

)︁2𝑚
=2𝜋 sin 𝑟 𝑆𝜈,𝑘(𝜏0)𝐹

(︂
−𝜈, 𝜈 + 1; 1;

(︁
sin

𝑟

2

)︁2)︂
.

Then identity (4.15) is implied by (3.4) and the definition of the Legendre function. Employ-
ing (4.15) and (4.1), we obtain∫︁

𝐵𝑟

𝑆𝜈,𝑘(𝜏𝜉)𝑑𝜉 =

∫︁ 𝑟

0

∫︁
𝑆𝜌

𝑆𝜈,𝑘(𝜏𝜉)𝑑𝑙(𝜉)𝑑𝜌 = 2𝜋 𝑆𝜈,𝑘(𝜏0)

∫︁ 𝑟

0

sin 𝜌 𝑝𝜈,0(𝜌)𝑑𝜌

=2𝜋𝑆𝜈,𝑘(𝜏0)

∫︁ 𝑟

0

sin 𝜌 (𝐷−1𝑝𝜈,1)(𝜌)𝑑𝜌 = 2𝜋𝑆𝜈,𝑘(𝜏0)

∫︁ 𝑟

0

𝑑

𝑑𝜌
(𝑝𝜈,1(𝜌) sin 𝜌) 𝑑𝜌

=2𝜋 sin 𝑟 𝑝𝜈,1(𝑟)𝑆𝜈,𝑘(𝜏0).

This completes the proof.

Lemma 4.6. Let 𝑓 ∈ 𝐶∞(S′). Then 𝑓 ∈ 𝑈𝑟(S′) if and only if for each 𝑘 ∈ Z the expansion

holds:

𝑓𝑘(𝜉) =
∑︁

𝜈∈𝑁(𝑟)

𝛼𝜈,𝑘𝑆𝜈,𝑘(𝜉), 𝜉 ∈ S′,

where 𝛼𝜈,𝑘 ∈ C and

𝛼𝜈,𝑘 = 𝑂(𝜈−𝑎) as 𝜈 → +∞ for each 𝑎 > 0. (4.17)

Lemma 4.6 is a particular case of the result established earlier by Vit.V. Volchkov [4,
Thm. 16.6(ii)].
According Ungar theorem on spherical means [7], if a function 𝑓 ∈ 𝐶(S2) has zero integrals

over all geodesic circumferences of the radius 𝑟 and 𝑃𝑙(cos 𝑟) ̸= 0 for each 𝑙 ∈ N, then 𝑓 ≡ 0.
The next result specifies this fact.

Theorem 4.1. Let 𝑓 ∈ 𝐶∞(S′). Then the function 𝑓 has zero integrals over all geodesic

circumferences of the radius 𝑟 on S2 lying in S′ if and only if for each 𝑘 ∈ Z the expansion

holds true:

𝑓𝑘(𝜉) =
∑︁
𝜈∈𝒵(𝑟)

𝛼𝜈,𝑘𝑆𝜈,𝑘(𝜉), 𝜉 ∈ S′, (4.18)

where the coefficients 𝛼𝜈,𝑘 satisfy condition (4.17).

Proof. First we assume that the integrals of 𝑓 over all geodesic circumferences of the radius 𝑟
on S2 located in S′ vanish. By Lemma 4.6 we have

𝑓𝑘(𝜉) =
∑︁

𝜈∈𝑁(𝑟)

𝛼𝜈,𝑘𝑆𝜈,𝑘(𝜉), 𝜉 ∈ S′, (4.19)

where the coefficients 𝛼𝜈,𝑘 satisfy condition (4.17). By formula (3.7), the integrals of 𝑓𝑘 over
all geodesic circumferences of the radius 𝑟 on S2 lying in S′ are also zero. In particular, since
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𝑆𝜋−𝑟 = 𝑆𝑟
(︀
(0, 0,−1)

)︀
, we have ∫︁

𝑆𝜋−𝑟

𝑓𝑘(𝑎𝑡𝜉)𝑑𝑙(𝜉) = 0 as |𝑡| < 𝑟,

where
𝑎𝑡𝜉 = (𝜉1, 𝜉2 cos 𝑡+ 𝜉3 sin 𝑡,−𝜉2 sin 𝑡+ 𝜉3 cos 𝑡).

Writing this relation for the right hand side in (4.19) and employing Lemmata 4.2, 4.5, we find∑︁
𝜈∈𝑁(𝑟)

𝛼𝜈,𝑘𝑃𝜈(− cos 𝑟)𝑝𝜈,|𝑘|(𝑡) = 0, |𝑡| < 𝑟. (4.20)

We apply the differential operator 𝐷−1 . . . 𝐷−|𝑘|+1𝐷−|𝑘| to both sides of the above identity and
taking into consideration (4.9) and (4.1), we obtain∑︁

𝜈∈𝑁(𝑟)

𝛼𝜈,𝑘𝑃𝜈(− cos 𝑟)𝑝𝜈,0(𝑡) = 0, |𝑡| < 𝑟.

By (4.9) and Lemma 4.4 we then conclude that

𝛼𝜈,𝑘𝑃𝜈(− cos 𝑟) = 0, 𝜈 ∈ 𝑁(𝑟). (4.21)

In view of formula (3.2), identity (4.21) can be rewritten as

𝛼𝜈,𝑘 sin(𝜋𝜈)𝑄𝜈(cos 𝑟) = 0, 𝜈 ∈ 𝑁(𝑟).

Then, in view of Statement (iii) of Lemma 4.3,

𝛼𝜈,𝑘 sin(𝜋𝜈) = 0, 𝜈 ∈ 𝑁(𝑟),

and hence, 𝛼𝜈,𝑘 = 0 as 𝜈 ∈ 𝑁(𝑟), 𝜈 ̸∈ N. In view of (4.19) this proves the necessary condition
in Theorem 4.1.
We proceed to the sufficient condition. Assume that for each 𝑘 ∈ Z expansion (4.18) holds

true. Then by (4.15) and Statement (i) of Lemma 4.3 we conclude that each Fourier coefficient
𝑓𝑘 has zero integrals over all geodesic circumferences of the radius 𝑟 on S2 lying in S′. Therefore,
the function 𝑓 possesses the stated property.

5. Proof of Theorem 2.1

Suppose that a function 𝑓 ∈ 𝐶∞(S′) satisfies the assumptions of Theorem 2.1. Then it
follows from the first condition of Theorem 2.1 and Theorem 4.1 that for each 𝑘 ∈ Z repre-
sentation (4.18) holds true and the coefficients obey estimate (4.17). In view of the second
condition of Theorem 2.1 and formula (3.7) we obtain∫︁

𝐵𝑟

𝑓𝑘(𝑎𝑡𝜉)𝑑𝜉 = 0, |𝑡| < 𝜋 − 𝑟. (5.1)

Employing (5.1), (4.18), (4.16) and Lemma 4.2, we find∑︁
𝜈∈𝒵(𝑟)

𝛼𝜈,𝑘 𝑝𝜈,1(𝑟) 𝑝𝜈,|𝑘|(𝑡) = 0, |𝑡| < 𝜋 − 𝑟.

In view of the arguing in the proof of Theorem 4.1) this yields∑︁
𝜈∈𝒵(𝑟)

𝛼𝜈,𝑘 𝑝𝜈,1(𝑟) 𝑝𝜈,0(𝑡) = 0, |𝑡| < 𝜋 − 𝑟,

which is equivalent to the identity∑︁
𝜈∈𝒵(𝜋−𝑟)

𝛼𝜈,𝑘 𝑝𝜈,1(𝑟) 𝑝𝜈,0(𝑡) = 0, |𝑡| < 𝜋 − 𝑟,
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see Statement (i) of Lemma 4.3. Now Lemma 4.4 shows that

𝛼𝜈,𝑘 𝑝𝜈,1(𝑟) = 0, 𝜈 ∈ 𝒵(𝑟).

But by Statement (ii) in Lemma 4.3, the identities 𝑝𝜈,0(𝑟) = 0 and 𝑝𝜈,1(𝑟) = 0 can not hold
simultaneously. This is why 𝛼𝜈,𝑘 = 0 as 𝜈 ∈ 𝒵(𝑟). This means that 𝑓𝑘 = 0 and hence, 𝑓 = 0.
This completes the proof of Theorem 2.1.
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