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ON CAUCHY PROBLEM FOR LAPLACE EQUATION

A.B. KHASANOV, F.R. TURSUNOV

Abstract. The paper is devoted to studying the continuation of a solution and stability
estimates for the Cauchy problem for the Laplace equation in a domain G by its known
values on the smooth part S of the boundary dG. The considered issue is among the prob-
lems of mathematical physics, in which there is no continuous dependence of solutions on
the initial data. While solving applied problems, one needs to find not only an approxi-
mate solution, but also its derivative. In the work, given the Cauchy data on a part of
the boundary, by means of Carleman function, we recover not only a harmonic function,
but also its derivatives. If the Carleman function is constructed, then by employing the
Green function, one can find explicitly the regularized solution. We show that an effective
construction of the Carleman function is equivalent to the constructing of the regularized
solution to the Cauchy problem. We suppose that the solutions of the problem exists and
is continuously differentiable in a closed domain with exact given Cauchy data. In this
case we establish an explicit formula for continuation of the solution and its derivative as
well as a regularization formula for the case, when instead of Cauchy initial data, their
continuous approximations are prescribed with a given error in the uniform metrics. We
obtain stability estimates for the solution to the Cauchy problem in the classical sense.

Keywords: Cauchy problem, ill-posed problems, Carleman function, regularized solutions,
regularization, continuation formulae.
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1. INTRODUCTION

Let x = (x1,22) and y = (y1,%2) be points in the two-dimensional Euclidean space R?, G be
a bounded simply-connected domain in R? with a boundary dG consisting of a compact part
T={y1 € R: a1 <y; <b} and a smooth arc of the curve S : yo = h(y;) lying in the half-
plane 3, > 0. We denote G = G UG, dG = SUT and d/dn is the operator of differentiating
along the outward normal to 0G.

We consider a Cauchy problem in the domain G and we shall construct its solutions as the
Cauchy data is give on a part of the boundary S. In the domain G we consider the Laplace

equation
0*U  0?U
— + —5 =0. 1.1
Y (1)

Formulation of the problem. Find a harmonic function
Uly) = Ulyr,52) € C*(G) N CH(G)
with prescribed values on a part S of the boundary 0G, that is,

IR (1.2
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Here f(y) and g(y) are given functions in the classes C'(S) and C*'(S), respectively.

Problem (1.1)—(1.2) is among ill-posed problems of mathematical physics. In work [4],
A.N. Tikhonov clarified a real nature of ill-posed problems in mathematical physics. He showed
a practical importance of ill-posed problems and showed that if one reduces the class of possi-
ble solutions to some compact set, then the existence and uniqueness of the solution imply the
stability of the solution, that is, the problem becomes well-posed.

The formulae allowing one to find a solution to an elliptic equation in the case, when the
Cauchy data is known only on a part of the domain were named as Carleman type formulae.
In [2], Carleman established a formula providing a solution to the Cauchy-Riemann equations
in a domain of a special form. Developing his idea, G.M. Goluzin and V.I. Krylov [3] obtained
a formula for determining the values of analytic functions by data known only on a part of the
boundary for arbitrary domains. They found a formula recovering the solution by its values
on a boundary set of a positive Lebesque measure and they also proposed a new version of the
continuation formula. Monograph by L.A. Aizenberg [1] was devoted to one-dimensional and
multi-dimensional generalizations of Carleman formula. A Carleman type formula involving a
fundamental solution of the differential equation with special properties, a Carleman function,
was obtained by M.M. Lavrent’ev [0], [7]. In these works, the definition of the Carleman
function was given for the case, when the Cauchy data is known approximately and there was
provided a regularization scheme for the Cauchy problem for the Laplace equation. Applying
this method, Sh.Ya. Yarmukhamedov [8], [9] constructed Carleman functions for a wide class
of elliptic operators defined in spatial domains of special form, when the part of the boundary
is either a hyperplane or a conical surface.

We note that while solving applied problems, one needs to find approximate values of a
solution U(z) and 8%@ , x € G, 1 =1,2. In the present work we construct a family of the
functions Z

8U(:1:, g, f(57 9(5) _ an(S(x)
al’i al‘, ’

Uz, 0, fs,95) = Uys(x) and i=1,2,
depending on a parameter o and we prove that under a special choice of the parameter o = o(9),

as 0 — 0, the family U,s(z) and aU"—‘S() converges to the solution U(z) and its derivative 8g3§$)

at each point x € G. The family of the functions U(x, o, fs, gs) and W%% with described
properties is called a solution regularized in the sense of Lavrent’ev [6].

If under the above conditions, instead of the Cauchy data, their continuous approximations
with a known error in the uniform metrics are given, we propose an explicit regularization
formula. At that we assume that a solution is bounded on a part T of the boundary.

The method we use to obtain the above results is based on finding explicitly the fundamental
solution to the Laplace equation depending on a positive parameter and vanishing together
with its derivatives as the parameter tends to infinity on 7" as the pole of the fundamental
solution is located in the half-plane y, > 0.

Carleman function. Let

o >0, y,:(ylao)v x,:(th)? T:|y—l’|,
a=ly -], o’ =s, w = iVu2 4+ a® + 1, u > 0.

For a > 0, we define a function ®,(x,y) by the following identity:

udu
— 27re‘””2<1> , w =1iVu?+ a? + ys. 1.3
/ ( —$2> Vu? + a? V2 (1.3)

0
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We find the imaginary part of the function ®,(z,y):

ig(x )—_ 0(02+1‘24y2) </OC € au C082 y u2 udu
7y 2 € 2 2 [0) ) :‘2 l

u? + r?
. | (1.49)
/ e~ 7" (yg — x9) sin20ysvVu? + a?  udu
) u? 41?2 ViZta? ]’
We denote
_ ) 2
Yo (x,y,u) = cosTVu? + a? — (y2 = a) sinTvuZ + . T = 20s.
Vu? + a?
Then ®,(x,y) becomes:
27T€U(a2+$§_yg)q)a(x7y) - / @ng;—y;:) ue_"“2du.

0

It was proved in work [9] that as o > 0, the function defined by identities can be
represented as
(I)U(xvy) :F<T)+G0(x:y)v (15)
where F(r) = 5-In1, G,(x,y) is a function harmonic with respect to y in R? including y =
x. This implies that for each ¢ > 0 the function ®,(z,y) is a fundamental solution of the
Laplace equation for each y. The fundamental solution ®,(z,y) with this property is called
the Carleman function for a half-space [6]. This is why for each function U(y) = U(y1,y2) €
C%(G) N CY(G) and for each x € G, the following integral Green’s formula holds:

ou 00, (z,y)
Ux) = [ [ =P, (z,y) — Uly)—=—" ) dS,. 1.6
@) = [ (Groaten - v 50 as, (16)
oG
2. CONTINUATION FORMULATION AND REGULARIZATION IN THE SENSE OF LAVRENT EV
We denote

ata) = [ (st0ato) — 10 2522 ) s, 21)

Theorem 2.1. Let a function U(y) = U(y1,y2) € C*(G) N CY(G) satisfy condition (1.2)) on
S and on a part T of the boundary OG, the inequality holds:

ou
v+ |52 <m yer, 22)
on
where M > 0. Then for each x € G and o > 0 the estimate hold:
U () = Uy(2)] < tha(0) Me™", (2.3)
oU(x) 0U,(x) o2
— < ©; o3 — .
‘ ) A < oo amate =12 (2.4
where
1 m
wio) = (3427, (25)
o
1 NZ3 Vo 1
_ (2 2.6
210, 22) 2" 4/oxs * 2/ * 2\/71'0'1'%) ’ (2:6)
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a(0,72) = (\/T@ + 2\/\/;2 * \/TE " Nj_aflfz)

Proof. Estimate (2.3) was proved in work [9]. Let us prove inequality (2.4). We differentiate
identities ([1.6)) and (2.1)) with respect to x; and we obtain:

U () :/ (8_U8<I>g(:c,y) B U(y)iw) as,

(2.7)

0xy on Oy o0xq on
s
2.8
(e ) 0 dvete 2
on  Ory dxr;  On v’
T
oU,(x) 0P, (z,y) 0 09,(x,y)
= A A ——=21dS,.
61’1 /S(g(y) c%l f( )8ZE1 on 4
We denote by I,(z) a difference of the derivatives:
oU(z) 0U,(x) / oU 0%, (z,y) 0 00, (z,y)
Li,(z) = — = — = —U(y) m————= | dS,,.
10(7) 0x oxy on Oz <y>8x1 on v
T
Then inequality yields:
oU 09, (z,y) 0 0¥,(x,y)
= e — d < MNO’ )
) = | [ (G225 - vt 255 ) ds, | < M, o)
T
where
04 (z,y) 0 0%y(z,y)
Ny (x) = das,.
() / (‘ O0xy ‘ * Ory  On Y
T
In order to prove estimate as ¢ = 1, we are going to prove the following inequality:
N, (z) < ¢1(0,22)e™ ", o> 0. (2.9)
In order to do this, we differentiate identity ([1.4]) with respect to x;:
8@0 xZ, 1 Co(a2 a2 g2
% =20(y1 — 11) P, (z,y) + 5 (e" ez va)
72092 y1 — z1)ue” "% sin 20y,v/u? + a2 Ju
J Vu? + a?(u? +r2)
72 Y1 — T1)u e~ cos 209V u? + o2
+ du
(u + 12)2
0
(2.10)

du

+ / 20y2(y1 — 1) (Y2 — IE2)U€7M2 cos 20ya vV u? + o
(u? 4+ a?)(u? + r?)
0

du

/ 2(y1 — 1) (y2 — a:Q)ue*"“Q sin 20ysvu? + o2
Vu? + a?(u? +r?)?

/ y1 — x1)(y2 — xo)ue~ ou? sin 209V u? + o
) V(u? 4+ a?)3(u? 4 r?)?

du
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Letting here y, = 0, we obtain

% 70”LL2
aq)o(‘ra y) _ (yl - xl) e—cr(a2+$§) / oue du
0xy T u? + (y1 — 1)? + 23
- (2.11)
u2
+/ du
) (y1 — xl) +a3)?
Let us estimate the following integral:
0D, ( h I —ou?
- ue” 7
/ ’ ‘ dS </dy1Mea(a2+x%)/ . o 2du
8:(;1 T u? + (y1 — 1) + 23
a1
[ -l [ :
Y1 — 21 —o a?+z3 o
+ [ dy / du.
/ N ) yl—ﬁl) + 23)?
al
We estimate the first integral:
b1 | | fe') 9
Y1 — 21| _o(a2+a2 oue 7"
dyy e @Ha3) / du
/ S u? 4 (yr — 21)? + 23
al
[l - ol Prtnmaad
/ / 5 dudyy
(y1 — 1) + 23
+00 400 o2
<o / / e =’ +ad) gy gy — €7
27 2
Here we have also employed the inequality
o] (2.12)

u?+ (y; — x1)% + 23

Taking (2.12) into consideration, we estimate the second integral and passing to the polar
coordinates, we obtain:

b1 o 2

\yl —.Tl’ (22 ue ¢
dy, L emolea3) du
/ s (U2 + (y1 — 21)? + 23)?
al
T |y1 - x1| =0 (W —a1)* +a3)
/ / s e
(y1 — x1)% + 23)
70:1:2 fa(u +(y1—21)?) efamg tefmf2
du = d ———dt
/ yl/u? o)t 2n /“’/ﬁw%

2

+0oo
2 te=ot e "2 2 N
e / it < / et = VT
0

22423 T 21 4\/oxs

0
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This leads us to the inequality

00, (z,y) o2 1 VT
- -7 < 2 [ — — ] .
/‘ o 'dSy <e (2 - NG (2.13)

T

We calculate the derivative:

90 0P,(z,y) 0 0P,(x,y) 0 0%,(w,y) .
= CoSy+ ———F——sin7y
0x, on or, Oy Ory Oy
_ 01 = 1) o n—e)?)
T
) (y1 — 1) cosT(y — 1) —2 (y2 — x2) sinT(ys — 1) cos 7y
r
emo (w20 cosT(y — 1) + (g1 — 1) sinT(y; — x)
2m r2
7(y2 — x2) cos T(y1 — x1)
+ 2
,
2(y1 — x1)?cosT(y1 — x1) — 2(y1 — 21)(y2 — x2) sin7(y; — x4
L2 ( RN AE L) PR
20091 — 1| o yraden-a)?)
2T
(y2 — x2) cosT(y1 — x1) + |y1 — z1|sinT |y, — zq]| .
. 5 sin 7y
”
_ ie—a(—y§+w§+(y1—x1)2)
2
(—7(y2 — x2)sin7(y1 — 1) —sin7(yy — 1) — 7 |y1 — 21| cos 7T [y1 — 21])
) -
2(y1 — 21) ((y2 — 22) cos T(y1 — x1) + 2|y1 — 21| *sin T |ys — 5L’1|)> .
+ 1 s 7y,
,
where 7 = 2015, and M)g;f’m and BCDgg’y) are given by the following formulae [9]:
8@0_(1" y) eg(ygfzgf(ylfxl)Q)
Oy 2m . (2.15)
(y1 — x1) cos20ys(y1 — x1) + (Y2 — o) sin 20ys(y; — x1)

Y

7«2
0P, (,y) o Wi —a3—y1—o1 )

0y 27 (2.16)
(Y2 — w2) cos 20y5(y1 — @1) + [y1 — @1[sin 20y [y1 — a4
r? '
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This implies:

/ 0 (0%,(x,y) / o(yr — x1) e oo W20 (y, — 7y) oS
0r; on (y1 — 1) + 23 v
T T
—ox3—o(y1—x1)? o 2
e 9% 2
n ( . 2n 2$1) 2 2) cos (2.17)
27 (yl —371) "‘5’32 (1 —-Tl) + 3)

1 2 e g |’y1 — ZL‘1| ) (yl — ZL‘l)I’Q .
4 ZeoTs—olyi—ai < + siny || dS,.
™ (i —21)?+ 23 (31 — 21) +23)? !

Since cos~y and sin~y are the coordinates of the unit outward normal n at the point y of the
boundary 0G, we can estimate (2.17)).
In view of the estimate
(y1 — 1) < e

(y1 — (L’1)2 + l‘% = 2232

we begin with estimating the first integral:

)

by +o00
le_agcg / 7l — il e~oln=nl gy, <(m2 e / ote] ge_o‘yl_z”?dyl
™ (y1 — x1)% + 23 ™ (y1 — 21)? + 23
al —00
+o0o
go-xQ e—aa:%i 6—a\y1—x1|2dy1 — \/E 6—090%'
™ 21’2 2\/7_1'
—00
In the same way we estimate the second integral:
b1 “+o0
le—oxg / ’yl - ‘7:21‘ T2 5 26—a|y1—x1|2dy1 gie—aazg / 1 - 26—a|y1—x1|2dy1
™ ((y1 — 21)* + 23) 27 (Y1 — 71)? + 23
al —00
| o
2 2 1 2
< %3 efo'|y17x1\ d _ eI
S 2mad / n 213\/mo
—0oQ

In view of the obtained estimates we have:

0 00,(z,y) on2 [ VO 1
R Le 72 . 2.1
/ dry  On ddy < ¢ <2ﬁ+2m§\/7ra (2.18)
T

Taking into consideration ([2.13]) and ([2.18]), we arrive at inequality (2.9)). This proves inequality

(2.4) for i = 1.

Now we are going to prove inequality (2.4)) for i = 2. By (1.6 and ({2.1]) we find the derivative

with respect to xs:
) _ [ (Wen) 0 D0e)

0Ts on  Oxs dry  On

oU 09, (x,y) B 0 09, (x,y)
+/ (372 0o Uly )8.1U2 on dSy,
T

DA [ (st~ gy P Y as,
S

0 019 O0rs  On
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We denote by Iy, (z) the difference of the derivatives:

_0U(z) 0Uy(w) oU 0%, (z,y) 0 0P, (z,y)
Lo () = 0xo - 019 _/ on 0xo _U(y>8_x2 on dSy.

By (2.2) this yields:

8U8<I> ) 0 0P,(z,y)
— —Zod) <
|I2U /( U( )8:1:2 on )dSy X MPU("E)»
T
where 00, ( 5 90,(z.y)
g x7y
/(' 85U2 ‘ Oxry  On ') A5y

T

Let us prove the inequality
(2.19)

2

o o> 0.

By ([1.4) we have:

/’%a@ ‘dS _/K 20258, (2, y) + ;ﬁ

o(a?+z3—y3)

/ 2(y2 — xz)ue’”“ cos 20ys vV u? + a?
du
(u? + 12)?
000 ) (2.20)
n / e~ 7" sin 20ysVu? + a2 udu
0

u? 4+ r? VuZ + a2

/ 2(ys — x2)2e*"“2 sin20ysvVu? + a2 udu s
(2 + 12) Varraz) )|
0
Letting y» = 0 in (2.20)), we find:
/ a(I) = / _ﬁefﬂ(a%rx%) / oue " du
0@ ™ W (g1 — 21 + 73
y2:0 T 0
7 u€—0u2
+ du ds,.
/ (02 + (1 — 21)* + 23)° )) ’

0

Passing to the polar coordinates in the first integral and estimating it, we obtain
|u| e=o @ +—21)%)

2
xQ —cra +x2 / / |U| O-xQ —cm: / /
Y sdu Yy
Yow 4 yl—xl) + 23 ! + (1 — @1)% + 23
+
a:r;z . / / F |cos p| e dt a2 / e —Jt2
2 + a3
0

du

\VOTTTo G_ng.

<ax26_”§ / e dt = s
0
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In the same way we estimate the second integral:
b1 +oo w2 2
—o(u +(y1 z1)%)
12 —o(o?+a) /dy1 / 3 7 lule” du < xQ e~ / (7 / lule 25 du
m (u?+ (y1 — 1’1) +23)? (y1 — @1)* + 23)

ai

+
t* |cos | o [ tRrge” "
L2 oz} Pleospl e o / Tt g
/ / (t? + 3 = (t? + x3)?
0
2 +o0

f[,’ e —ot? efcm:Q T
<e—”5 2 dt < et = Voot
2 + a3 T 2w9\/0
0 0

By these estimates we obtain:

/ 0P, (z,y)

8x2
T

o2 TOTo N3
dsS, < e 72 . 2.21
Sy ¢ < 2 * 21‘2\/5) ( )

y2=0

We calculate the integral:
if)(l)g(x,y) g5 — /<_ 0(312 x3—(y1—1)?) <_lsin 20-y2(y1 — (L'l)
— 2222 dS, =

0z on T 2 72
T

T
N oa(y1 — m1) cos20ya(y1 — 1) (Y1 — @1) (Y2 — @2) cos 2092 (y1 — 1)

r2 ra
ox — Z9)sin 20 -z — 25)%sin 20 -z
— 2(y2 — @) = y2(y1 1) + (2 2) = y2(y1 1))(:087

e W3 —a3—(y1—21) (1 cos 202 (11 — 1)

T 2 72
0x9(yo — T2) cos 20z (y1 — x1) + oxs |y1 — 21| Sin 2009 |y1 — 1]
2
n (y2 — x2)2 cos20ys(y; — 1) — |y14— x1(Ya — x2) sin20ys |y; — 331“) sin’y) as,
r
As yo = 0, this implies:
/ 0 0%,(z,y) S
y
J 0xo on Y2 =0
70':):270'(1/171:1)2 _
e~ 9% T T 1
:/ 2(y1 3 1> 3 (a—l— 5 2) COS 7y
J ™ (y1 — 21)* + 23 (y1 — 21)* + 23
e—ow3—oly1—z1|? —ox} 1
+ +
™ ((yl —x1)? 425 2 —x1)? 423 (2.22)
by
2 2 —ox2 —a\y1—x1|2
x5 ) oxze "2 e
+ sin dsS, < / d
(g1 —@1)? + >) ”>‘ ST et

al

2

b
n 6_012/1 6_”|y1_zl|2 du + .17%6_‘””%/1 e—a|y1—m1|2 y
B A S BN (PR Eare ) El

al ai
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Here we have taken into consideration that cos~y, sin~y are the coordinates of the unit outward
normal n at the point y of the boundary 0G. We estimate these integrals as follows:

2 —ox? b1 olyr—z1|? o3 e o3
_ —oly1—z1 — —
oxse 7" e oge "2 ol N oeT7E
2 Qdy € dyl - )
T (y1 — z1)* + 23 ™ e

—00

/N

ai
2

o)
—ox —ol|y1—z1| —ox
2 (y1 — 1) + 23 27 a2

3 223\/mo’
al

2
—0x;5

al

—0o0
b1 400
_ 2 _ _ 2 _ 2 _ 2
x%e T2 e—oly1—z1] dur < e %% ] fcr\yr:vl\Zd e 7"
- (( )2 1 22)? s 2 | € =3 :
Y1 — T1) + x5 T X5 T5\/TO

—00

In view of the obtained estimates we have:

0 0P, (z,y) o2 (Vo 3
— = dS, < e | =+ ——F— ] . 2.23
/ dry  On y =€ VT * 213\/To (223)
T
Inequalities (2.21)) and ([2.23]) imply (2.19). The proof is complete. O

Corollary 2.1. For each x € G, the identity holds:
lim U,(z) = U(x), lim Wolz) _ 0Uz)

T—00 g—00 8xl - axl ’

1=1,2.
We denote

G. = {(xl,xg) €G, a>x90>2¢, a= mj@xh(ml), D<e< a}.
It is easy to see that the set G. C G is compact.

Corollary 2.2. Ifz € G., then the family of the functions {U,(z)} and {aU"(x } converges
uniformly as o — oo:

OU, () oU(x)
U, Ulz), ;
(x) = (x) o, = o
It should be noted that the sets II. = G\ G. serve as a boundary layer in the considered

problem, similar to the theory of singular perturbation, where usually the uniform convergence
fails.

i=1,2.

3.

We consider the set

E={UeC*(G)NCYG): |U(y)|+|gradU| < M,M >0,y € T} .

STABILITY OF SOLUTIONS TO CAUCHY PROBLEMS

We let

dh '\’
azmj@xh(yl), b:mTax 1—|—( )

dy,
where the curve S is given by the equation ys = h(y;).

Theorem 3.1. Let the function U(y) € E satisfies Laplace equation (1.1) and on the part
S of the boundary of the domain G the inequality holds:

v+ | 2w

<0, y e S. (3.1)



ON CAUCHY PROBLEM FOR LAPLACE EQUATION 101

Then for each x € G and o > 0 the estimates hold true:

2 2
To T3

|U(x)| < 2¢(0, 29) M~ a% 57 | (3.2)
‘agg) < 2u:(o, xg)Ml—%(sié, i=1,2, 0<d§< Me o, (3.3)
where
(0, 72) = max(y*(0, 72), ¥2(0)),
V2 (o, 19) = by +ab+ ’ 2v/oab

/o daala —z) | JE
p(o, x2) = mgx(’/l(a, T2), p1(0, T2)),
(0. 15) = b+ 3ab\/7o N 20ab + 4b\/o + a*bo\/T N b/
4 NG 4y/o(a— x3)
aby/mo N 2ab\/o N 5b
(a—x9)?  rmla—x3) /mola—x9)2)
po(0, ) = mgX(W(U, T2), p2(0, T2)),
vo(0 12) = bror/om + 20abxs N b\/T 2b\/o19 N 4b
2\ 02) = 2 4y/o(a — ) Vrla—x9)  mola—1x9)?)
and @1(0,29)) and ps(o,x3)) are given by formulae and .

Proof. By the Green formula we have:

0 = [ (Grtalon) - v 220 ) as,

S

+ [ (Gotaton - v 252 s,

_|_

+ 3aby/om +

on on

Condition (1.2) and inequality (3.1)) imply

/ (g(y)¢a(x7 y) — f(?ﬂ%) ds,
S

/ (Z—Zq)a(x,y) - U(Q)W) dSy

<O Uy ()| + M (/@Am,y}d&,%—/%‘db’y)

2

<0 Uy ()] + Mapy(o)e™7%2.

U(z)] <

+

Here we have employed the estimate

v ( [1oatamias, + [ |22 dsy) < M),
T T
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which was proved in work [9], where 1)5(0) is defined by formula (2.5)). Taking into consideration
(1.4) and passing to the polar coordinates, we find:

u? + r?

+oo
Y Y 2m
S

S 0

“+oo
/ e (y2 — x2) sin 20yavVu? + o udu S
W2 412 Ny

0

by —+o00
b 2_0_ uefo'(uz‘}'(yl*l'l)Q)
ai 0

+oo

b
+ b ca’—ox} /ld / ulyy — o ‘Sin 2012V u? +Oz2| e—oW+y—=1)%)
—e
7 (u? + 1r?2)Vu? + o?

e~ o (u?+(y1—21)?)
gieotﬁfczg / d / du
A Vu?+ (yr — x1)?

b/
mz —oz3 d y1—x1)> )d <e ca?—oz3 b
/ (7 / (4\/— +a )

du

Since

sin z| <

we have

Ao i + a2
sin 20ysVu? 4+ o?| < loy2vu” + o] :
1+ |20y2Vu? + 2|

Taking into consideration the formulae

8@5 (ZL’, y) o aq)a (LU, y) aq)ff (ZE, y)

cosy + ——4—=sinvy

on B Oy1 0y

and ([2.15)), (2.16]) and reproducing the arguing in the proof of Theorem we obtain:

0P, (x,y) b Voab 22
A S d < aga 0'332’
/‘ oy ' 5 (4\/7m(a—x2)+ NZ3 ‘
S

0P, (z,y) b Voab\ e o2
—_— < 2,
/‘ Oy 'dSy = <4\/7m(a — 1) + N3 ¢
5

Summing up the obtained estimate, we get:

/ 00,(z,y) < b N 2\/oab Joat—013
2\/mo(a — ) N3 '
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It follows from integral formula (3.4) and condition ({2.2]), we obtain:
0P, (z, 0%, (,
) <6 [ (12 + | 2252 ) as, + o / 2,(2,0)] + |22 ) as,
on on
S

it (B2, b fab) (35

ab +

4o 2vmo(a—as) 2y

1
+ Me 77 <§ + &) — (o) (Me ™% 4 §e7@"073),

The best possible estimate for the function |U(z)| is obtained in the case, when

Me—UCC% — 660'(1/2—0'(13%

or
1. M
c=—In— 3.6
a2 (3.6)
Substituting the expression for o from identity (3.6)) into (3.5)), we arrive at inequality ({3.2]),
see [6].
We proceed to proving inequality (3.3]) for ¢ = 1. In order to do this, we find the derivative
with respect to the variable z; from integral formula (3.4)):

oU (x) :/ <0_U(9<I>a(iv>y) _ U(y)iM) ds,

0y on 0O dr; On
oU 6@(7(1',:[/) 0 8(130-(33,3./)
+/ (an 0xq U(y)axl on 45y (3.7)
T
U, (x) oU 0%, (z,y) 0 0P, (z,vy)
o +/ (8n or, Uly) dr; On 45y,
T
Here
OUy(x) [ (OU 0%4(z,y) 9 0%y(x,y)
or, /s <8n Oxy U<y>8x1 on A5 (3:8)
Proceeding with estimating, we obtain:
oU(x) 0, ( 0 [0P,(z,y)
’ 8%1 \' 81'1 M/ <’ 8.1'1 ‘ 8x1 < an dSy
OU, () .
< 0'(132‘
< ' o, + Mo (0, x9)e

This estimate follows Theorem where 1(0,xs) is defined by formula (2.6). In view of
(2.10)), in identity (3.8]), on the part S of the boundary of the domain G we have:

/ 0P, (
8.771

2
ga
<e

(3.9)

o3 [0+ 3aby/To N 20ab + a*bo+/m N by/m N ab\/To
4 VT dy/o(a—x9)  (a—x2)%)’
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b1

0 8@g(x, y) 20 ca?—ox2 9 |y1 — l’1|2
0x1 ( on 45y < ?e ’ / r2eo(y1—1)? dyr

al

b1 bl

b a2 —o2 20 |y1 — xl’ ’yz — CL'Q‘ e—o(yl—xl)Q
T : / r2e0(y1—21)2 dy: + / 2 dy

ai al

b1 bl
2boa -z -z 3.10
n poat—oa3 / |41 : 1|)2 dys + / |y2 — a2 ;s (3.10)

T r2e—o(yi—z1)?

ai
by
2b ca?—ox2 \y1—$1| /!y1—1‘1|\y2—$2|

a”—ox
—e 2 dy
+ T rieo(yi—e1)? ? 4
a1

Sere (Lﬁf f2 ?ji_@) *ﬁéb— W)'

By the assumptions of Theorems 2.1 and [3.1] as well as by (3.9), (3.10), it follows from integral

formula that
0P, ( 0 (0P,(x,y)
<
o [ ([ o () ) s

M/q@@axl ‘ v <3@<§§’”)Ddsy

<5 <eaa2_m% <b + 3aby/mo N 20ab + a*bo\/m
4 ves
b7 NN
o) T a—me T U
N 2ab\/o N 5b )>
Vrla—ax2)  Vmo(a— z2)?

R G O )

Spa (o, 2)(8e7 % 4 Me~7%3).

T4€U 1—1)

‘ (9x1

Choosing here o = a% In %, we arrive at inequality (3.3]) for i = 1:

22

< 24 (o, xQ)Ml_%(;a%.

‘8U(m)
;1

We proceed to proving inequality (3.3) for @ = 2. In order to do this, we find the derivative
with respect to the variable xy from integral formula (3.4)) and we estimate it as follows:

oUu(x) oU 0%, (z,y) 0 0P, (z,vy)
0xo _/ (an 0o _U(y)ax2 on dSy

S

oU 0%, (x,v) 0 0Pg(z,y)

+/(% ) Uy s,
T

(3.11)
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/KaUacp D _ g, )aia@a(n ))‘dSy

‘ 8x2

0, ( 0 09,(z,y)
M/ <‘ 8:102 ’ Jxs  On D 45,
oU, a2
<’ ( ) + My (o, x2)e ",
8.232
Here N ) o 9%, (z.1)
U 0P, ( d
‘ 8932 / ‘(Gn 81'2 ‘ * ‘U( )81‘2 on D 45

The estimates for the second integrals are implied by Theorem , where @o(0, x9) is defined
by formula ([2.7). Taking (2.20)) into consideration on the part S of the boundary of the domain

GG, we obtain:

8@ 2_ 2 [ To\/OT + 20&172 ﬁ
< hel® —ox3 3 .
/ ‘ (9:762 ’ ‘ < 2 + 4/ (a — x2) Toavon (3.12)

In the same way we obtain:

/

1
0 0P, (z,vy) 2bxy 2,2 [ 0|y — 2]
8_1:2 on dSy< ™ ¢ 2/r260(y1—x1)2dy1
by

crzz —amQ / |y1 - $1| |?/2 - x2|dy1 + 29 / 740-|yQ—_x2|dy1 (313)

7“460 y1—x1)?

ai

For (3.13]), an estimate holds:

4
/ iaq)a(x7y> ‘ dSy g eo‘a2—o':c% ( 26\/E'T2 + b ) ) (314)
S

0o on
Now inequality (3.3) for i = 2 follows estimate for integral formula (3.11) in view of the

assumptions of Theorems and and (3.12), (3.14):

oU () 0P, (,y) d 0Py(z,y)
<
‘ 01y \5/<‘ 0xo + 0xy on 43y
0P, ( 0 0, (z,vy)
+ M
/(‘ (991:2 ’ Jdry  On D 43y

bra\/om + 20abx, by/T
2 * 4y/o(a — )
2b\/oxo 4b
Ao v )
Vroz, T o 3
> oo E 23:2\/%)

<560a —0'$ (

+3aby/om +

+ Me-o (
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Spa(o, 12)(8e7% % 4 Me~7%3).
Choosing here o = a% In %, we arrive at inequality (3.3)), that is,

‘GU—(aj) < 2p9(0, xg)Ml_a%éa%.
8$2

The proof is complete.

We let

Uase) = [ (ss02uton) — () 2520 s, (5,19
S

Theorem 3.2. Let the function U(y) € E satisfies condition (1.2)) on S and instead of the

functions f(y), g(y), their approzimations fs(y) and gs(y) are given with a prescribed error
0>0:

max [f(y) = fs(y)| <0, max|g(y) — gs(y)| < 0. (3.16)
Then for each x € G and 0 > 0 the estimate hold:

U(z) — Uys(z)| < 20(0) M 6at

oU(z)  OUys(x)

(3.17)
<2(o,m) MU ESE, 0<S< Me ™, i=1,2. (3.18)

Proof. By (3. @77). (BI1) and (I5) we et
0P, (z,y
00 = U] < V1) +5 [ (10l + | 22222 ) s,
S

on
0, (,y) 9 0P, (x,y) :

< . Y7 frd .

< | Ly (2)] +(5/ (‘—&L’l ’+ o5, on ds,, i=1,2

S
Taking into consideration the estimates

OU(z)  OUss(x)

U (2)] < ¥(0)(Me™%2 + 6e7% ~77%),
oU (z)
‘ oxy
oU (z)
‘ Oy

g Ml(U’ :L,2>(M€7cra:§ + 6eaa2,ax%),

< pa(0,w2) (Me™7 4 §eo'77%),
and choosing o = a% In %, we apply Theorems and and this complete the proof. O]

Corollary 3.1. For each x € G, the identity holds:

lim Ups(z) = U(a),  lim Wosw) _ U)o

6—0  Ox; ox; ’ ’

Corollary 3.2. Ifx € G., then the family of the functions {Uys(z)} and {8[{;—55)} converges
uniformly as 0 — 0:

ou, U
Uys(z) = U(x), a;@ _ af)’

The authors thank Professor of Bashkir State University A.M. Aktyamov for discussion of
the results.

i=1,2
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